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Abstract. In this paper, we establish a sharp Z-eigenvalue inclusion set for even-order real tensors by Z-
identity tensor and prove that new Z-eigenvalue inclusion set is sharper than existing results. We propose
some sufficient conditions for testing the positive definiteness of multivariate homogeneous forms via
new Z-eigenvalue inclusion set. Further, we establish upper bounds on the Z-spectral radius of weakly
symmetric nonnegative tensors and estimate the convergence rate of the greedy rank-one algorithms. The
given numerical experiments show the validity of our results.

1. Introduction

Consider the following multivariate homogeneous forms with spherical constraint:

fA(x) = Axm =

n∑
i1,i2,...,im=1

ai1i2...im xi1 xi2 . . . xim

s.t. x>x = 1,

(1)

where x ∈ Rn,m,n ≥ 2, fA(x) is a multivariate homogeneous form of degree m with n variables, and
A ∈ R[m,n] is an m-order n-dimensional real tensor with entries [12, 14]

ai1...im ∈ R, i j ∈ N = {1, . . . ,n}, j = 1, . . . ,m.

Clearly, the critical points of (1) satisfy the following equations for some λ ∈ R :

Axm−1 = λx and x>x = 1, (2)

where (Axm−1)i =
∑

i2,...,im∈N
aii2...im xi2 . . . xim . The real number λ and the real vector x satisfying with (2) are

called Z-eigenvalue and Z-eigenvector, respectively.
The multivariate homogeneous form fA(x) is positive definite, which plays important roles in signal

processing [15] and the stability study of nonlinear autonomous systems via Lyapunov’s direct method in

2010 Mathematics Subject Classification. 15A18; 15A42; 15A69
Keywords. Z-eigenvalue inclusion set; positive definiteness; Z-identity tensor
Received: 09 October 2019; Accepted: 26 January 2020
Communicated by Yimin Wei
Research supported by the Natural Science Foundation of China (11671228) and the Natural Science Foundation of Shandong

Province (ZR2020MA025).
Email addresses: wgglj1977@163.com (Gang Wang), slxsx2019@163.com (Linxuan Sun), wyijumail@163.com (Yiju Wang)



G. Wang et al. / Filomat 34:9 (2020), 3131–3139 3132

automatic control [3, 4, 13]. Note that fA(x) is positive definite if and only if tensor A is positive definite,
and that an even-order real symmetric tensor is positive definite if and only if all of its Z-eigenvalues are
positive [14]. Some effective algorithms for finding Z-eigenvalue and the corresponding eigenvector have
been implemented [5–9, 11, 16, 18, 21–26], but it is difficult to compute all the Z-eigenvalues and judge
the positive definiteness of an even-order real symmetric tensor. Very recently, Li et al. [10] proposed
Gershgorin-type Z-eigenvalue inclusion set with parameters by Z-identity tensor, which can identify the
positive-definiteness of an even-order real symmetric tensor. It is remarkable that Brauer-type inclusion set
is tighter than Gershgorin-type inclusion set [20]. As a continuation of the article [20], we shall establish
sharp Brauer-type Z-eigenvalue localization set and propose some sufficient conditions for the positive
definiteness of multivariate homogeneous forms.

To end this section, we introduce Z-identity tensor in [8, 10] and important results proposed in [10].

Definition 1.1. Assume that m is even. We call IZ ∈ R
[m,n] a Z-identity tensor if

IZxm−1 = x, x>x = 1, ∀x ∈ Rn.

It is worth noting that the even-order n dimension Z-identity tensor is not unique in general. For instance,
each even tensor in the following is a Z-identity tensor:

Case I: (IZ)iii2i2...ikik = 1, ∀k ∈ N and m = 2k;
Case II (Property 2.4 of [8]): (IZ)i1i2...im = 1

m!

∑
p∈IIm

δip(1)δip(2) . . . δip(m−1)δip(m) , where δ is the standard Kronecker,

i.e.,

δi j =

{
1, if i = j,
0, otherwise.

