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A Boundary Schwarz Lemma for Pluriharmonic Mappings Between the
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Abstract. In this paper, we present a boundary Schwarz lemma for pluriharmonic mappings between
the unit polydiscs of any dimensions, which extends the classical Schwarz lemma for bounded harmonic
functions to higher dimensions.

1. Introduction

The Schwarz lemma is regarded as one of the most important results in complex analysis. Let f be a
holomorphic self-mapping of the unit disk D. The classical Schwarz lemma states that for holomorphic
mapping f satisfying the condition f (0) = 0, the inequality | f (z)| ≤ |z| is true for any z ∈ D. This result is a
potent tool to study several research fields in complex analysis. An increasing number of mathematicians
thus focus attention on establishing various versions of the Schwarz lemma.

Schwarz lemma at the boundary is an active topic in complex analysis. Various interesting results
associated with the boundary Schwarz lemma have been presented in recent years. For the convenience of
representation, we introduce some notations and definitions.

Let Cn be the complex space of dimension n with the norm given by ‖z‖ = (|z1|
2 + |z2|

2 + · · · + |zn|
2)

1
2

for any z = (z1, z2, · · · , zn)T
∈ Cn. For any z = (z1, z2, · · · , zn)T, ω = (ω1, ω2, · · · , ωn)T

∈ Cn, the inner
product on Cn is defined by 〈z, ω〉 =

∑n
i=1 ziωi, therefore 〈z, z〉

1
2 = ‖z‖ also represents the norm of z. Let

Bn = {z ∈ Cn : ‖z‖ < 1} be the unit ball in Cn, and ∂Bn = {z ∈ Cn : ‖z‖ = 1} be the unit sphere. Denote
by D the unit disk with unit circle T in the complex plane C, then the unit polydisc can be represented as
Dn = D× · · · ×D = {z ∈ Cn : |zi| < 1, 1 ≤ i ≤ n}which belongs to the complex space Cn. Furthermore, denote
‖z‖∞ = max1≤i≤n, then we have ∂Dn = {z ∈ Cn : ‖z‖∞ = 1} and Tn = T × · · · × T = {z ∈ Cn : |zi| = 1 1 ≤ i ≤ n}
which represent the topological boundary and the distinguished boundary ofDn, respectively. If there are
only r (1 ≤ r ≤ n) components of z0 whose modules equals to 1, then the set of all this kind of boundary
points is denoted by Er. It is obvious that En = Tn and

⋃
1≤r≤n Er = ∂Dn if taking all boundary points into

consider.
Denote the set of all holomorphic mappings between the bounded domains of any dimensions as

H(Ω1,Ω2) where Ω1 ⊂ Cn and Ω2 ⊂ CN. For any f = ( f1, f2, · · · , fN)T
∈ H(Ω1,Ω2), the Jacobian matrix of f
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at z ∈ Ω1 is given by

D f (z) =

(
∂ fi
∂z j

(z)
)

N×n
.

Moreover, we use D f (z) to represent the N × n matrice
(
∂ fi
∂z j

(z)
)

N×n
. For the same function, denote by J f (z)

the 2N × 2n Jacobian matrix of f at z in terms of real coordinates. Let Cα(V) be the set of all functions f on
the bounded domain V for which

sup
{
| f (z) − f (z′)|
|z − z′|α

: z, z′ ∈ V
}

is finite with 0 < α < 1. Then we denote Ck+α(V) as the set of all functions f on V whose k-th order partial
derivatives exist and belong to Cα(V) for an integer k.

In [1], the classical boundary Schwarz lemma for holomorphic mappings is described as follows:

Theorem 1.1. [1] Let f ∈ H(D,D) be a holomorphic mapping. If f is holomorphic at z = 1 with f (0) = 0 and
f (1) = 1, then f ′ (1) ≥ 1. Moreover, the inequality is sharp.

If we remove the condition f (0) = 0 in the above theorem and take the holomorphic mapping

1(z) =
1 − f (0)
1 − f (0)

f (z) − f (0)

1 − f (0) f (z)
,

we have the following estimate instead:

f ′(1) ≥
|1 − f (0)|2

1 − | f (0)|2
> 0. (1)

Chelst[2] and Osserman[3] further studied the Schwarz lemma at the boundary of the unit disk, respec-
tively. Ornek[4] explored some new expressions of Schwarz inequality at the boundary of the unit disk and
acquired the sharpness of these inequalities.

