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Chains of Three-Dimensional Evolution Algebras: a Description
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Abstract. In this paper we describe locally all the chains of three-dimensional evolution algebras (3-
dimensional CEAs). These are families of evolution algebras with the property that their structure matrices
with respect to a certain natural basis satisfy the Chapman-Kolmogorov equation. We do it by describing
all 3-dimensional CEAs whose structure matrices have a fixed rank equal to 3, 2 and 1, respectively. We
show that arbitrary CEAs are locally CEAs of fixed rank. Since every evolution algebra can be regarded as

a weighted digraph, this allows us to understand and visualize time-dependent weighted digraphs with 3
nodes.

1. Introduction

Evolution algebras are a particular type of genetic algebras introduced a few years ago to enlighten
the non-Mendelian genetic. Their foundations were developed in [17], a pioneering monograph where
many strong connections of evolution algebras with other mathematical fields (such as graph theory,
stochastic processes, group theory, dynamic systems, mathematical physics, among others) are established.
Algebraically, evolution algebras are usually non-associative algebras (they are not even power-associative),
and dynamically they represent discrete dynamical systems. In spite of the strong connections of these
algebras with many branches of mathematics and other sciences, they are very easy to define, as we show
below.

Along this paper, by an algebra we understand a linear space E over a field K (= R or C) provided with
a bilinear map E X E — E, named the product of E. All the algebras that we will consider in this work are
finite-dimensional.

An evolution algebra is an algebra E provided with a basis B = {ey, e, ..., e,} such that e;e; = 0, if i # j.
Such a basis is said to be a natural basis. If ¢;e; = Y ; axiex, then the structure matrix of E relative to B is
defined as the matrix Mg(A) whose i—th column is given by the coefficients of e;e; respect to B. Therefore,

a0 Mg
Mpg(A) =

ap1 - Oun
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Note that, whenever the matrix Mp(A) is stochastic, this defines a Markov process. On the other hand,
fixed a natural basis B, the dynamic nature of the evolution algebra E is given by the evolution operator
Lg : E — E which is the unique linear operator on E such that Lg(e;) = el.z. Therefore, the structure matrix
Mp(A) is precisely the matrix associated to Lg.

A main feature of an evolution algebra E is the following one: if we regard the elements of the natural
basis B as the nodes of a graph, and the coefficient a; (Where ¢;e; = Y, axie) as a measure of the interaction
of the node ¢; over the node ¢, then we obtain that the evolution algebra E is canonically associated to
a weighted digraph Gg(A) whose set of nodes is {ey, e, ..., e,} and whose adjacency matrix is Mg(A)". (In
graph theory the adjacency matrix of a weighted graph is usually obtained by writing in the i-th row the
weight of the respective arcs starting in the node ¢;. Because of this the adjacency matrix is the transpose
the structure matrix).

Recall that a complex weighted digraph (or a complex network) with n nodes (where n € IN) is defined
as G = (V,E,A) where V = {vy,...,0v,} is the set of nodes, E C V X V is the edge set and A = (a;;) € M,,(C) is
the adjacency matrix, under the convention that if (v;, v;) ¢ E then a;; = 0. Therefore, by identifying B with V,
it is clear that every complex networks has canonically associated an evolution algebra with natural basis
B, and vice versa.

The study of complex networks is a very active area of scientific research focused on real-world networks
such as computer networks, technological networks, brain networks and social networks. Nowadays, it
is clear that many real-life problems can be better modeled by using time-dependent weighted digraphs.
These are networks whose edges and associated weights change over the time. Nevertheless a consistent
and vast theoretical framework for time varying weighted digraphs is still under development.

In time-dependent digraphs, it is usual to consider that the edges are activated in a sequence of time
intervals. This means that the weight of an edge (e;, ¢j) can be represented by intervals of time [s, t] with
0 < s < t. This is the philosophy of the chains of evolution algebras (evolution algebras and weighted
digraphs are canonically related) introduced in [1].

For 0 <a <b < o0, and n € N, we define an n-dimensional chain of evolution algebras (CEA for short)
on [a,b] as

Eap) = {E[S’t] ra<s<t<b}

where every E*!l is an n-dimensional evolution algebra provided with a structure constant matrix M1l
(respect to a prefixed natural basis B) satisfying that

Mlswl = pplstpglta] (Chapman-Kolmogorov equation), (1)
for any a < s <t <w < b. In this case we say that
Mg = IME 1 a <5 <t < b}

is the Chapman-Kolmogorov chain (C-K chain for short) associated to &y ).

We point out that if &,y is an n-dimensional CEA on a bounded interval [a,b] and if &p,( is an n-
dimensional CEA on an interval [b, c] then, by providing E B and EPY fora < s < b < t < ¢, it turns out that
Eap) and &y ) determine uniquely an n-dimensional CEA on [g, c] as follows:

Eg = 1EM ta<s<t <), )

where, if a <s <t < b (respectively if b < s < t < c) then, E*l is given by the corresponding evolution
algebra in &, ), (respectively in &y, ), meanwhile if a <s < b < t < c then, E[!] is defined as the evolution
algebra whose structure matrix (respect to B) is M5! := MIsbIpI04,

To understand the meaning of the Chapman-Kolmogorov equation from the dynamic nature of a CEA,
&jap), Note that (1) means that LE’” = LE’T]LI[;’”, for every 0 < s < 7 < t, where LE"" I'is the evolution operator
of the evolution algebra E!**l.
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From the point of view of the weighted digraphs associated to the evolution algebras El*! of the CEA
Ea,p1, the Chapman-Kolmogorov equation means that the adjacency matrix of the graph associated to El*]
can be obtained from the product of the adjacency matrices of the weighted digraphs associated to El*!l and
El (as the adjacency matrix is the transpose of the structure matrix). Consequently, the weighted digraph
associated to the time interval [s, {] can be obtained from the corresponding graphs associated to the time
intervals [s, 7] and [z, t], for every s < T < t.