Lemma 1.2. (Theorem 2 of [10]) LetA = (ai1i2...im ) ∈ R[m,n] and IZ ∈ R[m,n] be a Z-identity tensor with m being even.
Let σZ(A) be the set of all Z-eigenvalues ofA. For any real vector α = (α1, . . . , αn)> ∈ Rn, then

σZ(A) ⊆ G(A, α) =
⋃
i∈N

Gi(A, α) := {z ∈ R : |z − αi| ≤ Ri(A, αi)},

where Ri(A, αi) =
∑

i2...im∈N
|aii2...im − αi(IZ)ii2...im |. Furthermore, σZ(A) ⊆

⋂
α∈Rn
G(A, α).

2. A sharp Z-eigenvalue inclusion set for even-order real tensors

In this section, we establish new Z-eigenvalue inclusion set for even-order tensors. To this end, we
define

Θ j =
{
(i2, i3, . . . , im) : ik = j f or some k ∈ {2, . . . ,m},where j, i2, . . . , im ∈ N

}
,

Θ j =
{
(i2, i3, . . . , im) : ik , j all any k ∈ {2, . . . ,m},where j, i2, . . . , im ∈ N

}
,

rΘ j

i (A, αi) =
∑

{i2,...,im}∈Θ j

|aii2...im − αi(IZ)ii2...im |, rΘ j

i (A, αi) =
∑

{i2,...,im}∈Θ j

|aii2...im − αi(IZ)ii2...im |.

Obviously, Ri(A, αi) = rΘ j

i (A, αi) + rΘ j

i (A, αi).

Theorem 2.1. Let A = (ai1i2...im ) ∈ R[m,n] and IZ ∈ R[m,n] be a Z-identity tensor with m being even. For any real
vector α = (α1, . . . , αn)> ∈ Rn, then

σZ(A) ⊆ f(A, α) =
⋃
i∈N

⋂
j∈N, j,i

fi, j(A, α),

wherefi, j(A, α) =
{
z ∈ R : (|λ−αi|−rΘ j

i (A, αi)
)
|λ−α j| ≤ rΘ j

i (A, αi)R j(A, α j)}.Furthermore, σZ(A) ⊆
⋂
α∈Rn
f(A, α).
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Proof. Let (λ, x) be a Z-eigenpair ofA and IZ ∈ R[m,n] be a Z-identity tensor, i.e.,

Axm−1 = λx = λIZxm−1, x>x = 1. (3)

Assume |xt| = max
i∈N
|xi|, then 0 < |xt|

m−1
≤ |xt| ≤ 1.

On one hand, taking the t-th equation from (3), for any j ∈ N, j , t, we have∑
i2,...,im∈N

λ(IZ)ti2...im xi2 . . . xim =
∑

i2,...,im∈N

ati2...im xi2 . . . xim . (4)

Hence, for any real number αt, it follows that

(λ − αt)xt =
∑

i2,...,im∈N

(λ − αt)(IZ)ti2...im xi2 . . . xim =
∑

i2,...,im∈N

(
ati2...im − αt(IZ)ti2...im

)
xi2 . . . xim

=
∑

{i2,...,im}∈Θ j

(
ati2...im − αt(IZ)ti2...im

)
xi2 . . . xim +

∑
{i2,...,im}∈Θ j

(
ati2...im − αt(IZ)ti2...im

)
xi2 . . . xim

(5)

Taking modulus in (5) and using the triangle inequality give

|λ − αt||xt| ≤
∑

{i2,...,im}∈Θ j

|ati2...im − αt(IZ)ti2...im ||xi2 | . . . |xim | +
∑

{i2,...,im}∈Θ j

|ati2...im − αt(IZ)ti2...im ||xi2 | . . . |xim |

≤ rΘ j

t (A, αt)|x j| + rΘ j

t (A, αt)|xt|,

(6)

i.e., (
|λ − αt| − rΘ j

t (A, αt)
)
|xt| ≤ rΘ j

t (A, αt)|x j|. (7)

