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Abstract. In this paper we describe locally all the chains of three-dimensional evolution algebras (3-
dimensional CEAs). These are families of evolution algebras with the property that their structure matrices
with respect to a certain natural basis satisfy the Chapman-Kolmogorov equation. We do it by describing
all 3-dimensional CEAs whose structure matrices have a fixed rank equal to 3, 2 and 1, respectively. We
show that arbitrary CEAs are locally CEAs of fixed rank. Since every evolution algebra can be regarded as
a weighted digraph, this allows us to understand and visualize time-dependent weighted digraphs with 3
nodes.

1. Introduction

Evolution algebras are a particular type of genetic algebras introduced a few years ago to enlighten
the non-Mendelian genetic. Their foundations were developed in [17], a pioneering monograph where
many strong connections of evolution algebras with other mathematical fields (such as graph theory,
stochastic processes, group theory, dynamic systems, mathematical physics, among others) are established.
Algebraically, evolution algebras are usually non-associative algebras (they are not even power-associative),
and dynamically they represent discrete dynamical systems. In spite of the strong connections of these
algebras with many branches of mathematics and other sciences, they are very easy to define, as we show
below.

Along this paper, by an algebra we understand a linear space E over a fieldK (= R or C) provided with
a bilinear map E × E → E, named the product of E. All the algebras that we will consider in this work are
finite-dimensional.

An evolution algebra is an algebra E provided with a basis B = {e1, e2, . . . , en} such that eie j = 0, if i , j.
Such a basis is said to be a natural basis. If eiei =

∑
k akiek, then the structure matrix of E relative to B is

defined as the matrix MB(A) whose i−th column is given by the coefficients of eiei respect to B.Therefore,

MB(A) =


a11 · · · a1n
...

...
an1 · · · ann
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Note that, whenever the matrix MB(A) is stochastic, this defines a Markov process. On the other hand,
fixed a natural basis B, the dynamic nature of the evolution algebra E is given by the evolution operator
LB : E → E which is the unique linear operator on E such that LB(ei) = e2

i . Therefore, the structure matrix
MB(A) is precisely the matrix associated to LB.

A main feature of an evolution algebra E is the following one: if we regard the elements of the natural
basis B as the nodes of a graph, and the coefficient aki (where eiei =

∑
k akiek) as a measure of the interaction

of the node ei over the node ek then we obtain that the evolution algebra E is canonically associated to
a weighted digraph GB(A) whose set of nodes is {e1, e2, . . . , en} and whose adjacency matrix is MB(A)t. (In
graph theory the adjacency matrix of a weighted graph is usually obtained by writing in the i-th row the
weight of the respective arcs starting in the node ei. Because of this the adjacency matrix is the transpose
the structure matrix).

Recall that a complex weighted digraph (or a complex network) with n nodes (where n ∈N) is defined
as G = (V,E,A) where V = {v1, . . . , vn} is the set of nodes, E ⊆ V ×V is the edge set and A = (ai j) ∈ Mn(C) is
the adjacency matrix, under the convention that if (vi, v j) < E then ai j = 0. Therefore, by identifying B with V,
it is clear that every complex networks has canonically associated an evolution algebra with natural basis
B, and vice versa.

The study of complex networks is a very active area of scientific research focused on real-world networks
such as computer networks, technological networks, brain networks and social networks. Nowadays, it
is clear that many real-life problems can be better modeled by using time-dependent weighted digraphs.
These are networks whose edges and associated weights change over the time. Nevertheless a consistent
and vast theoretical framework for time varying weighted digraphs is still under development.

In time-dependent digraphs, it is usual to consider that the edges are activated in a sequence of time
intervals. This means that the weight of an edge (ei, e j) can be represented by intervals of time [s, t] with
0 < s < t. This is the philosophy of the chains of evolution algebras (evolution algebras and weighted
digraphs are canonically related) introduced in [1].

For 0 ≤ a < b ≤ ∞, and n ∈N, we define an n-dimensional chain of evolution algebras (CEA for short)
on [a, b] as

E[a,b] := {E[s,t] : a < s < t < b},

where every E[s,t] is an n-dimensional evolution algebra provided with a structure constant matrix M[s,t]

(respect to a prefixed natural basis B) satisfying that

M[s,w] = M[s,t]M[t,w] (Chapman-Kolmogorov equation), (1)

for any a < s < t < w < b. In this case we say that

M[a,b] = {M[s,t] : a < s < t < b}

is the Chapman-Kolmogorov chain (C-K chain for short) associated to E[a,b].
We point out that if E[a,b] is an n-dimensional CEA on a bounded interval [a, b] and if E[b,c] is an n-

dimensional CEA on an interval [b, c] then, by providing E[s,b] and E[b,t] for a < s < b < t < c, it turns out that
E[a,b] and E[b,c] determine uniquely an n-dimensional CEA on [a, c] as follows:

E[a,c] := {E[s,t] : a < s < t < c}, (2)

where, if a < s < t < b (respectively if b < s < t < c) then, E[s,t] is given by the corresponding evolution
algebra in E[a,b], (respectively in E[b,c]), meanwhile if a < s < b < t < c then, E[s,t] is defined as the evolution
algebra whose structure matrix (respect to B) is M[s,t] := M[s,b]M[b,t].

To understand the meaning of the Chapman-Kolmogorov equation from the dynamic nature of a CEA,
E[a,b], note that (1) means that L[s,t]

B = L[s,τ]
B L[τ,t]

B , for every 0 < s < τ < t, where L[s,t]
B is the evolution operator

of the evolution algebra E[s,t].
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From the point of view of the weighted digraphs associated to the evolution algebras E[s,t] of the CEA
E[a,b], the Chapman-Kolmogorov equation means that the adjacency matrix of the graph associated to E[s,t]

can be obtained from the product of the adjacency matrices of the weighted digraphs associated to E[τ,t] and
E[s,τ] (as the adjacency matrix is the transpose of the structure matrix). Consequently, the weighted digraph
associated to the time interval [s, t] can be obtained from the corresponding graphs associated to the time
intervals [s, τ] and [τ, t], for every s < τ < t.

