Filomat 34:9 (2020), 3131–3139 https://doi.org/10.2298/FIL2009131W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Sharp Z-Eigenvalue Inclusion Set-Based Method for Testing the Positive Definiteness of Multivariate Homogeneous Forms

Gang Wang^a, Linxuan Sun^a, Yiju Wang^a

^a School of Management Science, Qufu Normal University, Rizhao Shandong, 276800, China

Abstract. In this paper, we establish a sharp *Z*-eigenvalue inclusion set for even-order real tensors by *Z*-identity tensor and prove that new *Z*-eigenvalue inclusion set is sharper than existing results. We propose some sufficient conditions for testing the positive definiteness of multivariate homogeneous forms via new *Z*-eigenvalue inclusion set. Further, we establish upper bounds on the *Z*-spectral radius of weakly symmetric nonnegative tensors and estimate the convergence rate of the greedy rank-one algorithms. The given numerical experiments show the validity of our results.

1. Introduction

Consider the following multivariate homogeneous forms with spherical constraint:

$$f_{\mathcal{A}}(x) = \mathcal{A}x^{m} = \sum_{i_{1}, i_{2}, \dots, i_{m}=1}^{n} a_{i_{1}i_{2}\dots i_{m}} x_{i_{1}} x_{i_{2}} \dots x_{i_{m}}$$

$$s.t. \quad x^{\top}x = 1,$$
(1)

where $x \in \mathbb{R}^n, m, n \ge 2, f_{\mathcal{A}}(x)$ is a multivariate homogeneous form of degree *m* with *n* variables, and $\mathcal{A} \in \mathbb{R}^{[m,n]}$ is an *m*-order *n*-dimensional real tensor with entries [12, 14]

$$a_{i_1...i_m} \in \mathbb{R}, i_j \in \mathbb{N} = \{1, ..., n\}, j = 1, ..., m.$$

Clearly, the critical points of (1) satisfy the following equations for some $\lambda \in \mathbb{R}$:

$$\mathcal{A}x^{m-1} = \lambda x \text{ and } x^{\top}x = 1, \tag{2}$$

where $(\mathcal{A}x^{m-1})_i = \sum_{i_2,...,i_m \in \mathbb{N}} a_{ii_2...i_m} x_{i_2} \dots x_{i_m}$. The real number λ and the real vector x satisfying with (2) are

called Z-eigenvalue and Z-eigenvector, respectively.

The multivariate homogeneous form $f_{\mathcal{A}}(x)$ is positive definite, which plays important roles in signal processing [15] and the stability study of nonlinear autonomous systems via Lyapunov's direct method in

²⁰¹⁰ Mathematics Subject Classification. 15A18; 15A42; 15A69

Keywords. Z-eigenvalue inclusion set; positive definiteness; Z-identity tensor

Received: 09 October 2019; Accepted: 26 January 2020

Communicated by Yimin Wei

Research supported by the Natural Science Foundation of China (11671228) and the Natural Science Foundation of Shandong Province (ZR2020MA025).

Email addresses: wgglj1977@163.com (Gang Wang), slxsx2019@163.com (Linxuan Sun), wyijumail@163.com (Yiju Wang)

automatic control [3, 4, 13]. Note that $f_{\mathcal{A}}(x)$ is positive definite if and only if tensor \mathcal{A} is positive definite, and that an even-order real symmetric tensor is positive definite if and only if all of its Z-eigenvalues are positive [14]. Some effective algorithms for finding Z-eigenvalue and the corresponding eigenvector have been implemented [5–9, 11, 16, 18, 21–26], but it is difficult to compute all the Z-eigenvalues and judge the positive definiteness of an even-order real symmetric tensor. Very recently, Li et al. [10] proposed Gershgorin-type Z-eigenvalue inclusion set with parameters by Z-identity tensor, which can identify the positive-definiteness of an even-order real symmetric tensor. It is remarkable that Brauer-type inclusion set is tighter than Gershgorin-type inclusion set [20]. As a continuation of the article [20], we shall establish sharp Brauer-type Z-eigenvalue localization set and propose some sufficient conditions for the positive definiteness of multivariate homogeneous forms.