On the other hand, for t , j ∈ N, taking the j-th equation from (3), we obtain

(λ − α j)x j =
∑

i2,...,im∈N

(λ − α j)(IZ) ji2...im xi2 . . . xim =
∑

i2,...,im∈N

(
a ji2...im − α j(IZ) ji2...im

)
xi2 . . . xim . (8)

Taking modulus in (8) and using the triangle inequality, one has

|λ − α j||x j| ≤ R j(A, α j)|xt|. (9)

If |x j| = 0, by (7), we obtain

|λ − αt| ≤ rΘ j

t (A, αt).

Thus, λ ∈ ft, j(A, α) ⊆ f(A, α).
Otherwise, |x j| > 0. Multiplying (7) with (9) yields(

|λ − αt| − rΘ j

t (A, αt)
)
|λ − α j||x j||xt| ≤ rΘ j

t (A, αt)R j(A, α j)|x j||xt|,

equivalently, (
|λ − αt| − rΘ j

t (A, αt)
)
|λ − α j| ≤ rΘ j

t (A, αt)R j(A, α j),

which implies λ ∈ ft, j(A, α). From the arbitrariness of j, we have λ ∈
⋃
i∈N

⋂
j∈N, j,i

fi, j(A, α). Further, σZ(A) ⊆⋂
α∈Rn
f(A, α) by the arbitrariness of α.

Corollary 2.2. LetA = (ai1i2...im ) ∈ R[m,n] with m being even. For any real vector α = (α1, . . . , αn)> ∈ Rn, then

f(A, α) ⊆ G(A, α).
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Proof. For any λ ∈ f(A, α), without loss of generality, there exists t ∈ N such that λ ∈ ft,s(A), that is,(
|λ − αt| − rΘs

t (A, αt)
)
|λ − αs| ≤ rΘs

t (A, αt)Rs(A, αs), ∀s , t. (10)

Next, the following argument is divided into two cases.

Case I: rΘs
t (A, αt)Rs(A, αs) = 0. Since |λ − αs| ≥ 0, from (10), we deduce |λ − αt| − rΘs

t (A, αt) ≤ 0. Further,
it holds that

|λ − αt| ≤ rΘs
t (A, αt) ≤ Rt(A, αt),

i.e., λ ∈ Gt(A, α). So, we have ft,s(A, α) ⊆ Gt(A, α).
Case II: rΘs

t (A, αt)Rs(A, αs) > 0. Then dividing both sides by rΘs
t (A, αt)Rs(A, αs) in (10), we obtain

|λ − αt| − rΘs
t (A, αt)

rΘs
t (A, αt)

·
|λ − αs|

Rs(A, αs)
≤ 1, (11)

which implies

|λ − αt| − rΘs
t (A, αt)

rΘs
t (A, αt)

≤ 1 (12)

or

|λ − αs|

Rs(A, αs)
≤ 1. (13)

If (12) holds, then we have |λ − αt| − rΘs
t (A, αt) ≤ rΘs

t (A, αt), i.e,

|λ − αt| ≤ rΘs
t (A, αt) + rΘs

t (A, αt) = Rt(A, αt).

So, λ ∈ Gt(A, α). Otherwise, (13) holds, we can verify λ ∈ Gs(A, α).
From the above two cases, we can get ft,s(A, α) ⊆ Gt(A, α)

⋃
Gs(A, α). Thus, f(A, α) ⊆ G(A, α) for a

given parameter α.
Next, we give a numerical comparison between Theorem 2.1 and Theorem 2 of [10].

Example 2.3. ConsiderA = (ai jkl) ∈ R[4,2] defined by

ai jkl =


a1111 = 10; a1122 = 9; a1121 = a1211 = −1;
a2222 = 5; a2211 = 6; a2122 = a2212 = −1;
ai jkl = 0, otherwise.