In the connection between evolution algebras and Markov processes, the Chapman-Kolmogorov equa-
tion describes the fundamental relationship between the probability transitions (kernels). Indeed, a family
of stochastic matrices satisfying the Chapman-Kolmogorov equation generates a Markov process (see e.g.
[16]). However, there are many random processes which cannot be described by Markov processes of square
stochastic matrices (see e.g. [3, 4, 7, 10]). To obtain a non-Markov process one can consider a solution of the
Chapman-Kolmogorov equation which is not stochastic for some time, as it is done in [1, 12, 13] where a
chain of evolution algebras (a CEA) is introduced and investigated. Later, this notion of CEA is generalized
in [8] by means of a concept of flow of arbitrary finite-dimensional algebras (their matrices of structural
constants are cubic matrices). In [2] Markov processes of cubic stochastic matrices (in a fixed sense), the
so-called quadratic stochastic processes (QSPs), are studied.

In [14], chains generated by two-dimensional evolution algebras are described. In [1] several concrete
examples of chains of evolution algebras are shown, analyzing their time-dynamics. In [12, Section 4]
real CEAs of three-dimensional nilpotent evolution algebras are studied, and many examples of them are
provided. Moreover, and application of CEAs to a population with possibility of twin birth can be found
in [2].

The aim of this paper is describing all the 3-dimensional CEAs. Our approach shows the relevance of
the CEAs of rank r, these are those whose associated C-K chain consists of matrices having a fixed rank r
(equal to either 0, 1, 2, or 3). This is to solve the Chapman-Kolmogorov equation (1) for the corresponding
3 × 3 structure matrices. In [12] this equation was solved when the given matrices {M[s,t] : 0 < s < t} are
upper-triangular.

In Sections 2, 3 and 4 of this paper, we describe completely all the CEAs having fixed rank equal to 3, 2
and 1 respectively (CEAs with zero rank are trivial). In Section 5 we show that these cases are certainly
representative because an arbitrary CEA generated by 3-dimensional evolution algebras can be locally
described by means of CEAs of fixed rank. More precisely, we will show that a bounded interval [a, b] can
be expressed as a union of intervals [a, b] = ∪λ∈Λ[aλ, bλ] satisfying the following conditions:

(i) these intervals are not overlapped in the meaning that (aλ, bλ) ∩ (aµ, bµ) = ∅ if λ, µ ∈ Λ with λ , µ,
(ii) for every λ ∈ Λ, the CEA E[aλ,bλ] := {E[s,t] : aλ < s < t < bλ} has a fixed rank r, equal to either 0, 1, 2 or

3.
Moreover, beyond of giving this local description, we discuss when it is possible (or not) to provide a

global description of an arbitrary 3-dimensional CEA in these terms, by justifying the reason for it.
Anyway, this approach will provide many examples of CEAs generated by 3-dimensional evolution

algebras. Since an evolution algebra can be regarded as a complex network, this description might be
helpful to understand time-dependent complex networks and to visualize many examples of them.

2. Determining the 3-dimensional CEAs of rank 3

Let r ∈ {1, 2, 3}.We say that the C-K chainM[a,b] of a 3-dimensional CEA E[a,b] has rank r if rank M[s,t] = r,
for every M[s,t]

∈ M[a,b] with a < s < t < b. In this case we say also that E[a,b] is a CEA of rank r. In this section
we will describe all the CEAs (equivalently all the C-K chains) of rank 3.

Examples of C-K chainsM[a,b] of 3 × 3 matrices of rank 3 are very easy to obtain, as we show next.

2.1. Prototype of C-K chain of rank 3

Choose a set of non-singular 3 × 3 matrices {M[a,t] : a < t < b},and put

M[u,v] = M[a,u]−1
M[a,v],
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for every a < u < v < b. Then

M[a,b] = {M[u,v] : a < u < v < b}

defines a C-K chain of rank 3 and, hence, if M[u,v] is the structure matrix of the evolution algebra E[u,v] then
E[a,b] = {E[u,v] : a < u < v < b} determines all the 3-dimensional CEAs E[a,b] of rank 3.

2.2. Description of the C-K chains of rank 3
Let us determine all the C-K chainsM[a,b] associated to a 3-dimensional CEA E[a,b] of rank 3.

Proposition 2.1. Let M[a,b] be a C-K chain of rank 3 associated to a 3-dimensional CEA E[a,b]. Then M[a,b] is
determined by the set of matrices

∪n∈N{M[αn,t] : a < t < b},

where αn is a strictly decreasing sequence in (a, b) such that αn → a.

Proof. If a < s < t < b, let n ∈N be such that αn < s. Since M[αn,s]M[s,t] = M[αn,t], we have that

M[s,t] = M[αn,s]−1
M[αn,t],

as M[αn,s] is non-singular. Therefore all the matrices inM[a,b] have been described.

3. Determining the 3-dimensional CEAs of rank 2

In the next subsection we will provide a method to obtain 3-dimensional CEAs of rank 2 (and thus, C-K
chains of 3 × 3 matrices of rank 2). Later, we will see that these examples are very relevant to describe all
the C-K chains of rank 2.

3.1. Prototype of C-K chain of rank 2
Let αn be a strictly decreasing sequence of real numbers such that αn → a. Denote by inv(M2×2(K)) the

set of all 2 × 2 invertible matrices with entries inK. Consider a sequence of functions

Ψn : (αn, b)→ inv(M2×2(K)) and ϕn : (αn, b)→M2×1(K),

with the following property, for every m,n ∈N, and t,w such that a < αm < αn < t < w < b,

Ψ−1
n (t)Ψn(w) = Ψ−1

m (t)Ψm(w), (3)
Ψ−1

n (t)ϕn(w) = Ψ−1
m (t)ϕm(w).