Moreover, in the case of several complex variables, Wu generalized the classical Schwarz lemma for
holomorphic mappings to higher dimension [5]. Recently, Liu et al.[6] presented a version of the boundary
Schwarz lemma for holomorphic mappings from the unit ball Bn to the unit ball BN, which is not restricted
by the condition f (0) = 0.

Theorem 1.2. [6] Let f ∈ H(Bn,BN) for n,N ≥ 1. If f is C1+α at z0 ∈ ∂Bn with f (z0) = ω0 ∈ ∂BN, then there exists
λ ∈ R such that

D f (z0)
T
ω0 = λz0

where λ = |1−aTω0 |
2

1−‖a‖2 > 0, a = f (0).

Furthermore, in [7] Liu et al. presented the result of Schwarz lemma for holomorphic mappings from
the unit polydisc Dn to the unit ball BN at the boundary as follows.

Theorem 1.3. [7] Let f ∈ H(Dn,BN) for n,N ≥ 1. Given z0 ∈ ∂Dn. Assume z0 ∈ Er with the first r components
at the boundary of D for some 1 ≤ r ≤ n. If f is C1+α at z0 with f (z0) = ω0 ∈ ∂BN, then there exist a sequence of
nonnegative real numbers γ1, γ2, · · · , γr satisfying

∑r
j=1 γ j ≥ 1s and λ ∈ R such that

D f (z0)
T
ω0 = λdia1(γ1, · · · , γr, 0, · · · , 0)z0

where λ = |1−aTω0 |
2

1−‖a‖2 > 0, a = f (0) and ”diag” represents the diagonal matrix.
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Harmonic mapping is a complex-valued harmonic function defined in the complex space, which is
in touch with geometric functions and locally quasiconformal mappings. For the harmonic mappings,
there are also some interesting analogues of the Schwarz lemma. For example, the Schwarz lemma for the
harmonic self-mapping of the unit disk is stated as follows.

Theorem 1.4. [8] Let f is a harmonic mapping of the unit disk D on itself, and f (0) = 0, then

| f (z)| ≤
4
π

arctan |z|, z ∈ D.

In [9], the boundary Schwarz lemma for the harmonic self-mapping of the unit disk is restated with a
simple proof. Considering the several complex variables, Mateljevic offered the boundary Schwarz lemma
for harmonic mappings between the unit balls with any dimensions in [10].

Note that the pluriharmonic mapping can be considered as a generalization of the harmonic function.
A continuous complex-valued function f defined on a domain Ω ∈ Cn is said to be pluriharmonic if for
each fixed z ∈ Ω and θ ∈ ∂Bn, the function f (z + θζ) is harmonic in {ζ : ‖ζ‖ < dΩ(z)}, where dΩ(z) denotes
the distance from z to the boundary ∂Ω of Ω. Therefore, it is a very natural task to obtain various versions
of the Schwarz lemma for pluriharmonic mappings.

It is obtained in [11] that when Ω is a simply connected domain, then f : Ω→ C is pluriharmonic if and
only if f could be represented by f = η + ζ where η and ζ are holomorphic in Ω. Hence, a holomorphic
mapping can be regarded as a special pluriharmonic function. Furthermore, f : Ω → Cn is called a
pluriharmonic mappings if all its components are pluriharmonic functions from Ω to C. Similarly to
H(Ω1,Ω2), the set of pluriharmonic mappings between the bounded domains of any dimensions is denoted
as P(Ω1,Ω2) where Ω1 ⊂ Cn and Ω2 ⊂ CN.

In [12], Mateljević introduced Kobayashi metrics and obtained the Kobayashi-Schwarz lemma for the
holomorphic mappings on the bounded connected open subsets of complex Banach space. As an application
of the lemma obtained, a boundary Schwarz lemma is established for pluriharmonic mappings defined on
the unit ball B2.

For the pluriharmonic mappings between unit balls with any dimensions, in [13], Liu et al. presented
the boundary Schwarz lemma for pluriharmonic mappings defined on the unit ball.

Theorem 1.5. [13] Let f ∈ P(Bn,BN) for n,N ≥ 1. If f is C1+α at z0 ∈ ∂Bn and f (z0) = ω0 ∈ ∂BN, then there exists
a positive λ ∈ R such that

D f (z′0)Tω′0 = λz′0

where z′0 and ω′0 are real versions of z0 and ω0, and λ ≥ 1−‖ f (0)‖
22n−1 > 0.