In the connection between evolution algebras and Markov processes, the Chapman-Kolmogorov equa-
tion describes the fundamental relationship between the probability transitions (kernels). Indeed, a family
of stochastic matrices satisfying the Chapman-Kolmogorov equation generates a Markov process (see e.g.
[16]). However, there are many random processes which cannot be described by Markov processes of square
stochastic matrices (see e.g. [3, 4,7, 10]). To obtain a non-Markov process one can consider a solution of the
Chapman-Kolmogorov equation which is not stochastic for some time, as it is done in [1, 12, 13] where a
chain of evolution algebras (a CEA) is introduced and investigated. Later, this notion of CEA is generalized
in [8] by means of a concept of flow of arbitrary finite-dimensional algebras (their matrices of structural
constants are cubic matrices). In [2] Markov processes of cubic stochastic matrices (in a fixed sense), the
so-called quadratic stochastic processes (QSPs), are studied.

In [14], chains generated by two-dimensional evolution algebras are described. In [1] several concrete
examples of chains of evolution algebras are shown, analyzing their time-dynamics. In [12, Section 4]
real CEAs of three-dimensional nilpotent evolution algebras are studied, and many examples of them are
provided. Moreover, and application of CEAs to a population with possibility of twin birth can be found
in [2].

The aim of this paper is describing all the 3-dimensional CEAs. Our approach shows the relevance of
the CEAs of rank r, these are those whose associated C-K chain consists of matrices having a fixed rank r
(equal to either 0,1, 2, or 3). This is to solve the Chapman-Kolmogorov equation (1) for the corresponding
3 x 3 structure matrices. In [12] this equation was solved when the given matrices MB . 0 < s < t} are
upper-triangular.

In Sections 2, 3 and 4 of this paper, we describe completely all the CEAs having fixed rank equal to 3,2
and 1 respectively (CEAs with zero rank are trivial). In Section 5 we show that these cases are certainly
representative because an arbitrary CEA generated by 3-dimensional evolution algebras can be locally
described by means of CEAs of fixed rank. More precisely, we will show that a bounded interval [a, b] can
be expressed as a union of intervals [a, b] = Uaealaa, b ] satisfying the following conditions:

(i) these intervals are not overlapped in the meaning that (a,,ba) N (ay, b,) =0 if A, u € Awith A # p,

(ii) for every A € A, the CEA &y, p,) = (EB4 gy < s < t < by} has a fixed rank 7, equal to either 0,1,2 or
3.

Moreover, beyond of giving this local description, we discuss when it is possible (or not) to provide a
global description of an arbitrary 3-dimensional CEA in these terms, by justifying the reason for it.

Anyway, this approach will provide many examples of CEAs generated by 3-dimensional evolution
algebras. Since an evolution algebra can be regarded as a complex network, this description might be
helpful to understand time-dependent complex networks and to visualize many examples of them.

2. Determining the 3-dimensional CEAs of rank 3

Letr € {1,2,3}. We say that the C-K chain M|, ;) of a 3-dimensional CEA &, ) has rank r if rank M =,
for every M5l € M, ;) witha < s < t < b. In this case we say also that |, is a CEA of rank r. In this section
we will describe all the CEAs (equivalently all the C-K chains) of rank 3.

Examples of C-K chains M, of 3 X 3 matrices of rank 3 are very easy to obtain, as we show next.

2.1. Prototype of C-K chain of rank 3
Choose a set of non-singular 3 X 3 matrices (Mt - g < t < b},and put

Miwol = M[a,u]’lM[a,v]l
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foreverya <u < v <b. Then
M[g,b] = {M[u'v] a<<u<<o< b}

defines a C-K chain of rank 3 and, hence, if M[**] is the structure matrix of the evolution algebra El? then
Elap) = (E?] . g < u < v < b} determines all the 3-dimensional CEAs Eja,p) of rank 3.

2.2. Description of the C-K chains of rank 3
Let us determine all the C-K chains M|, ) associated to a 3-dimensional CEA &, of rank 3.

Proposition 2.1. Let My, be a C-K chain of rank 3 associated to a 3-dimensional CEA &, p). Then My is
determined by the set of matrices

Upen{M® -0 < t < b},
where o, is a strictly decreasing sequence in (a, b) such that o, — a.