(It is very easy to get examples of such applications. For instance, take arbitrary functions ξ, ξ̃ :N→ R\{0},
and define Ψ2n(t) :=

(
t2 + 1

)
ξ(n)A, ϕ2n(t) := tξ(n)u, Ψ2n+1(t) :=

(
t2 + 1

)
ξ̃(n)B, and ϕ2n+1(t) := tξ̃(n)v where

A, B ∈ inv(M2×2(K)) and u,v ∈M2×1(K) are such that A−1u = B−1v).
For a < t < w < b, define

P(t,w) = Ψ−1
n (t)Ψn(w)

u(t,w) = Ψ−1
n (t)ϕn(w),

for some n ∈ N such that αn < t. Note that, by (3), we have that P(t,w) and u(t,w) do not depend on the
particular n that we choose satisfying αn < t . Define

M[t,w] =

(
P(t,w)2×2 u(t,w)2×1

01×2 01×1

)
.
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We claim that {M[t,w] : a < t < w < b} is a C-K chain of rank 2. To prove the claim note that if a < t < w < τ < b,
and if a < αn < t then,

M[t,w]M[w,τ] =

(
P(t,w)2×2 u(t,w)2×1

01×2 01×1

) (
P(w, τ)2×2 u(w, τ)2×1

01×2 01×1

)
=

(
Ψ−1

n (t)Ψn(w)2×2 Ψ−1
n (t)ϕn(τ)2×1

01×2 01×1

) (
Ψ−1

n (w)Ψn(τ)2×2 Ψ−1
n (w)ϕn(τ)2×1

01×2 01×1

)
=

(
Ψ−1

n (t)Ψn(w)Ψ−1
n (w)Ψn(τ) Ψ−1

n (t)Ψn(w)Ψ−1
n (w)ϕn(τ)

01×2 01×1

)
=

(
Ψ−1

n (t)Ψn(τ) Ψ−1
n (t)ϕn(τ)

01×2 01×1

)
=

(
P(t, τ)2×2 u(t, τ)2×1

01×2 01×1

)
= M[t,τ].

Consequently, M[t,w]M[w,τ] = M[t,τ] which proves thatM[a,b] is a C-K chain of rank 2, as desired.

3.2. Description of the C-K chains of rank 2

Our next goal now is to prove that, ifM[a,b] is a C-K chain of rank 2 then, except in a marginal case that
we will described below, the chain can be determined by means of

∪n∈N{M[αn,t] : t > αn},

where αn is a strictly decreasing sequence such that αn → a. In the aforementioned remaining marginal case
(i.e., every decreasing sequence such that αn → a contains a critical point) the chain can be determined as
long as we additionally know some other elements (the third row of M[t0,w] when t0 is a critical point) as we
will see.

Assume that M[a,b] is a given C-K chain of rank 2 and let us determine all the matrices in M[a,b] by
knowing only a few of these matrices. More precisely suppose that we know the matrices ofM[a,b] given
by the set

∪n∈N{M[αn,t] : t > αn},

where αn is a strictly decreasing sequence of (a, b) converging to a.
Claim 1.- It is not restrictive to assume that the two first rows of M[αn,t] are linearly independent. If this is not

the case then, for these particular n ∈N, replace inM[a,b] the matrices M[αn,t] and M[τ,αn] by M̃[αn,t] and M̃[τ,αn]

where

M̃[αn,t] =

 0 0 1
0 1 0
1 0 0

 M[αn,t] and M̃[τ,αn] = M[τ,αn]

 0 0 1
0 1 0
1 0 0

 .
Therefore we obtain a C-K chain of rank 2, denoted by M̃[a,b]. In fact, the Chapman-Kolmogorov equations
are trivially satisfied, as 0 0 1

0 1 0
1 0 0


 0 0 1

0 1 0
1 0 0

 =

 1 0 0
0 1 0
0 0 1

 .
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Moreover, if we determine all the matrices of M̃[a,b] then all the matrices inM[a,b] are also described since

M[αn,t] =

 0 0 1
0 1 0
1 0 0

 M̃[αn,t] and M[τ,αn] = M̃[τ,αn]

 0 0 1
0 1 0
1 0 0

 .
Claim2. It is not restrictive to assume that the 3rd row of M[αn,t] is zero. In fact, otherwise suppose that

M[αn,t] =

 a1(αn, t) a2(αn, t) a3(αn, t)
b1(αn, t) b2(αn, t) b3(αn, t)
c1(αn, t) c2(αn, t) c3(αn, t)

 ,
with rankM[αn,t] = 2 where, for constants k(αn, t) and k̃(αn, t) that are not simultaneously zero, we have

(c1(αn, t), c2(αn, t), c3(αn, t)) =

= k(αn, t)(a1(αn, t), a2(αn, t), a3(αn, t)) + k̃(αn, t)(b1(αn, t), b2(αn, t), b3(αn, t)).

Then we replace M[αn,t] and M[τ,αm] by M̃[αn,t] and M̃[τ,αm], respectively, where

M̃[αn,t] =


1 0 0
0 1 0

k(αn, t) k̃(αn, t) −1

 M[αn,t], (4)

M̃[τ,αm] = M[τ,αm]


1 0 0
0 1 0

k(αm, t) k̃(αm, t) −1

 . (5)

From the fact that
1 0 0
0 1 0

k(αn, t) k̃(αn, t) −1




1 0 0
0 1 0

k(αn, t) k̃(αn, t) −1

 =

 1 0 0
0 1 0
0 0 1


the Chapman-Kolmogorov equation holds for the matrices of the new family M̃[a,b]. Therefore we obtain a
C-K chain of rank 2 such that

M̃[αn,t] =

 a1(αn, t) a2(αn, t) a3(αn, t)
b1(αn, t) b2(αn, t) b3(αn, t)

0 0 0

 .
Note that, if we are able to describe the matrices of this C-K chain M̃[a,b], then we will also describe those
of the original chainM[a,b] via the formulas (4) and (5).

By applying Claim 1 and Claim 2 if needed, the problem that we are considering can be formulated as
follows: Describing all the C-K chains,M[a,b], of rank 2, such that for a strictly decreasing sequence αn → a we have
that

M[αn,t] =

 a1(αn, t) a2(αn, t) a3(αn, t)
b1(αn, t) b2(αn, t) b3(αn, t)

0 0 0

 , (6)

for every t > αn. Let

M[t,w] =

(
P(t,w)2×2 u(t,w)2×1
vT(t,w)1×2 c(t,w)1×1

)
,
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for every a < t < w < b. For αn < t, denote

Ψn(t) := P(αn, t) =

(
a1(αn, t) a2(αn, t)
b1(αn, t) b2(αn, t)

)
; ϕn(t) := u(αn, t) =

(
a3(αn, t)
b3(αn, t)

)
.