In this paper, we extend the boundary Schwarz lemma for planar harmonic mappings to higher di-
mensions, and establish a novel boundary Schwarz lemma for pluriharmonic mappings between the unit
polydiscs of any dimensions.

Inspired by [13], we consider the real version of this problem. For z = (z1, z2, · · · , zn)T
∈ Cn with

zi = xi + iyi where 1 ≤ i ≤ n, denote z′ as the real version of z and z′ = (x1, y1, · · · , xn, yn)T
∈ R2n only

containing real elements. Therefore, Dn in Cn is equivalent to the unit polydisc D2n
⊂ R2n.

We first combine the Harnack’s inequality with the minimum principle and establish a new inequality for
the nonnegative harmonic function defined on the unit polydisc D2n (see Lemma 2.1). This lemma provides
an important technique support for estimating the lower bound of the function in the proof of the main
results. Furthermore, we also present the Schwarz lemma for the pluriharmonic mapping f ∈ P(Dn,DN)
(see Lemma 2.2), which generalizes the corresponding results in Theorem 1.4 to higher dimensions and
plays a significant role in the proof of Theorem 1.6. Then we get the following boundary Schwarz lemma
for pluriharmonic mappings in P(Dn,DN).

Theorem 1.6. Let f ∈ P(Dn,DN) with f (0) = 0 for n,N ≥ 1. Given z0 = (z1, · · · , zr, zr+1, · · · , zn)T
∈ Er ⊂ ∂Dn. If

f is C1+α at z0 and f (z0) = ω0 ∈ Em ⊂ ∂DN, then there exist a sequence of nonnegative real numbers γ1, γ2, · · · , γr
such that the following statements hold.
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1) Suppose that z′0 and ω′0 are real versions of z0 and ω0, respectively. Then

J f (z′0)Tω′0 = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′0

where λi =
∑m

j=1
∂u j

∂xi
with ∂u j

∂xi
≥

1−u j(0)
22n−1 for 1 ≤ i ≤ r.

2) tr(dia1(λ1, 0, · · · , λr, 0, · · · , 0)) ≥ π
2 for 1 ≤ r ≤ n.

2. Some lemmas

In this section, we exhibit some notations and present several basic lemmas, which play the significant
roles in the proof of the main results.

Lemma 2.1. Let f be a nonnegative function defined on the unit polydisc D2n in R2n. If f is continuous on the unit

polydisc and harmonic on its interior, then for any z = (x1, y1, · · · , xn, yn)T
∈ D2n satisfying 2

√
x2

i + y2
i = r0 < 1(1 ≤

i ≤ r < n) and xi = yi = 0(r + 1 ≤ i ≤ n), the following inequation holds:

f (z) ≥
1 − r0

(1 + r0)2n−1 f (0).

Proof. Suppose that f is a nonnegative function defined on the unit ball B2n in R2n. According to the
description of [13], we know that if f is continuous on the unit ball and harmonic on its interior, then for
any z0 ∈ B2n with ‖ z0 ‖= r0 < 1 we have the Harnack’s inequality

1 − r0

(1 + r0)2n−1 f (0) ≤ f (z) ≤
1 + r0

(1 − r0)2n−1 f (0).

Since the conditions that z = (x1, y1, · · · , xn, yn)T
∈ D2n satisfies |zi| =

√
x2

i + y2
i = r0 < 1 for 1 ≤ i ≤ r < n and

xi = yi = 0 for r + 1 ≤ i ≤ n, it is not difficult to derive that ‖z‖ = (
∑n

i=1 |zi|
2)

1
2 =
√

rr0 <
√

r. Then we have

1 − r0

(1 + r0)2n−1 f (0) ≤ f (
z
√

r
) ≤

1 + r0

(1 − r0)2n−1 f (0).

Therefore, it follows from the minimum principle for harmonic function that

f (z) ≥
1 − r0

(1 + r0)2n−1 f (0).

This completes the proof.

Lemma 2.2. Let f = ( f1, · · · , fn)T
∈ P(Dn,Dn) with n,N ≥ 1 and f (0) = 0, then

‖ f (z)‖∞ ≤
4
π

arctan ‖z‖∞.