Proof. Ifa <s <t <b,letn € Nbesuch that a,, < s. Since Ml**IMH = Mt e have that
Mistl = M[amsl_lM[a/ut],

as Ml%#] is non-singular. Therefore all the matrices in My, ;) have been described. [

3. Determining the 3-dimensional CEAs of rank 2

In the next subsection we will provide a method to obtain 3-dimensional CEAs of rank 2 (and thus, C-K
chains of 3 X 3 matrices of rank 2). Later, we will see that these examples are very relevant to describe all
the C-K chains of rank 2.

3.1. Prototype of C-K chain of rank 2

Let a,, be a strictly decreasing sequence of real numbers such that @, — a. Denote by inv(Myx2(K)) the
set of all 2 x 2 invertible matrices with entries in IK. Consider a sequence of functions

Wyt (an,b) = ino(Mpo(K)) and @y @ (an,b) = Moa(K),
with the following property, for every m,n € IN, and t,w such thata < a,, <a, <t <w <,

W (W (w)
W, (D)

W (OWn(w), 3)
W, (B pm(w).

(Itis very easy to get examples of such applications. For instance, take arbitrary functions ¢, &: N - R\{0},
and define Wy, () := (2 + 1) M)A, @au(t) = LU, Waua(t) = (# + 1) E()B, and pauia(t) := tE(m)v where
A, B € ino(Mpxo(K)) and u, v eMoy (K) are such that A~'u = B71v).

Fora <t <w < b, define

P(t,w)
u(t, w)

W, ()W (w)
@, (Opn(w),

for some n € IN such that a, < t. Note that, by (3), we have that P(f, w) and u(t, w) do not depend on the
particular n that we choose satisfying a,, < t . Define

Mital — [ Pl we ult, w)sa
O1x2 01x1
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We claim that {M[**! : a < t < w < b} is a C-K chain of rank 2. To prove the claim note thatif a <t <w < 7 <b,
and if a < a; <t then,

Mitolp o - P(t, w)axo  u(t, w)rsxa P(w, T)axa - u(w, T)axa | _
012 0151 O1x2 0151

\Il‘y_zl (O (w)2x2 \yy_,l(t)(Pn(T)le \Pgl(w)wn(T)sz \py_zl(w)(Pn(T)le _
O1x2 0151 012 0151

( VAW, ()Y @) Wa(1) W (O (W)Y, (w)ea(T) )_
O1x2 O1x1 h

VAN, (1) W, (H)ea(T) _ P, T)ox2  u(t, T)ax1 _ Ml
012 011 O1x2 0131 '

Consequently, MI"“IMI© Tl = Mt which proves that My, is a C-K chain of rank 2, as desired.

3.2. Description of the C-K chains of rank 2

Our next goal now is to prove that, if My, ;) is a C-K chain of rank 2 then, except in a marginal case that
we will described below, the chain can be determined by means of

UnGN{M[an’t] > 0(71}/

where a, is a strictly decreasing sequence such that @, — a. In the aforementioned remaining marginal case
(i.e., every decreasing sequence such that «, — a contains a critical point) the chain can be determined as
long as we additionally know some other elements (the third row of Ml when t, is a critical point) as we
will see.

Assume that M,y is a given C-K chain of rank 2 and let us determine all the matrices in My, by
knowing only a few of these matrices. More precisely suppose that we know the matrices of M, given
by the set

UnEJN{M[an/t] > an}/

where «, is a strictly decreasing sequence of (1, b) converging to a.
Claim 1.- It is not restrictive to assume that the two first rows of Ml are linearly independent. If this is not

the case then, for these particular n € IN, replace in My, ;) the matrices M!*+! and M™% by Miantl and Miver]
where

00 1
M =10 1 0
100

0 01
Mlant] and Mimal — pleal] 0 1 0 |,
1 00

Therefore we obtain a C-K chain of rank 2, denoted by /FV([,,,;,]. In fact, the Chapman-Kolmogorov equations
are trivially satisfied, as

0 01 0 01 1 00
010 01 0f=(01 0].
1 00 1 00 0 01
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Moreover, if we determine all the matrices of M[u,b] then all the matrices in M, ;) are also described since

00 1 00 1
Mafd =0 1 0 [M*1  and M=M=l 0 1 0 |
100 100

Claim2. It is not restrictive to assume that the 3rd row of Ml is zero. In fact, otherwise suppose that

al(a‘rl/ t) aZ(a‘rl/ t) as (Oén, t)
Ml = bi(an, t) ba(an,t) bs(ant) |,
ci(ay, t)  caay, t) csay,t)

with rankMl®tl = 2 where, for constants k(a,,, t) and E(an, t) that are not simultaneously zero, we have

(c1(an, 1), ca(atn, 1), c3(atn, ) = R
= k(an/ t)(ﬂ](()én, t)/ ﬂz((){n, t)/ a?a(an/ t)) + k(an, t)(bl (an, t), bz(a”, t), b3(C¥n, t))

Then we replace M+l and Ml%#] by Miawtl and Miwan], respectively, where

1 0 0
Miantl = 0 1 0 |mlentl (4)
(e, ) Kan t) -1
N 1 0 0
Mlzanl = pglran] 0 ~ 1 0 |. (5)
From the fact that
1 0 0 1 0 0 1 00
0 1 0 0 1 0 =[ 010 ]
k(ay, t)  k(a,,t) -1 k(an, t) k(a,,t) -1 0 01

the Chapman-Kolmogorov equation holds for the matrices of the new family M[a,b]. Therefore we obtain a
C-K chain of rank 2 such that

_ a(an, t)  axan, t) as(an,t)
Mt =1 by, t) ba(an,t) bs(ant) |.