Then,

M[αn,t] =

(
P(αn, t)2×2 u(αn, t)2×1

01×2 01×1

)
=

(
Ψn(t)2×2 ϕn(t)2×1

01×2 01×1

)
. (7)

Since, for every a < αn < t < w < b, we have

M[αn,t]M[t,w] = M[αn,w], (8)

it follows that

P(t,w) = Ψ−1
n (t)Ψn(w) −Ψ−1

n (t)ϕn(t)vT(t,w), (9)
u(t,w) = Ψ−1

n (t)ϕn(w) −Ψ−1
n (t)ϕn(t)c(t,w),

so that the above functions do not depend on n, in the meaning that n can be replaced for any m such that
αm < t. Because of this,

Ψ−1
n (t)Ψn(w) −Ψ−1

m (t)Ψm(w) = (Ψ−1
n (t)ϕn(t) −Ψ−1

m (t)ϕm(t))vT(t,w), (10)

Ψ−1
n (t)ϕn(w) −Ψ−1

m (t)ϕm(w) = (Ψ−1
n (t)ϕn(t) −Ψ−1

m (t)ϕm(t))c(t,w),

for every n,m ∈N such that a < αm < αn < t.
On the other hand, for every a < t < w < b and a < αn < t, we have,

M[t,w] = ∆(t,w)
n − S(t,w)

n (11)

where

∆(t,w)
n =

(
Ψ−1

n (t)Ψn(w)2×2 Ψ−1
n (t)ϕn(w)2×1

01×2 01×1

)
,

S(t,w)
n =

(
Ψ−1

n (t)ϕn(w)vT(t,w)2×2 Ψ−1
n (t)ϕn(w)c(t,w)2×1

−vT(t,w)1×2 −c(t,w)1×1

)
.

It is easy to check that, for a < s < t < w < b,

∆(s,t)
n S(t,w)

n = 03×3. (12)

Moreover, for K ∈ M2×1(K),

S(s,t)
n

(
K2×1
−11×1

)
= (13)

=

(
Ψ−1

n (s)ϕn(t)vT(s, t)2×2 Ψ−1
n (s)ϕn(t)c(s, t)2×1

−vT(s, t)1×2 −c(s, t)1×1

) (
K2×1
−11×1

)
=

(
Ψ−1

n (s)ϕn(t)(vT(s, t)2×2K2×1 − c(s, t)2×1)
−vT(s, t)1×2K2×1 + c(s, t)1×1

)
.

Thus, S(s,t)
n

(
K2×1
−11×1

)
= 03×1 if and only if vT(s, t)1×2K2×1 = c(s, t)1×1.
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We say that t0 is a critical point for the sequence αn if there exists Kt0 ∈ M2×1(K) such that Ψ−1
n (t0)ϕn(t0) =

Kt0 , for every n ∈ N with αn < t0 and, for every a < s < t0 with c(s, t0) , 0, we have that at least one of the
following two properties are satisfied:

(i) vT(s, t0)Kt0 = c(s, t0),
(ii) ∆(s,t0)

n = ∆(s,t0)
m for every n,m ∈ N with a < αm < αn < s (equivalently there exists Ms ∈ M3×3(K) such

that ∆(s,t0)
n = Ms for every n ∈Nwith αn < s).

We claim that if t0 is not a critical point then, for every t0 < w < b, the matrix M[t0,w] can be determined from
the set ∪n∈N{M[αn,t] : a < t < b}.

To prove the claim suppose that t0 is not a critical point. Then we are in one of the following two cases:
(a) There exist n,m ∈ N with a < αm < αn < t0 such that Ψ−1

n (t0)ϕn(t0) , Ψ−1
m (t0)ϕm(t0). Then vT(t,w)

and c(t,w) can be obtained from (10), meanwhile P(t,w) and u(t,w) are getting from (9). Thus M[t0,w] is
determined.

(b) Ψ−1
n (t0)ϕn(t0) = Ψ−1

m (t0)ϕm(t0) for every n,m ∈ N with a < αm < αn < t0. This means that there exists
Kt0 ∈ M2×1(K) such that Ψ−1

n (t0)ϕn(t0) = Kt0 , for every n ∈Nwith a < αn < t0. Since t0 is not a critical point,
there exists a < s < t0 with c(s, t0) , 0 such that vT(s, t0)Kt0 , c(s, t0) and ∆(s,t0)

n , ∆(s,t0)
m for some n,m ∈Nwith

αm < αn < s. By (9) it follows that Ψ−1
n (s)ϕn(s) , Ψ−1

m (s)ϕm(s). Then, M[s,t0] as well as M[s,w] can be determined
from (10) and (9). Moreover, by (13),

S(s,t0)
n

(
Kt0

−1

)
, 03×1. (14)

If Kt0 =

(
k1
k2

)
, if vT(t0,w) = (c1(w), c2(w)) and if c(t0,w) = c3(w) then, since Ψ−1

n (t0)ϕn(t0) = Kt0 for every

n ∈Nwith a < αn < t0, we have

S(t0,w)
n =

 k1c1(w) k1c1(w) k1c3(w)
k2c2(w) k2c2(w) k2c3(w)
−c1(w) −c2(w) −c3(w)

 .
Therefore, from (11), (12) and (13) it follows that

M(s,t0)

(
Kt0

−1

)
= −S(s,t0)

n

(
Kt0

−1

)
, 03×1.

Consequently, S(t0,w)
n can be determined from the equality

M(s,t0)S(t0,w)
n = M(s,t0)∆(t0,w)

n −M(s,w),

as the other matrices there are known. Hence, from (11), the matrix M(t0,w) is determined for every t0 < w < b.
We conclude that the C-K chainM[a,b] is described from of the matrices

∪n∈N{M[αn,t] : t > αn} (15)

whenever αn has no critical points. Otherwise the C-K chain M[a,b] is determined by the above set of
matrices joint with the third row of M[t0,w], for every critical point t0 associated to αn, and every t0 < w < b.
The reason is that there are many free choices of the third row of M[t0,w] given rise to a ”compatible” C-K
chain M[a,b] for the given matrices (15) (so that we cannot determine the particular M[a,b] that we have
chosen). The next example shows this situation.