Proof. For any fixed z′ ∈ Dn
\ {0} and any ζ ∈ D, let

Fi(ζ) =

〈
fi
(
ζz′

‖z′‖∞

)
,

fi(z′)
‖ fi(z′)‖

〉
for any 1 ≤ i ≤ n. Applying Theorem 1.4 to the complex-valued harmonic mapping Fi, we have the
inequality

| fi(z′)| = |Fi(‖z‖∞)| ≤
4
π

arctan ‖z‖∞



Z. Huang et al. / Filomat 34:9 (2020), 3151–3160 3155

for any 1 ≤ i ≤ n. Thus, the inequality

‖ f (z)‖∞ ≤
4
π

arctan ‖z‖∞

holds for any z ∈ Dn.
The proof of the lemma is complete.

Remark 2.3. When n = N = 1, Lemma2.2 reduces to Theorem 1.4, which extends the boundary Schwarz lemma to
high dimensions.

3. Proof of Theorem 1.6

In the following, we will prove Theorem 1.6.

Proof. 1) The first proof is divided into six steps for reader’s convenience.
Step 1. Assume z0 ∈ ∂Dn and f = ( f1, · · · , fN)T is C1+α in a neighborhood V of z0. Without loss

of generality, we let z0 =
∑r

i=1 en
i where en

i represents the i-th column of the identity matrix In. Since
f j = u j + iv j for 1 ≤ j ≤ N is defined on the unit polydisc, it is obtained from f that uk(

∑r
i=1 en

i ) = 1 for
1 ≤ k ≤ m ≤ N. Moreover, 1−uk ≥ 0 is harmonic on the unit polydisc. By using Lemma 2.1 and considering
x = (x1, 0, x2, 0, · · · , xr, 0, · · · , 0)T

∈ R2n for xi = r0 near 1 (1 ≤ i ≤ r ≤ n), we have

1 − uk(x) ≥
1 − xi

(1 + xi)2n−1
(1 − uk(0)) ,

which gives that

1 − uk(x)
1 − xi

≥
1 − uk(0)

(1 + xi)2n−1 .

Letting xi → 1−, we can derive

∂uk(
∑r

i=1 en
i )

∂xi
= lim

xi→1−

(1 − uk(x)) − (1 − uk(
∑r

i=1 en
i ))

1 − xi
≥

1 − uk(0)
22n−1 (2)

for 1 ≤ i ≤ r and 1 ≤ k ≤ m.
Step 2. Let p = z0, ql = −

∑r
i=1 en

i + iken
l for 1 ≤ l ≤ r and k ∈ R. It is clear that p + tql = (1 − t)z0 + ikten

l for
t ∈ R, so we have ‖p+ tql‖∞ < 1⇔ |1− t+ ikt| < 1 and |1− t| < 1⇔ 0 < t < 2

1+k2 . The equivalence relationship
means that for a given k when t→ 0+, p + tql ∈ Dn ⋂

V. For t→ 0+, taking the Taylor expansion of f j(p + tql)
at t = 0, we have

f j(p + tql) = (ω0) j + D f j(z0)qlt + D f j(z0)qlt + O(t1+α)

where (ω0) j denotes the j-th element of ω0. By Lemma 2.2,

‖ f (p + tql)‖∞ = max
1≤ j≤N

| f j(p + tql)| ≤
4
π

arctan ‖p + tql‖∞. (3)

Considering that

‖p + tql‖∞ = |1 − t + ikt|or|1 − t|,

it is easy to derive

arctan |1 − t| =
π
4
−

1
4

t −
1
4

t + O(t1+α) =
π
4
−

1
2

t + O(t1+α)
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and

arctan |1 + t(−1 + ik)| =
π
4

+
1
4

(−1 + ik)t +
1
4

(−1 − ik)t + O(t1+α) =
π
4
−

1
2

t + O(t1+α).

Thus (3) is equivalent to

max
1≤ j≤N

∣∣∣(ω0) j + D f j(z0)qlt + D f j(z0)qlt + O(t1+α)
∣∣∣ ≤ 1 −

2
π

t + O(t1+α).

Substituting ω0 =
∑m

j=1 eN
j , we have

max
1≤ j≤N

{
1 + 2Re(D f (z0)ql + D f (z0)ql)t + O(t1+α)

}
≤ 1 −

4
π

t + O(t1+α).