0 0 0

Note that, if we are able to describe the matrices of this C-K chain M, ), then we will also describe those
of the original chain M, via the formulas (4) and (5).

By applying Claim 1 and Claim 2 if needed, the problem that we are considering can be formulated as
follows: Describing all the C-K chains, M, p), of rank 2, such that for a strictly decreasing sequence o, — a we have
that

al(an/ t) aZ(al’l/ t) az (ai’l/ t)
] , (6)

M =1 by(an, t) ba(an,t)  ba(an,t)
0 0 0

for every t > . Let

Mitol — P(t,w)axo  u(t, w)rxa
ol (L whxa ot w)ixa
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foreverya <t <w < b. For @, < t, denote

W, (t) := Py, 1) =( ar(an, £) - ax(an, 1) ),. ont) = =( a3(ctn, 1) )

bl (an/ t) bz(an/ t) b3(al’ll t)
Then,
Miontl = Plan, D)axa - wlan, Baxa | _ [ Wn(®xz @b
O1x2 011 012 0151 ’

Since, for every a < a, <t <w < b, we have
M[amt]M[trw] — M[anrw],
it follows that

Pit,w) = W' (HW.(w) - W, B)pa (D0 (t,w),
utb,w) = W (Hea(w) -V, Bpa(t)et, w),

3181

©)

so that the above functions do not depend on 7, in the meaning that n can be replaced for any m such that

a, < t. Because of this,

WO, (w) - W, (O, (w) (W, (O, () — WV (D, ()0 (£, w),
. (D, @) -V, (D, (w) (W, O, () - W, (B, (D)t w),

for every n,m € N such thata < a,, < a, < t.
On the other hand, for everya <t <w < banda < a, < t, we have,

M[t,w] — Aglw) _ Sg:w)

where

O OWa(W)axa W, (H@n(W)2xa
" O1x2 0151 !

gt (\Jv,;l(t)<p,%(w)vT(t,w)zx2 \y,;l(t)@n(w)c(t,w)zXl)
n —0T(t, w)1x0 —c(t, w)1x1 '

It is easy to check that, fora <s <t <w < b,
A;s,t)silt,w) = 03x3.

Moreover, for K € My (K),

K
56 1|
" —1ixa

| ) eat)0T (s, Haxe WL (S)@a(t)e(s, Baxa Kox1
a —0T(s, H1xe —c(s, )1x1 ~lix1

W L(8)@u(D(0T (5, axoKax1 — c(s, E)ax1)
=0T (s, H)1x2Kaxa + (s, B1x1 ’

Ky

Thus, S,(f’t)( Tt
- X

) = 03><1 if and Ol"lly if Z)T(S, t)1X2K2><1 = C(S, t)lxl'

(10)

(11)

(12)

(13)
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We say that t is a critical point for the sequence a,, if there exists K;, € My (K) such that WV}, 1(t0)(Pn(t0) =
Ki,, for every n € N with a,, < to and, for every a < s < ty with c(s, tp) # 0, we have that at least one of the
following two properties are satisfied:

(i) 0T (s, to)Ks, = c(s, to),

(i) Aﬁf’tO) = AfZ’tU) for every n,m € N with a < @, < @, < s (equivalently there exists M; € Msy3(K) such
that Af,s’t(’) = M; for every n € N with a,, <s).

We claim that if t, is not a critical point then, for every ty < w < b, the matrix MU'l can be determined from
the set Uyen{MIntl . g < t < b).

To prove the claim suppose that t; is not a critical point. Then we are in one of the following two cases:

(a) There exist n,m € N with a < a,, < a, < tg such that W;1(to)p,(to) # W, (to)pm(to). Then vl (t, w)
and c(f, w) can be obtained from (10), meanwhile P(f,w) and u(t, w) are getting from (9). Thus Mt g
determined.

(b) W, (to)pn(to) = W, (to)pm(to) for every n,m € N with a < a,, < @, < to. This means that there exists
Ki, € Maxi(K) such that W, 1(t))@x(to) = Kj,, for every n € N with a < a, < to. Since t; is not a critical point,
there exists a < s < ty with c(s, tp) # 0 such that v’ (s, t))K;, # c(s, to) and Aff’t“) * Aff,’t") for some n, m € IN with
am < ay < 5. By (9) it follows that W' (), (s) # W, (5)@m(s). Then, MI! as well as M*! can be determined
from (10) and (9). Moreover, by (13),

Sils,fo)( Ifflo ) # O3x1. (14)
If Ky, = ( 2 ), if 0T (ty, w) = (c1(w), c2(w)) and if c(ty, w) = c3(w) then, since W, (to)pn(to) = Ky, for every

n € Nwitha < a, < ty, we have

kici(w) kici(w) kics(w)
gltow) =[ kaco(w)  kaco(w)  koca(w) |.

—a(w) -cw) -—cs(w)

Therefore, from (11), (12) and (13) it follows that
M(S'to)( Iffl ): —sfff“”( Iffl )qt O3x1.