To end this section, we introduce Z-identity tensor in [8, 10] and important results proposed in [10].

Definition 1.1. Assume that *m* is even. We call $I_Z \in \mathbb{R}^{[m,n]}$ a *Z*-identity tensor if

$$I_Z x^{m-1} = x, \ x^\top x = 1, \ \forall x \in \mathbb{R}^n.$$

It is worth noting that the even-order *n* dimension *Z*-identity tensor is not unique in general. For instance, each even tensor in the following is a Z-identity tensor:

Case I: $(I_Z)_{iii_2i_2...i_ki_k} = 1$, $\forall k \in N$ and m = 2k; Case II (Property 2.4 of [8]): $(I_Z)_{i_1i_2...i_m} = \frac{1}{m!} \sum_{p \in II_m} \delta_{i_p(1)} \delta_{i_p(2)} \dots \delta_{i_p(m-1)} \delta_{i_p(m)}$, where δ is the standard Kronecker,

i.e.,

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 1.2. (Theorem 2 of [10]) Let $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. Let $\sigma_Z(\mathcal{A})$ be the set of all Z-eigenvalues of \mathcal{A} . For any real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^{\mathsf{T}} \in \mathbb{R}^n$, then

$$\sigma_{Z}(\mathcal{A}) \subseteq \mathcal{G}(\mathcal{A}, \alpha) = \bigcup_{i \in \mathbb{N}} \mathcal{G}_{i}(\mathcal{A}, \alpha) := \{z \in \mathbb{R} : |z - \alpha_{i}| \leq R_{i}(\mathcal{A}, \alpha_{i})\},\$$

where $R_i(\mathcal{A}, \alpha_i) = \sum_{i_2...i_m \in \mathbb{N}} |a_{ii_2...i_m} - \alpha_i(I_Z)_{ii_2...i_m}|$. Furthermore, $\sigma_Z(\mathcal{A}) \subseteq \bigcap_{\alpha \in \mathbb{R}^n} \mathcal{G}(\mathcal{A}, \alpha)$.

2. A sharp Z-eigenvalue inclusion set for even-order real tensors

In this section, we establish new Z-eigenvalue inclusion set for even-order tensors. To this end, we define

$$\Theta_{j} = \left\{ (i_{2}, i_{3}, \dots, i_{m}) : i_{k} = j \text{ for some } k \in \{2, \dots, m\}, \text{ where } j, i_{2}, \dots, i_{m} \in N \right\},$$

$$\overline{\Theta}_{j} = \left\{ (i_{2}, i_{3}, \dots, i_{m}) : i_{k} \neq j \text{ all any } k \in \{2, \dots, m\}, \text{ where } j, i_{2}, \dots, i_{m} \in N \right\},$$

$$r_{i}^{\Theta_{j}}(\mathcal{A}, \alpha_{i}) = \sum_{\{i_{2}, \dots, i_{m}\} \in \Theta_{j}} |a_{ii_{2}\dots i_{m}} - \alpha_{i}(I_{Z})_{ii_{2}\dots i_{m}}|, r_{i}^{\overline{\Theta}_{j}}(\mathcal{A}, \alpha_{i}) = \sum_{\{i_{2}, \dots, i_{m}\} \in \overline{\Theta}_{j}} |a_{ii_{2}\dots i_{m}} - \alpha_{i}(I_{Z})_{ii_{2}\dots i_{m}}|.$$

Obviously, $R_i(\mathcal{A}, \alpha_i) = r_i^{\Theta_j}(\mathcal{A}, \alpha_i) + r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_i).$

Theorem 2.1. Let $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. For any real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^{\mathsf{T}} \in \mathbb{R}^n$, then

$$\sigma_{Z}(\mathcal{A}) \subseteq \mathfrak{O}(\mathcal{A}, \alpha) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \mathfrak{O}_{i,j}(\mathcal{A}, \alpha),$$

where $\mathcal{O}_{i,j}(\mathcal{A}, \alpha) = \left\{ z \in \mathbb{R} : (|\lambda - \alpha_i| - r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_i)) | \lambda - \alpha_j| \le r_i^{\Theta_j}(\mathcal{A}, \alpha_i) \mathbb{R}_j(\mathcal{A}, \alpha_j) \right\}$. Furthermore, $\sigma_Z(\mathcal{A}) \subseteq \bigcap_{i \in \mathbb{N}^n} \mathcal{O}(\mathcal{A}, \alpha)$.