Example 3.1. Let αn → a be a strictly decreasing sequence, with a < αn < b and, for every a < αn < w, let

M[αn,w] =

(
Ψn(t)2×2 ϕn(t)2×1

01×2 01×1

)
,
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where Ψn(t) ∈ inv(M2×2(K)). Assume that, if a < αm < αn < t < w < b then,

Ψ−1
n (t)Ψn(w) = Ψ−1

m (t)Ψm(w), (16)
Ψ−1

n (t)ϕn(w) = Ψ−1
m (t)ϕm(w).

Let a < α1 < t0 < b be such that ϕn(t0) = 0 for every n ∈N. If a < t < w < b is such that t , t0 and t , αn for every
n ∈N, then define

M[t,w] :=
(

Ψ−1
n (t)Ψn(w)2×2 Ψ−1

n (t)ϕn(w)2×1
01×2 01×1

)
,

for some n ∈ N (from (16) this does not depend on the αn chosen). Fix β1×2 := (β1, β2) ∈ M1×2(K)\{0} and n0 ∈ N.
For t0 < w < b, define

M[t0,w] :=
(

Ψ−1
n0

(t0)Ψn0 (w)2×2 Ψ−1
n0

(t0)ϕn0 (w)2x1
β1×2Ψn0 (w)2×2 β1×2ϕn0 (w)2×1

)
.

From (16) we have, for every n ∈N,

M[t0,w] :=
(

Ψ−1
n (t0)Ψn(w)2×2 Ψ−1

n (t0)ϕn(w)2×1
β1×2Ψn0 (w)2×2 β1×2ϕn0 (w)2×1

)
. (17)

We claim thatM[a,b] := {M[t,w] : a < t < w < b} is a C-K chain of rank 2 such that t0 is a critical point for αn (indeed
t0 is the only critical point that αn has). The claim follows from (i), (ii) and (iii) where:

(i) M[αn,t]M[t,w] = M[αn,w]. Indeed, for t , t0 it is obvious and for t = t0 it is also easy to check as ϕn(t0) = 0.
(ii) M[s,t]M[t,w] = M[s,w] for s , t0. In fact, if t , t0 the equality is clear and otherwise, from (17),(

Ψ−1
n (s)Ψn(t0)2×2 02x1

01×2 01×1

) (
Ψ−1

n (t0)Ψn(w)2×2 Ψ−1
n (t0)ϕn(w)2x1

β1×2Ψn0 (w)2×2 β1×2ϕn0 (w)2×1

)

=

(
Ψ−1

n (s)Ψn(w)2×2 Ψ−1
n (s)ϕn(w)2x1

01×2 01×1

)
.

(iii) M[t0,w]M[w,τ] = M[t0,τ]. This is also trivial since(
Ψ−1

n0
(t0)Ψn0 (w)2×2 Ψ−1

n0
(t0)ϕn0 (w)2x1

β1×2Ψn0 (w)2×2 β1×2ϕn0 (w)2×1

) (
Ψ−1

n0
(w)Ψn0 (τ)2×2 Ψ−1

n0
(w)ϕn0 (τ)2×1

01×2 01×1

)

=

(
Ψ−1

n0
(t0)Ψn0 (τ)2×2 Ψ−1

n0
(t0)ϕn0 (τ)2x1

β1×2Ψn0 (τ)2×2 β1×2ϕn0 (τ)2×1

)
.

Consequently for every arbitrary β1×2 that we fix we obtain a C-K chain M[a,b] compatible with the matrices
M[αn,w] originally given. Thus, we cannot determine a particular one of these C-K chains from ∪n∈N{M[αn,t] : t > αn}

without knowing the third row of M[t0,w] for the critical point t0.

4. The Chapman-Kolmogorov chains of matrices 3 × 3 of rank 1

In the next subsection we will provide a method to obtain C-K chains of rank 1. Later, we will see that
these examples cover the class of C-K chains of rank 1.

Note that if every matrix of a C-K chainM[a,b] is non-zero, and if M[s0,t0]
∈ M[a,b] is such that rankM[s0,t0] = 1

then, rankM[s0,t] = 1 for every t > t0. This follows from the fact that

rankM[s0,t] ≤ rankM[s0,t0] = 1,

as M[s0,t] = M[s0,t0]M[t0,t].
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4.1. Prototype of C-K chain of rank 1
Consider a strictly decreasing sequence αn converging to a. For every n ∈ N, let fn, 1n, hn : (αn, b)→ R

be functions satisfying that, if m > n then, there exists a constant kn,m such that for every t > αn we have

fn(t) = kn,m fm(t), (18)
1n(t) = kn,m1m(t),
hn(t) = kn,mhm(t).

Let Ψn : (αn, b)→ R be the function given by

Ψn(t) = fn(t) + 1n(t)ϕ1(t) + hn(t)ϕ2(t),

where ϕ1, ϕ2 : (a, b)→ R are arbitrary functions such that Ψn(t) , 0, for every t > αn. Note that

Ψn(t)
Ψm(t)

= kn,m, (19)

for every m > n. For a < t < τ < b, define

a1(t, τ) =
fn(τ)
Ψn(t)

, a2(t, τ) =
1n(τ)
Ψn(t)

, a3(t, τ) =
hn(τ)
Ψn(t)

, (20)

for some n such that αn < t. Note that this definition does not depend on the chosen n, as follows
straightforwardly from (18) and (19).

We claim that, if

M[s,t] =

 a1(s, t) a2(s, t) a3(s, t)
ϕ1(s)a1(s, t) ϕ1(s)a2(s, t) ϕ1(s)a3(s, t)
ϕ2(s)a1(s, t) ϕ2(s)a2(s, t) ϕ2(s)a3(s, t)

 ,
then, the family M[a,b] := {M[s,t] : a < s < t < b} defines a C-K chain of rank 1. To prove the claim we need to
check that

M[s,t]M[t,τ] = M[s,τ],

for a < s < t < τ < b. This means that

ai(t, τ)
〈
(a1(s, t), a2(s, t), a3(s, t)), (1, ϕ1(t), ϕ2(t))

〉
= ai(s, τ), i = 1, 2, 3.

ϕ1(s)ai(t, τ)
〈
(a1(s, t), a2(s, t), a3(s, t)), (1, ϕ1(t), ϕ2(t))

〉
= ϕ1(s)ai(s, τ), i = 1, 2, 3.