Consequently, S can be determined from the equality
M(S,f()) S(folw) — M(s,to) A(fo,w) _ M(s,w)
n n 7

as the other matrices there are known. Hence, from (11), the matrix M“®) is determined for everyty <w < b.
We conclude that the C-K chain My, ;) is described from of the matrices

UneN{M[a"'t] (> ay) (15)

whenever a, has no critical points. Otherwise the C-K chain M|, ;) is determined by the above set of
matrices joint with the third row of Ml?®l, for every critical point t; associated to a,,, and every ty < w < b.
The reason is that there are many free choices of the third row of Ml"*! given rise to a “compatible” C-K
chain M, for the given matrices (15) (so that we cannot determine the particular M, that we have
chosen). The next example shows this situation.

Example 3.1. Let a, — a be a strictly decreasing sequence, with a < o, < b and, for every a < a, < w, let

Mlanw] — Wi(t)axe  @n(t)axa
O1x2 0151
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where W, (t) € inv(Maxo(K)). Assume that, ifa < ay, < a, <t <w < b then,
VW) = W, (OWn(w), (16)
W Oa(w) = W (Hpm(w).

Leta < aq < fg < bbe such that @,(ty) = 0 foreveryn € N. Ifa <t <w < bissuch that t # ty and t # a, for every
n € IN, then define

Mitwl .= VW, (w)axe WV (O @u(w)asa
’ O1x2 O1x1 !

for some n € IN (from (16) this does not depend on the o, chosen). Fix Bixz := (B1, f2) € Mixo(K)\{0} and ny € IN.
For ty <w < b, define

Mitow] . \IIT_I(]l (t0) Wiy (W)axa \Il‘;(;l (t0) Py (W)21
’ Bix2 Wi, (W)2x2 Bix2Puy(W)2x1  |°

From (16) we have, for every n € IN,

Mitol ::( W)W Wy (Fo)@n(w)axa )

BixaWn, (W)2x2 Bix2Pn, (W)2x1 17)

We claim that M = {MU©! 1 a < t < w < b} is a C-K chain of rank 2 such that ty is a critical point for o, (indeed
to is the only critical point that o, has). The claim follows from (i), (ii) and (iii) where:

(i) MlentIMUE©l = plawwl Indeed, for t # tg it is obvious and for t = tq it is also easy to check as @, (to) = 0.

(ii) MM = M) for s # ty. In fact, if t # to the equality is clear and otherwise, from (17),

W) Walto)ae 020 W (t)Wa(w)ae Wit (to)Pu(w)an
012 0151 Bix2 W, (W)2x2 Bix2Pro (W)2x1

_ [ Y OWawe Wy 6)pn(w)aa
O1x2 011 ’
(iii) MUl plwrl = pltotl This is also trivial since

\P;Ul (tO)\I]ﬂo (w)ZXZ \y;[)l (tO)(pﬂo (w)le \p;l(]l (w)\y‘flo (T)2><2 \p;l(]l (w)(f)no (T)2X1
Bixa Wi, ()22 Bix2@Pny (W)2x1 0152 011

_ Wl (t0) Wy (Daxz Wil (F0) @iy (T)2x1
Bix2 Wi, (T)2x2 Bix2Puo(T)2x1 |°

Consequently for every arbitrary Pixo that we fix we obtain a C-K chain M,y compatible with the matrices
Ml originally given. Thus, we cannot determine a particular one of these C-K chains from Upen{M@ 4 - t > a,}
without knowing the third row of MU for the critical point t,.

4. The Chapman-Kolmogorov chains of matrices 3 X 3 of rank 1

In the next subsection we will provide a method to obtain C-K chains of rank 1. Later, we will see that
these examples cover the class of C-K chains of rank 1.

Note that if every matrix of a C-K chain M|, ;) is non-zero, and if Ml € M|, ;) is such that rankMloh] = 1
then, rankMo#l = 1 for every t > t;. This follows from the fact that

rankM* ! < rankpMisohl = 1,

as Misotl = plsostol pgltont]
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4.1. Prototype of C-K chain of rank 1
Consider a strictly decreasing sequence a,, converging to a. For every n € N, let f,, g, Iy @ (s, b) = R
be functions satisfying that, if m > n then, there exists a constant k,, ,, such that for every t > a,, we have

fn(t) = kn,mfm(t)/ (18)
gﬂ(t) = kn,mgm(t)/
ha(t) = kn,mhm (#).

Let W, : (an,b) — R be the function given by
Wa(t) = fut) + g1 (t) + hu(Bpa(t),

where @1, @, : (a,b) — R are arbitrary functions such that W, (t) # 0, for every t > a,. Note that
W, () _

o = ko (19)
for every m > n. Fora <t <t < b, define
_ f(D) g0 (D)
al(t/ T) - \I’n(t), aZ(tl T) - \yn(t)/ a3(tl T) - \I]n(t)/ (20)

for some n such that a, < t. Note that this definition does not depend on the chosen #, as follows
straightforwardly from (18) and (19).
We claim that, if

ar (s, t) ax(s, t) as(s, t)
MEA = p1()ar(s, 1) i(s)aa(s, t)  @1(s)as(s, b) |,
P2(s)ar(s,t)  @a(s)ax(s,t)  @a(s)as(s,t)