All Z-eigenvalues ofAare 5.0000 and 10.0000. We choose different parametersα1 = [3, 8]>, α2 = [10, 7]>, α3 =
[9, 5]> and α4 = [9, 5.5]>, respectively. Set α1 = [3, 8]> and IZ = (Ii jkl) as Case I of Definition 1.1

Ii jkl =

{
I1111 = I1122 = I2211 = I2222 = 1;
0, otherwise.

Accordingly to Theorem 2.1, we obtain

f(A, α1 = (3, 8)) = [−7.5917, 16.5498] ∪ [−3.8102, 15.7178] = [−7.5917, 16.5498];

Similarly, we can obtain the following table:

α [3, 8]> [10, 7]> [9, 5]> [9, 5.5]>

f(A, α) [−7.5917, 16.5498] [3.5949, 12.6533] [3.6277, 11] [3.6088, 10.6225]
G(A, α) [−12, 18] [2, 13] [2, 12] [2.5, 12]

Numerical results show that the bound of Theorem 2.1 is tighter than that of Theorem 2 of [10] and the
suitable parameter α has a great influence on the numerical effect.
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3. Positive definiteness of multivariate homogeneous forms

In this section, based on the inclusion set f(A, α) in Theorem 2.1, we propose a sufficient condition
for the positive definiteness of even-order tensors. Before proceeding further, we introduce the results of
[1, 10].

Definition 3.1. (i) We say thatA is symmetric if

ai1...im = aiπ(1)...iπ(m) ,∀π ∈ Γm,

where Γm is the permutation group of m indices.
(ii) We say thatA is weakly symmetric if the associated homogeneous polynomial fA(x) satisfies

∇ fA(x) = mAxm−1.

Obviously, if tensorA is symmetric, thenA weakly symmetric. However, the converse result may not
hold.

Lemma 3.2. (Theorem 3 of [10]) Let λ be a Z-eigenvalue of A = (ai1i2...im ) ∈ R[m,n] and IZ ∈ R[m,n] be a Z-identity
tensor with m being even. If there exists a positive real vector α = (α1, . . . , αn)T such that

αi > Ri(A, αi),∀i ∈ N,

then λ > 0. Further, ifA is symmetric, thenA is positive definite and fA(x) defined in (1) is positive definite.

Theorem 3.3. Let λ be a Z-eigenvalue ofA = (ai1i2...im ) ∈ R[m,n] and IZ ∈ R[m,n] be a Z-identity tensor with m being
even. For i ∈ N, if there exist a positive real vector α = (α1, . . . , αn)> and j , i such that

(αi − rΘ j

i (A, αi))α j > rΘ j

i (A, αi)R j(A, α j), (14)

then λ > 0. Further, ifA is symmetric, thenA is positive definite and fA(x) defined in (1) is positive definite.

Proof. Suppose on the contrary that λ ≤ 0. From Theorem 2.1, there exists t ∈ N with λ ∈ ft, j(A, αt), i.e.,(
|λ − αt| − rΘ j

t (A, αt))|λ − α j| ≤ rΘ j

t (A, αt)R j(A, α j),∀ j , t.

Further, it follows from αi > 0 and λ ≤ 0 that

(αt − rΘ j

t (A, αt))α j ≤ rΘ j

t (A, αt)R j(A, α j),∀ j , t,

which contradicts (14). Thus, λ > 0. WhenA is a symmetric tensor and all Z-eigenvalues are positive,A is
positive definite and fA(x) defined in (1) is positive definite.

The following example shows the validity of Theorem 3.3.