Letting t→ 0+, we deduce that

max
1≤ j≤N

{
Re(D f (z0)ql + D f (z0)ql)

}
≤ −

2
π
. (4)

Substituting ql = −
∑r

i=1 en
i + iken

l , we have

max
1≤ j≤N

Re

D f (z0)

− r∑
i=1

en
i + iken

l

 + D f (z0)

− r∑
i=1

en
i − iken

l



 ≤ − 2

π

which equals to

max
1≤ j≤N

Re

− r∑
i=1

∂ f j(z0)
∂zi

+ ik
∂ f j(z0)
∂zl

−

r∑
i=1

∂ f j(z0)

∂zi
− ik

∂ f j(z0)

∂zl


 ≤ − 2

π
.

Let ∂ f j(z0)
∂zi

= Re ∂ f j(z0)
∂zi

+ iIm ∂ f j(z0)
∂zi

and ∂ f j(z0)
∂zi

= Re ∂ f j(z0)
∂zi

+ iIm ∂ f j(z0)
∂zi

. From the above inequality, we have

max
1≤ j≤N

−Re
r∑

i=1

∂ f j(z0)
∂zi

− kIm
∂ f j(z0)
∂zl

− Re
r∑

i=1

∂ f j(z0)

∂zi
+ kIm

∂ f j(z0)

∂zl

 ≤ − 2
π
,

i.e.

min
1≤ j≤N

Re
r∑

i=1

∂ f j(z0)
∂zi

+ Re
r∑

i=1

∂ f j(z0)

∂zi
+ k

(
Im
∂ f j(z0)
∂zl

− Im
∂ f j(z0)

∂zl

) ≥ 2
π
. (5)

Since (5) is valid for any k ∈ R, so that

Im
∂ f j(z0)
∂zl

− Im
∂ f j(z0)

∂zl
= 0, 1 ≤ l ≤ r, (6)

which gives

min
1≤ j≤N

Re
r∑

i=1

∂ f j(z0)
∂zi

+ Re
r∑

i=1

∂ f j(z0)

∂zi
+

 ≥ 2
π
, (7)

and

Re
∂ f j(z0)
∂zl

− Re
∂ f j(z0)

∂zl
=
∂ f j(z0)
∂zl

−
∂ f j(z0)

∂zl
, 1 ≤ l ≤ r. (8)
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Step 3. Consider p = z0, ql = −
∑r

i=1 en
i + ken

l for 1 ≤ l ≤ r and k ≤ 0. Then p + tql = (1− t)z0 + kten
l for t ∈ R.

Hence ‖p + tql‖∞ < 1 ⇔ |1 − t + kt| < 1 and |1 − t| < 1 ⇔ 0 < t < 2
1−k . The equivalence relationship implies

that for any given k ≤ 0 there is t→ 0+ such that p + tql ∈ Dn ⋂
V. Taking the Taylor expansion of f j(p + tql)

at t = 0 and applying Lemma 2.2, we get

max
1≤ j≤N

∣∣∣(ω0) j + D f j(z0)qlt + D f j(z0)qlt + O(t1+α)
∣∣∣ ≤ 4

π
arctan ‖p + tql‖∞.

Same to Step 2, it is not difficult to obtain

max
1≤ j≤N

{
1 + 2Re(D f (z0)ql + D f (z0)ql)t + O(t1+α)

}
≤ 1 −

4
π

t + O(t1+α).

We also substitute ql = −
∑r

i=1 en
i + ken

l and let t→ 0+, then

max
1≤ j≤N

Re

D f (z0)

− r∑
i=1

en
i + ken

l

 + D f (z0)

− r∑
i=1

en
i − ken

l



 ≤ − 2

π
.

A straightforward computation shows that

max
1≤ j≤N

Re

− r∑
i=1

∂ f j(z0)
∂zi

+ k
∂ f j(z0)
∂zl

−

r∑
i=1

∂ f j(z0)

∂zi
− k

∂ f j(z0)

∂zl


 ≤ − 2

π
,

which is equivalent to

min
1≤ j≤N

Re
r∑

i=1

∂ f j(z0)
∂zi

+ Re
r∑

i=1

∂ f j(z0)

∂zi
− k

(
Re
∂ f j(z0)
∂zl

− Re
∂ f j(z0)

∂zl

) ≥ 2
π
.