then, the family My,p) = (M 1 a < s < t < b} defines a C-K chain of rank 1. To prove the claim we need to
check that
MisHp gl — M[S,T],

fora < s <t < 7 < b. This means that

ai(tl T) <(611(S, t)/ HZ(S/ t)r H3(S, t))r (1/ (Pl(t)/ (PZ(t)»
(Pl(s)ui(t/ T) <(Ll1(S, t)/ az(S, t)r ﬂ3(S, t))r (1' ﬁol(f)/ @Z(t)»
Pa(s)ai(t, T) (a1 (s, 1), ax(s, 1), a3(s, 1), (1, @1(£), p2(1)))

where, < —, — > denotes the scalar product of two vectors.
Since, from (20), we have that

ai(s, 1), i=1,2,3.
P1(8)ai(s, 1), i=1,2,3.
P2(s)ai(s, 1), i=1,2,3.

am(t, OWa(t) = fulD),
a;(t, T)V,(t) = In (1),
a(t, OWa(t) = hu(7),

\Iln (t)

T = a;(s, 7). Therefore, fori =1,2,3,

we deduce that a;(t, 1)

ai(t, 7) {(a1(s, 1), a2(s, t), as(s, 1), (1, p1(t), p2(1)))
w05 ) 000
W, ()
W,(s)
and the claim follows.
Next, we show that all the C-K chains of rank 1 fit in this pattern.

ai(tl T) ﬂl‘(S, T)/
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4.2. Description of the C-K chains of rank 1

Along this subsection Mj,;;, with 0 < a < b < oo, will denote a C-K chain of rank 1 associated to a 3
dimensional CEA, &;,5. Note that every Ml € M, ;) is a non-zero matrix such that its 3 rows are linearly
dependent.

Claim 1.- It is not restrictive to assume that the first row of every M1 € My, ;) is non-zero.

The claim follows from the following two propositions. In the next one, we work with the set of matrices
M in M, ;) having their first row equal to zero and the second one non-zero. Note that in some C-K
chains this set might be empty.

Proposition 4.1. Let My = {ME 1 a <'s <t < b} be a family of 3 X 3 matrices. Suppose that the set
S ={se(ab): At with (1,0,00M =(0,0,0) and (0,1,0)M £ (0,0,0)}

is non-empty, and define

P213M[S’t] Zf EXS S,t ¢ S,
— PysMBHPy; if s€S,te8S
st _ 213 213 , ,
M M[S’t]PZB lf s¢ S,t € S, (21)
Ml if sgS,t¢S.
where

010
Paz=|1 0 0|
00 1

Then, for everya <s <t < 1 < b, we have that
MUEAMET = M if and only if MEIMIETD = pisT,

PTOOf. Note that Py;3Py13 = 1.

If MSAMIET = MIST - for every a < s < t < 7 < b then, MM = MIsT as it can be deduced directly
from the following cases.

Case 1.-If s, t, T € S then,

MEAMIET = Pyy My 3 Pyis M Pyyy = Poys MM Py = PyysMIE Py = M1,
Case 2.-Ifs,t € Sand 7 ¢ S then,

MsAptal = PyrsME Py 3 Py s MU = Py MISAMIET = Pyaplstl = Misl
Case3.-Ifs,t e Sand t ¢ S then,

MUEAMUET = Py MMy 3 = Py MISTIPy5 = M,
Case4.-Ifse Sand t, T ¢ S then,

Mttt = p213M[Slt]M[tﬂ] = p213M[S,T] = Mis
Case 5.-Ift,7 € Sand s ¢ S then,

NI = AP, Py s MU Py = MSAMIETIP, 5 = MISTIP,, 5 = M.
Case6.-Ift e Sand s, T ¢ S then,

Mistpitel — MEAPy 2Py MU = MM = plsel = MisTl
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Case7.-If t € Sand s, t ¢ S then,
Mt pfitTl = pglsHpgltal P13 = MIFIP, 5 = Mistl
Case 8.-If s,t,7 ¢ S then,
MM = plsApglea = plsdl = plsl

This proves that MIsAMItA] = A7I[5'T], for every a < s <t < 7 < b. On the other hand, note that in (21) the
matrices MI** and MI*] can be exchanged, so the result follows. [J

Next, we work with the set of matrices M in M, ;) having the first row equal to zero and the third
one being non-zero.

Proposition 4.2. Let M,y = {MI 1 a < s < t < b} be a family of 3 x 3 matrices. Suppose that the set
S ={s € (a,b): A with (1,0,00M"" = (0,0,0) and (0,0, )M £ (0,0,0)}

is non-empty, and define

P321M[s’t] lf seS,t¢S,
— PiyMEHPy  if s€S,te8S
54 _ 321 321 , ,
L MBAP,,, if sgStesS, (22)
M= if s¢S,t¢S.
where

0 01
Pypi={ 0 1 0.
1 00

Then, for everya < s <t <t < b, we have that
MEAMET = MU if and only if MEIMIET = M,

Proof. This proof is analogous to that of Proposition 4.1. [

We conclude that applying Proposition 4.1 and then Proposition 4.2, if necessary (each of them), it is not
restrictive to assume that M, (that is the C-K chain of rank 1 associated to the 3 dimensional CEA &,
we are considering) is such that all the matrices Ml € M,;; have their first row being non-zero. In fact, if
this is not the case, then Proposition 4.1 and Proposition 4.2 provide a new C-K chain M, ;) of rank 1 which
has this property, and it turns out that the matrices of M, can be described if and only if the matrices
of My, can be described (as the changes of chain provided in Proposition 4.1 and in Proposition 4.2 are
involutive).