Proof. Let (λ, x) be a *Z*-eigenpair of \mathcal{A} and $I_Z \in \mathbb{R}^{[m,n]}$ be a *Z*-identity tensor, i.e.,

$$\mathcal{A}x^{m-1} = \lambda x = \lambda I_Z x^{m-1}, \ x^{\mathsf{T}}x = 1.$$
(3)

Assume $|x_t| = \max_{i \in N} |x_i|$, then $0 < |x_t|^{m-1} \le |x_t| \le 1$. On one hand, taking the *t*-th equation from (3), for any $j \in N$, $j \ne t$, we have

$$\sum_{i_2,\dots,i_m\in N}\lambda(I_Z)_{ii_2\dots i_m}x_{i_2}\dots x_{i_m} = \sum_{i_2,\dots,i_m\in N}a_{ii_2\dots i_m}x_{i_2}\dots x_{i_m}.$$
(4)

Hence, for any real number α_t , it follows that

$$(\lambda - \alpha_t)x_t = \sum_{i_2, \dots, i_m \in N} (\lambda - \alpha_t)(I_Z)_{i_2 \dots i_m} x_{i_2} \dots x_{i_m} = \sum_{i_2, \dots, i_m \in N} (a_{i_1 \dots i_m} - \alpha_t(I_Z)_{i_1 \dots i_m}) x_{i_2} \dots x_{i_m}$$

$$= \sum_{\{i_2, \dots, i_m\} \in \Theta_j} (a_{i_1 \dots i_m} - \alpha_t(I_Z)_{i_1 \dots i_m}) x_{i_2} \dots x_{i_m} + \sum_{\{i_2, \dots, i_m\} \in \overline{\Theta}_j} (a_{i_1 \dots i_m} - \alpha_t(I_Z)_{i_1 \dots i_m}) x_{i_2} \dots x_{i_m}$$
(5)

Taking modulus in (5) and using the triangle inequality give

$$\begin{aligned} |\lambda - \alpha_t||x_t| &\leq \sum_{\{i_2, \dots, i_m\} \in \Theta_j} |a_{ti_2 \dots i_m} - \alpha_t(I_Z)_{ti_2 \dots i_m}||x_{i_2}| \dots |x_{i_m}| + \sum_{\{i_2, \dots, i_m\} \in \overline{\Theta}_j} |a_{ti_2 \dots i_m} - \alpha_t(I_Z)_{ti_2 \dots i_m}||x_{i_2}| \dots |x_{i_m}| \\ &\leq r_t^{\Theta_j}(\mathcal{A}, \alpha_t)|x_j| + r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t)|x_t|, \end{aligned}$$

$$(6)$$

$$\left(|\lambda - \alpha_t| - r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t)\right)|x_t| \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)|x_j|.$$
(7)

On the other hand, for $t \neq j \in N$, taking the *j*-th equation from (3), we obtain

$$(\lambda - \alpha_j)x_j = \sum_{i_2, \dots, i_m \in N} (\lambda - \alpha_j)(I_Z)_{ji_2 \dots i_m} x_{i_2} \dots x_{i_m} = \sum_{i_2, \dots, i_m \in N} (a_{ji_2 \dots i_m} - \alpha_j(I_Z)_{ji_2 \dots i_m}) x_{i_2} \dots x_{i_m}.$$
(8)

Taking modulus in (8) and using the triangle inequality, one has

$$|\lambda - \alpha_j| |x_j| \le R_j(\mathcal{A}, \alpha_j) |x_t|.$$
(9)

If $|x_i| = 0$, by (7), we obtain

$$|\lambda - \alpha_t| \le r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t)$$

Thus, $\lambda \in \mathcal{O}_{t,i}(\mathcal{A}, \alpha) \subseteq \mathcal{O}(\mathcal{A}, \alpha)$.