Since (7) and (8) is valid for k ∈ R, we get

min
1≤ j≤N

−k
(
∂ f j(z0)
∂zl

−
∂ f j(z0)

∂zl

)
≥ 0

for k ≤ 0. We further derive

∂ f j(z0)
∂zl

≥
∂ f j(z0)

∂zl
, 1 ≤ l ≤ r, 1 ≤ j ≤ N (9)

since k ≤ 0 is arbitrary.
Step 4. Let p = z0, ql = −

∑r
i=1 en

i + iken
l for r + 1 ≤ l ≤ n and k , 0 ∈ R. Then p + tql = (1 − t)

∑r
i=1 en

i + ikten
l

for t ∈ R. It is not difficult to verify that ‖p + tql‖∞ < 1 ⇔ |1 − t| < 1 and |ikt|2 < 1 ⇔ 0 < t < min{ 1
k2 , 2}.

Therefore, given a k , 0 ∈ R, there exists t→ 0+ such that p+tql ∈ Dn ⋂
V. Then taking the Taylor expansion

of f j(p + tql) at t = 0, we can derive

max
1≤ j≤N

∣∣∣(ω0) j + D f j(z0)qlt + D f j(z0)qlt + O(t1+α)
∣∣∣ ≤ 4

π
arctan ‖p + tql‖∞,

from which it is obvious that

max
1≤ j≤N

{
1 + 2Re(D f (z0)ql + D f (z0)ql)t + O(t1+α)

}
≤ 1 −

4
π

t + O(t1+α).

Substituting ql = −
∑r

i=1 en
i + iken

l and letting t→ 0+, we get

max
1≤ j≤N

Re

D f (z0)

− r∑
i=1

en
i + iken

l

 + D f (z0)

− r∑
i=1

en
i − iken

l



 ≤ − 2

π
,
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i.e.

max
1≤ j≤N

Re

− r∑
i=1

∂ f j(z0)
∂zi

+ ik
∂ f j(z0)
∂zl

−

r∑
i=1

∂ f j(z0)

∂zi
− ik

∂ f j(z0)

∂zl


 ≤ − 2

π
.

Reviewing that ∂ f j(z0)
∂zi

= Re ∂ f j(z0)
∂zi

+ iIm ∂ f j(z0)
∂zi

and ∂ f j(z0)
∂zi

= Re ∂ f j(z0)
∂zi

+ iIm ∂ f j(z0)
∂zi

, and exploiting (7), it is not
difficult to obtain

max
1≤ j≤N

k
(
Im
∂ f j(z0)

∂zl
− Im

∂ f j(z0)
∂zl

)
≤ 0, r + 1 ≤ l ≤ n.

Since the above equality is valid for k , 0 ∈ R, with the similar argument to Step 2, we have

Im
∂ f j(z0)

∂zl
− Im

∂ f j(z0)
∂zl

= 0, r + 1 ≤ l ≤ n. (10)

Step 5. Let p = z0, ql = −
∑r

i=1 en
i + ken

l for r + 1 ≤ l ≤ n and any k , 0 ∈ R. Then p + tql = (1− t)
∑r

i=1 en
i + kten

l
for t ∈ R. It is not difficult to verify that ‖p + tql‖∞ < 1 ⇔ |1 − t| < 1 and |kt|2 < 1 ⇔ 0 < t < min{ 1

k2 , 2}.
Therefore, given a k , 0 ∈ R, there exists t → 0+ such that p + tql ∈ Dn ⋂

V. With the similar argument to
Step 4, it is not difficult to obtain

Re
m∑

i=1

∂ f j(z0)

∂zl
+ Re

m∑
i=1

∂ f j(z0)
∂zl

= 0, r + 1 ≤ l ≤ n. (11)

Review the formulas f j = u j + iv j and zi = xi + iyi for 1 ≤ i ≤ n, 1 ≤ j ≤ N. Considering that ∂
∂zi

= 1
2

(
∂
∂xi
− i ∂

∂yi

)
and ∂

∂zi
= 1

2

(
∂
∂xi

+ i ∂
∂yi

)
, we can derive the following results for any 1 ≤ i ≤ n, 1 ≤ j ≤ N:

∂ f j

∂zi
=

1
2

(
∂
∂xi
− i

∂
∂yi

) (
u j + iv j

)
=

1
2

[(
∂u j

∂xi
+
∂v j

∂yi

)
+ i

(
∂v j

∂xi
−
∂u j

∂yi

)]
,

∂ f j

∂zi
=

1
2

(
∂
∂xi

+ i
∂
∂yi

) (
u j + iv j

)
=

1
2

[(
∂u j

∂xi
−
∂v j

∂yi

)
+ i

(
∂v j

∂xi
+
∂u j

∂yi

)]
.