ϕ2(s)ai(t, τ)
〈
(a1(s, t), a2(s, t), a3(s, t)), (1, ϕ1(t), ϕ2(t))

〉
= ϕ2(s)ai(s, τ), i = 1, 2, 3.

where, < −,− > denotes the scalar product of two vectors.
Since, from (20), we have that

a1(t, τ)Ψn(t) = fn(τ),
a2(t, τ)Ψn(t) = 1n(τ),
a3(t, τ)Ψn(t) = hn(τ),

we deduce that ai(t, τ) Ψn(t)
Ψn(s) = ai(s, τ). Therefore, for i = 1, 2, 3,

ai(t, τ)
〈
(a1(s, t), a2(s, t), a3(s, t)), (1, ϕ1(t), ϕ2(t))

〉
= ai(t, τ)

〈(
fn(t)

Ψn(s)
,
1n(t)
Ψn(s)

,
hn(t)
Ψn(s)

)
, (1, ϕ1(t), ϕ2(t))

〉
= ai(t, τ)

Ψn(t)
Ψn(s)

= ai(s, τ),

and the claim follows.
Next, we show that all the C-K chains of rank 1 fit in this pattern.
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4.2. Description of the C-K chains of rank 1
Along this subsection M[a,b], with 0 ≤ a < b ≤ ∞, will denote a C-K chain of rank 1 associated to a 3

dimensional CEA, E[a,b]. Note that every M[s,t]
∈ M[a,b] is a non-zero matrix such that its 3 rows are linearly

dependent.
Claim 1.- It is not restrictive to assume that the first row of every M[s,t]

∈ M[a,b] is non-zero.
The claim follows from the following two propositions. In the next one, we work with the set of matrices

M[s,t] in M[a,b] having their first row equal to zero and the second one non-zero. Note that in some C-K
chains this set might be empty.

Proposition 4.1. LetM[a,b] = {M[s,t] : a < s < t < b} be a family of 3 × 3 matrices. Suppose that the set

S = {s ∈ (a, b) : ∃ t with (1, 0, 0)M[s,t] = (0, 0, 0) and (0, 1, 0)M[s,t] , (0, 0, 0) }

is non-empty, and define

M̃[s,t] =


P213M[s,t] i f s ∈ S, t < S,
P213M[s,t]P213 i f s ∈ S, t ∈ S,
M[s,t]P213 i f s < S, t ∈ S,
M[s,t] i f s < S, t < S.

(21)

where

P213 =

 0 1 0
1 0 0
0 0 1

 .
Then, for every a < s < t < τ < b, we have that

M[s,t]M[t,τ] = M[s,τ] if and only if M̃[s,t]M̃[t,τ] = M̃[s,τ].

Proof. Note that P213P213 = I.
If M[s,t]M[t,τ] = M[s,τ], for every a < s < t < τ < b then, M̃[s,t]M̃[t,τ] = M̃[s,τ] as it can be deduced directly

from the following cases.
Case 1.- If s, t, τ ∈ S then,

M̃[s,t]M̃[t,τ] = P213M[s,t]P213P213M[t,τ]P213 = P213M[s,t]M[t,τ]P213 = P213M[s,τ]P213 = M̃[s,τ].

Case 2.- If s, t ∈ S and τ < S then,

M̃[s,t]M̃[t,τ] = P213M[s,t]P213P213M[t,τ] = P213M[s,t]M[t,τ] = P213M[s,τ] = M̃[s,τ].

Case 3.- If s, τ ∈ S and t < S then,

M̃[s,t]M̃[t,τ] = P213M[s,t]M[t,τ]P213 = P213M[s,τ]P213 = M̃[s,τ].

Case 4.- If s ∈ S and t, τ < S then,

M̃[s,t]M̃[t,τ] = P213M[s,t]M[t,τ] = P213M[s,τ] = M̃[s,τ].

Case 5.- If t, τ ∈ S and s < S then,

M̃[s,t]M̃[t,τ] = M[s,t]P213P213M[t,τ]P213 = M[s,t]M[t,τ]P213 = M[s,τ]P213 = M̃[s,τ].

Case 6.- If t ∈ S and s, τ < S then,

M̃[s,t]M̃[t,τ] = M[s,t]P213P213M[t,τ] = M[s,t]M[t,τ] = M[s,τ] = M̃[s,τ].
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Case 7.- If τ ∈ S and s, t < S then,

M̃[s,t]M̃[t,τ] = M[s,t]M[t,τ]P213 = M[s,τ]P213 = M̃[s,τ].

Case 8.- If s, t, τ < S then,

M̃[s,t]M̃[t,τ] = M[s,t]M[t,τ] = M[s,τ] = M̃[s,τ].

This proves that M̃[s,t]M̃[t,τ] = M̃[s,τ], for every a < s < t < τ < b. On the other hand, note that in (21) the
matrices M̃[s,τ] and M[s,τ] can be exchanged, so the result follows.

Next, we work with the set of matrices M[s,t] inM[a,b] having the first row equal to zero and the third
one being non-zero.

Proposition 4.2. LetM[a,b] = {M[s,t] : a < s < t < b} be a family of 3 × 3 matrices. Suppose that the set

S = {s ∈ (a, b) : ∃t with (1, 0, 0)M[s,t] = (0, 0, 0) and (0, 0, 1)M[s,t] , (0, 0, 0)}

is non-empty, and define

M̃[s,t] =


P321M[s,t] i f s ∈ S, t < S,
P321M[s,t]P321 i f s ∈ S, t ∈ S,
M[s,t]P321 i f s < S, t ∈ S,
M[s,t] i f s < S, t < S.

(22)

where

P321 =

 0 0 1
0 1 0
1 0 0

 .
Then, for every a < s < t < τ < b, we have that

M[s,t]M[t,τ] = M[s,τ] if and only if M̃[s,t]M̃[t,τ] = M̃[s,τ].

Proof. This proof is analogous to that of Proposition 4.1.