Therefore, our aim now is to describe a C-K chain of rank 1, say M, ), satisfying that the first row of every
Mt e M,y is non-zero. Let

ay (s, t) ax(s, t) as(s, t)
M[S't] = !E(S/ t)al (S/ t) !E(S/ t)llz (S/ t) !E(S/ t)llg, (S/ t) ’
k(S, t)al (S, t) k(sl t)ﬂz (S, t) k(sl t)ﬂ3 (S, t)

where a(s, t) = (a1(s, 1), a2(s, t), a3(s, t)) is a non-zero vector of IK3. Note that k(s, t) = (1, k(s, t),%(s, 1)) is another
vector of K3 that, joint with a(s, ), determines M. The Chapman-Kolmogorov equation, MM =
M5, read by columns have the following view:
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(als, ), a;(t, Dk(t, 7))
ks, t) (a(s, 1), a(t, K(t, 7))
k(s, ) (a(s, ), aj(t, Dk(t, D))

Since a(s, 7) is non-zero, it follows that a;(s, 7) # 0 for some j € {1,2,3} so that, from (23), we deduce that
(a(s, t),a;(t, Dk(t, 7)) # 0 and hence,

aj(s,7), forj=1,2,3. (23)
k(s, t)aj(s, 1), for j=1,2,3.
%(s, T)aj(s, ), for j=1,2,3.

w(s, t, 1) :={a(s, t), k(t, 7)) # 0.

From the first equality in (23) we have that a;(t, T)w(s, t, T) = a;(s, 7), and from the two last ones we obtain

that k(s, t) = k(s, 7) and k(s ) = k(s 7), for every a < s <t < 7 < b. This means that k(s, f) and k(s t) only
depend on its first variable. Thus we obtain functions @1, @2 : (4,b) — R such that k(s,t) = ¢i(s) and

E(s, ) = @a(s), for every a < s < t < b. Therefore,

k(t,7) = (1 k(t, 7), k(t, 7)) = (1, o1(5), pa(£))
does not depend on 7. Consequently, (23) can be written as follows:
aj(s, 1), for j=1,2,3. (24)
Pp1(8)ajt, Dw(s, t,t) = @i(s)aj(s, 1), forj=1,2,3.
P2(s)aj(t, Dyw(s, t, 7)

On the other hand, from (24), we obtain that a;(t, t) = 0 if and only if a(s, 7) = 0
Finally, let a, be a strictly decreasing sequence such that a, — a. Let f,, gn, Iy : (0, b) — K be the
functions given by

fut) = ar(an, b), Gn(t) = az(an, ), ha(t) = az(an, t),

for every t > @, and every n € IN. From the fact that w(a;,t,7) # 0 and that a;(t, )w(an, t, T) = aj(ay, 1), it
follows that

aj(t, tyw(s, t, 1)

p2(s)aj(s, 7), for j=1,2,3.

fn(T)
WD = T B + PO’ )
) gn(7)
/ 7.0+ 010000 + 920D’
In0)
a3(t1 T) =

So® + @19 () + @2(Dha(t)’
for every n such thata, <t <.

Since, for j = 1,2, 3, the equality a;(t, T)w(s, t, T) = aj(s, ) holds for every a < s < t, it follows that in (25)
we can replace n by some m such that a,,, < t.

Anyway,

fa(®) gn(t) hy(t)
M = sl POAD 910 pE |,
P2()fu()  P2()gn(t)  a(s)hn(t)
as desired, where @, (s) = £,(s) + @1(5)gx(s) + @2(s)hn(s).

Remark 4.3. Note that the Chapman-Kolmogorov chains of matrices 3 X 3 of rank 0 are trivial (they are families
consisting of matrices equal to zero).
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5. The general case

Let& ={El! : 5t € R,0 < s < t} bea CEA of real evolution algebras with dimension 3, and let Mg={MIH
0 < s < t} be the associated C-K chain. The aim of this section is to describe & locally, by showing that R}
can be written as a non-overlapped union of intervals (this means that two of these intervals cannot share
any interior point) where, if [4,b] is one of these intervals then My, := {M :a <'s <t < b} is a C-K chain
with (fixed) rank r equal to either 0, 1,2, or 3. (These C-K chains were described in the previous sections of
this paper).

For every [so, to] with rankMohl = 3 we define its associated 3—rank chain as follows. Let

B(to) := suplt : t >ty and rankMoH = 3},
Note that Mg, g(,) is a C-K chain of rank 3 because if sp < u < v < (t) then,
3 = rank M = rank (MMM < pank M1,
Similarly, we define
a(so) = inf{s : s < so and rankM>>! = 3},

and it follows that, as above, if a(sp) < so then, Miu()s is @ C-K chain of rank 3. Moreover, since the
product of two non-singular matrices is a non-singular matrix we obtain that Ma(s)¢,)] is @ C-K chain of
rank 3, and we say that Ma(,)s(,)) is the maximal chain of rank 3 associated to M*l,

Therefore, the maximal chain of rank 3 associated to a matrix MPohl e Mg with rankMb! = 3 deter-
mines an interval [a(so), B(to)] in IRj. Consider the union of all these intervals by defining,

I3 := U{[a(so), B(to)] : MEot! € Mg with rankMo-bl = 3}, (26)

Thus, I3 can be expressed as a disjoint union of intervals.