In view of (2) and (6), it is obvious that for any 1 ≤ j ≤ m we have

∂u j

∂yi
= 0,

∂u j

∂xi
≥

1 − u j(0)

22n−1 , 1 ≤ i ≤ r. (12)

Similarly, it follows from (10) and (11) that

∂u j

∂yi
= 0,

∂u j

∂xi
= 0, r + 1 ≤ i ≤ n. (13)

Rewrite z = (z1, · · · , zn)T
∈ Cn by z′ = (x1, y1, · · · , xn, yn)T

∈ R2n, then z′0 = (en
1)′ + (en

3)′ + · · · + (en
2r−1)′ =

(1, 0, · · · , 1, 0, · · · , 0)T
∈ R2n where (en

3)′ represents the i-th column of identity matrix I2n. According to (12)
and (13), it is concluded that

J f (z′0)Tω′0 = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′0

where ω′0 = (eN
1 )′ + (eN

3 )′ + · · · + (eN
2m−1)′ and λi =

∑m
j=1

∂u j

∂xi
with ∂u j

∂xi
≥

1−u j(0)
22n−1 for 1 ≤ i ≤ r.
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Step 6. Let z′0 be any given point at ∂D2n
⊂ R2n. That is, z′0 is not necessary (en

1)′+ (en
3)′+ · · ·+ (en

2r−1)′. Then
there exists a special kind of real-valued diagonal unitary matrix Uz′0 such that Uz′0 (z′0) = (en

1)′ + (en
3)′ + · · · +

(en
2r−1)′ = z′nor referring to [7]. Assume f ′ is the real version of f , and f ′(z′0) = ω′0 where ω′0 is not necessary

(eN
1 )′ + (eN

3 )′ + · · · + (eN
2m−1)′ at ∂D2n. In the same way, there exists a real-valued diagonal unitary matrix Uω′0

such that Uω′0
(ω′0) = (eN

1 )′ + (eN
3 )′ + · · · + (eN

2m−1)′ = ω′nor. Denote

1′(z′) = Uω′0
◦ f ′ ◦UT

z′0
(z′), z′ ∈ D2n

and

1(z) = Uω0 ◦ f ◦UT
z0

(z), z ∈ Dn

where Uz0 and Uω0 represent complex unitary matrices corresponding to Uz′0 and Uω′0
such that Uz0 (z0) =∑r

i=1 en
i and Uω0 (ω0) =

∑m
j=1 eN

j . It is easy to verify that 1′ is the real version of 1 and 1(
∑r

i=1 en
i ) =

∑m
j=1 eN

j .
Furthermore, the Jacobian matrix of 1 could be denoted as

J1(z′) = Uω′0
J f

(
UT

z′0
(z′)

)
UT

z′0
(z′), z′ ∈ D2n. (14)

According to Step 5, we have

J1
(
z′nor

)T ω′nor = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′nor

where λi =
∑m

j=1
∂u j

∂xi
with ∂u j

∂xi
≥

1−u j(0)
22n−1 for 1 ≤ i ≤ r. As a result, we obtain

(
Uω′0

J f

(
UT

z′0
(z′nor)

)
UT

z′0

)T
ω′nor = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′nor

which equals to

Uz′0 J f

(
z′0

)T
UT
ω′0
ω′nor = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′nor.

Multiplying UT
z′0

at both sides of the above equation gives

JT
f

(
z′0

)
ω′0 = dia1(λ1, 0, · · · , λr, 0, · · · , 0)z′0

where λi =
∑m

j=1
∂u j

∂xi
with ∂u j

∂xi
≥

1−u j(0)
22n−1 for 1 ≤ i ≤ r.

2) According to (7), it is not difficult to obtain

r∑
i=1

m∑
j=1

∂u j

∂xi
≥

2
π
.

Since tr
(
dia1(λ1, 0, · · · , λr, 0, · · · , 0)

)
=

∑r
i=1 λi and λi =

∑m
j=1

∂u j

∂xi
, it is obvious that

tr
(
dia1(λ1, 0, · · · , λr, 0, · · · , 0)

)
≥

2
π
.

The proof of Theorem 1.6 is finished.
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