We conclude that applying Proposition 4.1 and then Proposition 4.2, if necessary (each of them), it is not
restrictive to assume thatM[a,b] (that is the C-K chain of rank 1 associated to the 3 dimensional CEA E[a,b]
we are considering) is such that all the matrices M[s,t]

∈ M[a,b] have their first row being non-zero. In fact, if
this is not the case, then Proposition 4.1 and Proposition 4.2 provide a new C-K chain M̃[a,b] of rank 1 which
has this property, and it turns out that the matrices of M̃[a,b] can be described if and only if the matrices
ofM[a,b] can be described (as the changes of chain provided in Proposition 4.1 and in Proposition 4.2 are
involutive).

Therefore, our aim now is to describe a C-K chain of rank 1, sayM[a,b], satisfying that the first row of every
M[s,t]

∈ M[a,b] is non-zero. Let

M[s,t] =


a1(s, t) a2(s, t) a3(s, t)

k(s, t)a1(s, t) k(s, t)a2(s, t) k(s, t)a3(s, t)
k̃(s, t)a1(s, t) k̃(s, t)a2(s, t) k̃(s, t)a3(s, t)

 ,
where a(s, t) = (a1(s, t), a2(s, t), a3(s, t)) is a non-zero vector ofK3. Note that k(s, t) = (1, k(s, t), k̃(s, t)) is another
vector of K3 that, joint with a(s, t), determines M[s,t]. The Chapman-Kolmogorov equation, M[s,t]M[t,τ] =
M[s,τ], read by columns have the following view:
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〈
a(s, t), a j(t, τ)k(t, τ)

〉
= a j(s, τ), for j = 1, 2, 3. (23)

k(s, t)
〈
a(s, t), a j(t, τ)k(t, τ)

〉
= k(s, τ)a j(s, τ), for j = 1, 2, 3.

k̃(s, t)
〈
a(s, t), a j(t, τ)k(t, τ)

〉
= k̃(s, τ)a j(s, τ), for j = 1, 2, 3.

Since a(s, τ) is non-zero, it follows that a j(s, τ) , 0 for some j ∈ {1, 2, 3} so that, from (23), we deduce that〈
a(s, t), a j(t, τ)k(t, τ)

〉
, 0 and hence,

w(s, t, τ) := 〈a(s, t),k(t, τ)〉 , 0.

From the first equality in (23) we have that a j(t, τ)w(s, t, τ) = a j(s, τ), and from the two last ones we obtain
that k(s, t) = k(s, τ) and k̃(s, t) = k̃(s, τ), for every a < s < t < τ < b. This means that k(s, t) and k̃(s, t) only
depend on its first variable. Thus we obtain functions ϕ1, ϕ2 : (a, b) → R such that k(s, t) = ϕ1(s) and
k̃(s, t) = ϕ2(s), for every a < s < t < b. Therefore,

k(t, τ) = (1, k(t, τ), k̃(t, τ)) = (1, ϕ1(t), ϕ2(t))

does not depend on τ. Consequently, (23) can be written as follows:

a j(t, τ)w(s, t, τ) = a j(s, τ), for j = 1, 2, 3. (24)
ϕ1(s)a j(t, τ)w(s, t, τ) = ϕ1(s)a j(s, τ), for j = 1, 2, 3.
ϕ2(s)a j(t, τ)w(s, t, τ) = ϕ2(s)a j(s, τ), for j = 1, 2, 3.

On the other hand, from (24), we obtain that a j(t, τ) = 0 if and only if a j(s, τ) = 0.
Finally, let αn be a strictly decreasing sequence such that αn → a. Let fn, 1n, hn : (αn, b) → K be the

functions given by

fn(t) = a1(αn, t), 1n(t) = a2(αn, t), hn(t) = a3(αn, t),

for every t > αn and every n ∈ N. From the fact that w(αn, t, τ) , 0 and that a j(t, τ)w(αn, t, τ) = a j(αn, τ), it
follows that

a1(t, τ) =
fn(τ)

fn(t) + ϕ1(t)1n(t) + ϕ2(t)hn(t)
, (25)

a2(t, τ) =
1n(τ)

fn(t) + ϕ1(t)1n(t) + ϕ2(t)hn(t)
,

a3(t, τ) =
hn(τ)

fn(t) + ϕ1(t)1n(t) + ϕ2(t)hn(t)
,

for every n such that αn < t < τ.
Since, for j = 1, 2, 3, the equality a j(t, τ)w(s, t, τ) = a j(s, τ) holds for every a < s < t, it follows that in (25)

we can replace n by some m such that αm < t.
Anyway,

M[s,t] =
1

Φn(s)


fn(t) 1n(t) hn(t)

ϕ1(s) fn(t) ϕ1(s)1n(t) ϕ1(s)hn(t)

ϕ2(s) fn(t) ϕ2(s)1n(t) ϕ2(s)hn(t)

 ,
as desired, where Φn(s) = fn(s) + ϕ1(s)1n(s) + ϕ2(s)hn(s).

Remark 4.3. Note that the Chapman-Kolmogorov chains of matrices 3 × 3 of rank 0 are trivial (they are families
consisting of matrices equal to zero).
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5. The general case

LetE ={E[s,t] : s, t ∈ R, 0 < s < t}be a CEA of real evolution algebras with dimension 3, and letME={M[s,t] :
0 < s < t} be the associated C-K chain. The aim of this section is to describe E locally, by showing that R+

0
can be written as a non-overlapped union of intervals (this means that two of these intervals cannot share
any interior point) where, if [a, b] is one of these intervals thenM[a,b] := {M[s,t] : a < s < t < b} is a C-K chain
with (fixed) rank r equal to either 0, 1, 2, or 3. (These C-K chains were described in the previous sections of
this paper).

For every [s0, t0] with rankM[s0,t0] = 3, we define its associated 3−rank chain as follows. Let

β(t0) := sup{t : t ≥ t0 and rankM[s0,t] = 3}.

Note thatM[s0,β(t0)] is a C-K chain of rank 3 because if s0 < u < v < β(t0) then,

3 = rank M[s0,v] = rank (M[s0,u]M[u,v]) ≤ rank M[u,v].

Similarly, we define

α(s0) := inf{s : s ≤ s0 and rankM[s,s0] = 3},

and it follows that, as above, if α(s0) ≤ s0 then, M[α(t0),s0] is a C-K chain of rank 3. Moreover, since the
product of two non-singular matrices is a non-singular matrix we obtain thatM[α(s0),β(t0)] is a C-K chain of
rank 3, and we say thatM[α(t0),β(t0)] is the maximal chain of rank 3 associated to M[s0,t0].