Consider now R} \I3. This set also is a disjoint union of intervals with the property that if [s, ] C Rj\I3,
with s < t, then rankM!st! < 2. Tt follows that, if rankM!5! = 2 then, rankM**! = 2 for s < u < v < t. In fact, if
s =uorv = titis clear and otherwise ME# = MEHUMILAIMIH g6 that, 2 = rankME! < rankM¥1 < 2.

For every [so, to] € IRj\I5 such that rankMhl = 2 we define the maximal chain of rank 2 associated to
Mlsoto] 59 M[a(to),ﬁ(to)] where,

B(to) := supl{t : t > ty, with [so,t] € R{\I3 and rankMP = 2},
and
a(so) :=inf{s : [s,t] € Rj\I3 with s < sy and rankME=1 = 2}.

Since there exists a unique interval in the disjoint union R{\I5 containing [so, ty], we can obtain the corre-
sponding a(sp) and f(t) just working in this interval (as [s, t] and [s, so] are intervals contained in R \5).
Now we consider the union of all the intervals associated to the maximal chains of rank 2, and define

I == Uf[a(s0), B(to)] : [50, to] € R \I3 with rankMloh] = 2}, (27)

Consider (Rj\I3)\I>. As above, this set can be written as a disjoint union of intervals and, if [so, t] €
(R§\I3)\I2 then, it turns out that rank Mol < 1. Tf rank M5l = 1 then, as before, we obtain the maximal
chain of rank 1 associated to M, say My, s, and we consider the union of all these associated
intervals to define I;. Note that if [so, fo] € (Rj\I3)\L2\I; then, the rank of Mol s zero, and we can obtain
the maximal chain of rank 0 associated to M*ofl_ Therefore,
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R3=I3U12U11 U Ip.

This shows how the description of the C-K chains of rank r = 0, 1, 2,3 provided in the previous sections
of this paper is very helpful to give a local description of general 3-dimensional CEAs.

This approach does not always provide a global description of an arbitrary CEA with dimension 3
because the intervals associated to maximal C-K chains of rank i can be distributed along IRj, for instance,
in a fractal way. Just to give a flavour, suppose that I3 is the Cantor set in [0,1] and that I, = [0, 1]\I5.
Then, no problem to obtain M/6/4l because this matrix belong to Mj1/3 that is a C-K chain of rank 3
(and therefore it is described). Nevertheless, to obtain M{!/43/4] by means of the Chapman-Kolmogorov
equations we would need to consider an infinite product of matrices (because between 1/4 and 3/4 we can
find an infinite number of - disjoint - intervals of I3 as well as of I,). Because of this, the description of the
CEAs that we obtain here is local.

However, in the case that I1, I and I3 consist of a finite union of intervals [a(sy), f(to)] corresponding to
C-K chains Mu(t) s¢,)1 Of fixed rank then, we obtain a complete description of the CEA &.

This also shows a procedure to obtain a big variety of CEAs containing matrices of different ranks.
Particularly, examples of CEAs containing matrices of rank r where r = 0, 1,2, 3 (or where r runs in some
predetermined subset of {0, 1,2, 3}) are easily obtained from this approach.

Example 5.1. Let [0,4+c0) = JoU J1 U o U J3 U Js where Jo = [0,1], 1 = [1,2], [ = [2,3], J5 = [3,4], and
J1 = [4, +00). Let

1 0 3 1 1 1
Ay=0)x3, A1 =Dz, A= 0 1 2|, A3=| 0 0 0 [, As=(0)3x3.
0 0 O 0 0 0

Define M = LAA; ifs € Jiand t € ], for every 0 < s < t. We claim that MEAMUT = ME©T for every
O<s<t<w. Infact,ifs€ ], t € Jjand w € J for somei,jk €{0,1,2,3,4} theni < j < kand

t w w
MPAMUIRT = (“AiA))(S AjAK) = S AidjAg.

Indeed, if j=iorj=k then MSAMI®T = CAA = M) since A? = A, foreveryi=0,1,2,3,4. Otherwise
i<j<kIfi=0ork=4then MEIMET = (0)35 = LA;A, = MP®L Similarly, if i # 0 and k # 4 then
1<i<j<k<3sothati=1,j=2andk = 3. Since AyAz = Aj it follows that A1AA3 = A1A3 and therefore
MMl = LA Ay Ag = LA Az = MI®). This proves the claim.

Thus, we obtain a CEA, say &j,+«), whose C-K chain associated

Mgm,w:{M[s'” :0<s <t}

is such that [0, +00) = Jo U J1 U Jo U [3 U J4 (a non-overlapped union of intervals) where Mg 1] and Ma o0y are C-K
chains of rank zero, and M1 21, Mypz1 and Mz 41 are C-K chains of rank 3, 2, and 1 respectively.
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