Example 3.4. Consider fA(x) = Axm deduced by symmetric tensorA = (ai jkl) ∈ R[4,3] as follows

a1111 = 1.4; a2222 = 3.2; a3333 = 2.6; a1112 = a1121 = a1211 = a2111 = −0.1;
a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = 0.8;
a1133 = a1313 = a1331 = a3113 = a3131 = a3311 = 1.1;
a1233 = a1323 = a1332 = a2133 = a2313 = a2331 = −0.1;
a3123 = a3132 = a3213 = a3231 = a3312 = a3321 = 0.1;
a2223 = a2232 = a2322 = a3222 = 0.1;
a2233 = a2323 = a2332 = a3223 = a3232 = a3322 = 1.0; ai jkl = 0, otherwise.
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Taking IZ as Case II (Case I) of Definition 1.1, by simple computations, we cannot find positive real number
α1 such that

α1 > R1(A, α1),

which shows that Theorem 3 of [10] cannot check the positive definiteness ofA and fA(x).
Set α = (2.85, 3.0, 2.7) and let IZ = (Ii jkl) be Case II of Definition 1.1

Ii jkl =


I1111 = I2222 = I3333 = 1;
I1122 = I1212 = I1221 = I1133 = I1313 = I1331 = 1

3 ;
I2112 = I2121 = I2221 = I2233 = I2323 = I2332 = 1

3 ;
I3113 = I3131 = I3311 = I3223 = I3232 = I3322 = 1

3 ;
0, otherwise.

From Theorem 3.3, we can calculate the following corresponding values

(αi − rΘ j

i (A, αi))α j rΘ j

i (A, αi)R j(A, α j)
i = 1, j = 2 2.85 1.575
i = 1, j = 3 1.755 1.275
i = 2, j = 1 4.56 2.065
i = 2, j = 3 6.21 2.55
i = 3, j = 1 6.27 3.54
i = 3, j = 2 6 1.5

From the above table, we verify

(αi − rΘ j

i (A, αi)
)
)α j > rΘ j

i (A, αi)R j(A, α j),∀i , j ∈ N,

which implies thatA is positive definite and fA(x) is positive definite.

4. Estimations of Z-spectral radius and convergence rate on the greedy rank-one algorithms

As we know, the best rank-one approximation which has numerous applications in wireless commu-
nication systems, image processing, data analysis [7, 15–17, 21]. The best rank-one approximation of
A = (ai1i2...im ) is to find a rank-one tensor κxm = (κxi1 xi2 . . . xim ) such that

min
κ∈R,x
{||A − κxm

||F : xTx = 1},

where ||A||F :=
√ ∑

i1,i2,...,im∈N
a2

i1i2...im
.WhenA is nonnegative and weakly symmetric, ρ(A)xm

0 is a best rank-one

approximation ofA, i.e.,

min
κ∈R,xTx=1

||A − κxm
||F = ||A − ρ(A)xm

0 ||F =
√
||A||2F − ρ(A)2.

Further, Qi [17] defined the quotient on the residual of the best rank-one approximation of tensor A as
follows:

ω =
||A − ρ(A)xm

0 ||F

||A||F
=

√
1 −

ρ(A)2

||A||2F

,

which can estimate the convergence rate of the greedy rank-one algorithm [2, 17, 18, 25]. Hence, we shall
devote to finding sharp upper bounds of the Z-spectral radius of weakly symmetric nonnegative tensors
to estimate the convergence rate of the greedy rank-one algorithms. We recall some fundamental results of
nonnegative tensors [1].
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Lemma 4.1. (Theorem 3.11 of [1]) Assume A is a weakly symmetric nonnegative tensor. Then, ρ(A) = λ∗, where
λ∗ denotes the largest Z-eigenvalue.

Lemma 4.2. (Corollary 4.10 of [1]) AssumeA is a weakly symmetric nonnegative tensor. Then,

ρ(A) ≥ max
i∈N

ai...i.

Theorem 4.3. LetA = (ai1i2...im ) ∈ R[m,n] be a weakly symmetric nonnegative tensor and IZ ∈ R[m,n] be a Z-identity
tensor (Case I or Case II) with m being even. For real vector α = (α1, . . . , αn)> ∈ Rn with αi ≤ max

i∈N
ai...i, then

ρ(A) ≤ max
i∈N

min
j∈N,i, j,α∈Rn

1
2

(αi + α j + rΘ j

i (A, αi) + Λ
1
2
i, j(A, αi)),

where Λi, j(A) = (αi − α j + rΘ j

i (A, α j))2 + 4rΘ j

i (A, αi)R j(A, α j).