Therefore, the maximal chain of rank 3 associated to a matrix M[s0,t0]
∈ ME with rankM[s0,t0] = 3 deter-

mines an interval [α(s0), β(t0)] in R+
0 . Consider the union of all these intervals by defining,

I3 := ∪{[α(s0), β(t0)] : M[s0,t0]
∈ ME with rankM[s0,t0] = 3}. (26)

Thus, I3 can be expressed as a disjoint union of intervals.
Consider now R+

0 \I3. This set also is a disjoint union of intervals with the property that if [s, t] ⊆ R+
0 \I3,

with s < t, then rankM[s,t]
≤ 2. It follows that, if rankM[s,t] = 2 then, rankM[u,v] = 2 for s ≤ u < v ≤ t. In fact, if

s = u or v = t it is clear and otherwise M[s,t] = M[s,u]M[u,v]M[v,t] so that, 2 = rankM[s,t]
≤ rankM[u,v]

≤ 2.
For every [s0, t0] ⊆ R+

0 \I3 such that rankM[s0,t0] = 2, we define the maximal chain of rank 2 associated to
M[s0,t0] asM[α(t0),β(t0)] where,

β(t0) := sup{t : t ≥ t0, with [s0, t] ⊆ R+
0 \I3 and rankM[s0,t] = 2},

and

α(s0) := inf{s : [s, t0] ⊆ R+
0 \I3 with s ≤ s0 and rankM[s,s0] = 2}.

Since there exists a unique interval in the disjoint union R+
0 \I3 containing [s0, t0], we can obtain the corre-

sponding α(s0) and β(t0) just working in this interval (as [s0, t] and [s, s0] are intervals contained in R+
0 \I3).

Now we consider the union of all the intervals associated to the maximal chains of rank 2, and define

I2 := ∪{[α(s0), β(t0)] : [s0, t0] ⊆ R+
0 \I3 with rankM[s0,t0] = 2}. (27)

Consider (R+
0 \I3)\I2. As above, this set can be written as a disjoint union of intervals and, if [s0, t0] ⊆

(R+
0 \I3)\I2 then, it turns out that rank M[s0,t0]

≤ 1. If rank M[s0,t0] = 1 then, as before, we obtain the maximal
chain of rank 1 associated to M[s0,t0], say M[α(t0),β(t0)], and we consider the union of all these associated
intervals to define I1. Note that if [s0, t0] ⊆ (R+

0 \I3)\I2\I1 then, the rank of M[s0,t0] is zero, and we can obtain
the maximal chain of rank 0 associated to M[s0,t0]. Therefore,
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R+
0 = I3 ∪ I2 ∪ I1 ∪ I0.

This shows how the description of the C-K chains of rank r = 0, 1, 2, 3 provided in the previous sections
of this paper is very helpful to give a local description of general 3-dimensional CEAs.

This approach does not always provide a global description of an arbitrary CEA with dimension 3
because the intervals associated to maximal C-K chains of rank i can be distributed along R+

0 , for instance,
in a fractal way. Just to give a flavour, suppose that I3 is the Cantor set in [0, 1] and that I2 = [0, 1]\I3.
Then, no problem to obtain M[1/6,1/4] because this matrix belong to M[0,1/3] that is a C-K chain of rank 3
(and therefore it is described). Nevertheless, to obtain M[1/4,3/4] by means of the Chapman-Kolmogorov
equations we would need to consider an infinite product of matrices (because between 1/4 and 3/4 we can
find an infinite number of - disjoint - intervals of I3 as well as of I2). Because of this, the description of the
CEAs that we obtain here is local.

However, in the case that I1, I2 and I3 consist of a finite union of intervals [α(s0), β(t0)] corresponding to
C-K chainsM[α(t0),β(t0)] of fixed rank then, we obtain a complete description of the CEA E.

This also shows a procedure to obtain a big variety of CEAs containing matrices of different ranks.
Particularly, examples of CEAs containing matrices of rank r where r = 0, 1, 2, 3 (or where r runs in some
predetermined subset of {0, 1, 2, 3}) are easily obtained from this approach.

Example 5.1. Let [0,+∞) = J0 ∪ J1 ∪ J2 ∪ J3 ∪ J4 where J0 = [0, 1], J1 = [1, 2], J2 = [2, 3], J3 = [3, 4], and
J4 = [4,+∞). Let

A0 = (0)3×3, A1 = I3×3, A2 =

 1 0 3
0 1 2
0 0 0

 , A3 =

 1 1 1
0 0 0
0 0 0

 , A4 = (0)3×3.

Define M[s,t] = t
s AiA j if s ∈ Ji and t ∈ J j, for every 0 < s < t. We claim that M[s,t]M[t,w] = M[s,w] for every

0 < s < t < w. In fact, if s ∈ Ji, t ∈ J j and w ∈ Jk for some i, j, k ∈ {0, 1, 2, 3, 4} then i ≤ j ≤ k and

M[s,t]M[t,w] = (
t
s

AiA j)(
w
t

A jAk) =
w
s

AiA jAk.

Indeed, if j = i or j = k then M[s,t]M[t,w] = w
s AiAk = M[s,w] since A2

i = Ai, for every i = 0, 1, 2, 3, 4. Otherwise
i < j < k. If i = 0 or k = 4 then M[s,t]M[t,w] = (0)3×3 = w

s AiAk = M[s,w]. Similarly, if i , 0 and k , 4 then
1 ≤ i < j < k ≤ 3 so that i = 1, j = 2 and k = 3. Since A2A3 = A3 it follows that A1A2A3 = A1A3 and therefore
M[s,t]M[t,w] = w

s A1A2A3 = w
s A1A3 = M[s,w]. This proves the claim.

Thus, we obtain a CEA, say E[0,+∞), whose C-K chain associated

ME[0,+∞)={M
[s,t] : 0 < s < t}

is such that [0,+∞) = J0 ∪ J1 ∪ J2 ∪ J3 ∪ J4 (a non-overlapped union of intervals) whereM[0,1] andM[4,+∞) are C-K
chains of rank zero, andM[1,2],M[2,3] andM[3,4] are C-K chains of rank 3, 2, and 1 respectively.
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