The concept of soft sets was proposed as an effective tool to deal with uncertainty and vagueness. Topologists employed this concept to define and study soft topological spaces. In this paper, we introduce the concepts of soft SD-continuous, soft SD-open, soft SD-closed and soft SD-homeomorphism maps by using soft somewhere dense and soft cs-dense sets. We characterize them and discuss their main properties with the help of examples. In particular, we investigate under what conditions the restriction of soft SD-continuous, soft SD-open and soft SD-closed maps are respectively soft SD-continuous, soft SD-open and soft SD-closed maps. We logically explain the reasons of adding the null and absolute soft sets to the definitions of soft SD-continuous and soft SD-closed maps, respectively, and removing the null soft set from the definition of a soft SD-open map.