Proof. From Lemma 4.1, we assume that ρ(A) = λ∗ is the largest Z-eigenvalue. It follows from Theorem 2.1
that there exists t ∈ N such that

(|ρ(A) − αt| − rΘ j

t (A, αt))|ρ(A) − α j| ≤ rΘ j

t (A, αt)R j(A, α j),∀ j , t. (15)

SinceA is nonnegative and Lemma 4.2 holds, for αi ≤ max
i∈N

ai...i, we have

ρ(A) ≥ αt and ρ(A) ≥ α j.

Thus, (15) is equivalent to

(ρ(A) − αt − rΘ j

t (A, αt))(ρ(A) − α j) ≤ rΘ j

t (A, αt)R j(A, α j),∀ j , t. (16)

Solving for (16), we obtain

ρ(A) ≤
1
2

(α j + αt + rΘ j

t (A, αt) + Λ
1
2
t, j(A, αt)),

where Λt,s(A) = (αt−αs + rΘ j

t (A, αt))2 + 4rΘ j

t (A, αt)R j(A, α j). Since j ∈ N and α are chosen arbitrarily, it holds

ρ(A) ≤ min
j∈N,t, j,α∈Rn

1
2

(α j + αt + rΘ j

t (A, αt) + Λ
1
2
t, j(A, αt)).

Consequently,

ρ(A) ≤ max
i∈N

min
j∈N,i, j,α∈Rn

1
2

(αi + α j + rΘ j

i (A, αi) + Λ
1
2
i, j(A, αi)).

Thus, the conclusion holds.
The following numerical experiment shows validity of Theorem 4.3 and gives an estimation for the

convergence rate of the greedy rank-one algorithms.

Example 4.4. Consider tensorA = (ai jkl) ∈ R[4,2] defined by

ai jkl =

{
a1111 = 1; a2222 = 3; a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = 1

3 ;
a1112 = a1121 = a1211 = a2111 = 1

3 ; ai jkl = 0, otherwise.

By simple computation, we obtain (ρ(A), x) = (3, (0, 1)) and ||A||F = 3.3166. For this tensor, set α = (1, 1) and
let IZ = (Ii jkl) be Case II of Definition 1.1. The bounds via different estimations given in the literature are
shown in the following table:
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References upper bound parameter α
Theorem 3.11 of [1] ρ(A) ≤ 6.1283 No
Corollary 4.5 of [19] ρ(A) ≤ 4.3333 No

Theorems 4.5-4.7 of [20] ρ(A) ≤ 4.1985 No
Theorem 7 of [18] ρ(A) ≤ 4.0000 No
Theorem 1 of [10] ρ(A) ≤ 3.3333 α = (1, 1)

Theorems 4.1 ρ(A) ≤ 3.1055 α = (1, 1)

From the table above, it is easy to see that only the upper bound obtained by Theorem 4.1 is smaller than
||A||F. Consequently, we have

min
κ∈R,κ∈Rn,xTx=1

||A − κxm
||F =

√
||A||2F − ρ(A)2 ≥ 1.3559.

Further, we obtain that the quotient on the residual of the best rank-one approximation ofA is

ω =
||A − ρ(A)xm

0 ||F

||A||F
=

√
1 −

ρ(A)2

||A||2F

≥ 0.3511,

which implies the convergence rate of the greedy rank-one algorithm [2, 17, 18, 24, 25].

5. Conclusions

In this paper, we established a Brauer-type Z-eigenvalue inclusion set for even-order real tensors by
Z-identity tensor and proposed some sufficient conditions for the positive definiteness of multivariate
homogeneous forms. Note that the suitable parameter α has a great influence on the numerical effects and
positive definiteness of fA(x). Therefore, how to select the suitable parameter α is our further research.
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