Otherwise, $|x_i| > 0$. Multiplying (7) with (9) yields

$$\left(|\lambda - \alpha_t| - r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t)\right)|\lambda - \alpha_j||x_j||x_t| \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j)|x_j||x_t|,$$

equivalently,

$$(|\lambda - \alpha_t| - r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t))|\lambda - \alpha_j| \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j),$$

which implies $\lambda \in \mathcal{O}_{t,j}(\mathcal{A}, \alpha)$. From the arbitrariness of j, we have $\lambda \in \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \mathcal{O}_{i,j}(\mathcal{A}, \alpha)$. Further, $\sigma_Z(\mathcal{A}) \subseteq \mathcal{O}_{i,j}(\mathcal{A}, \alpha)$. $\bigcap_{\alpha \in \mathbb{R}^n} \mho(\mathcal{A}, \alpha) \text{ by the arbitrariness of } \alpha. \square$

Corollary 2.2. Let $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ with *m* being even. For any real vector $\alpha = (\alpha_1, ..., \alpha_n)^\top \in \mathbb{R}^n$, then

 $\mho(\mathcal{A},\alpha)\subseteq \mathcal{G}(\mathcal{A},\alpha).$

Proof. For any $\lambda \in \mathcal{O}(\mathcal{A}, \alpha)$, without loss of generality, there exists $t \in N$ such that $\lambda \in \mathcal{O}_{t,s}(\mathcal{A})$, that is,

$$\left(|\lambda - \alpha_t| - r_t^{\Theta_s}(\mathcal{A}, \alpha_t)\right)|\lambda - \alpha_s| \le r_t^{\Theta_s}(\mathcal{A}, \alpha_t)R_s(\mathcal{A}, \alpha_s), \ \forall s \ne t.$$

$$(10)$$

Next, the following argument is divided into two cases.

Case I: $r_t^{\Theta_s}(\mathcal{A}, \alpha_t)R_s(\mathcal{A}, \alpha_s) = 0$. Since $|\lambda - \alpha_s| \ge 0$, from (10), we deduce $|\lambda - \alpha_t| - r_t^{\Theta_s}(\mathcal{A}, \alpha_t) \le 0$. Further, it holds that

$$|\lambda - \alpha_t| \leq r_t^{\overline{\Theta}_s}(\mathcal{A}, \alpha_t) \leq R_t(\mathcal{A}, \alpha_t),$$

i.e., $\lambda \in \mathcal{G}_t(\mathcal{A}, \alpha)$. So, we have $\mathcal{O}_{t,s}(\mathcal{A}, \alpha) \subseteq \mathcal{G}_t(\mathcal{A}, \alpha)$.

 \overline{a}

Case II: $r_t^{\Theta_s}(\mathcal{A}, \alpha_t)R_s(\mathcal{A}, \alpha_s) > 0$. Then dividing both sides by $r_t^{\Theta_s}(\mathcal{A}, \alpha_t)R_s(\mathcal{A}, \alpha_s)$ in (10), we obtain

$$\frac{|\lambda - \alpha_t| - r_t^{\Theta_s}(\mathcal{A}, \alpha_t)}{r_t^{\Theta_s}(\mathcal{A}, \alpha_t)} \cdot \frac{|\lambda - \alpha_s|}{R_s(\mathcal{A}, \alpha_s)} \le 1,$$
(11)

which implies

$$\frac{|\lambda - \alpha_t| - r_t^{\Theta_s}(\mathcal{A}, \alpha_t)}{r_t^{\Theta_s}(\mathcal{A}, \alpha_t)} \le 1$$
(12)

or

$$\frac{|\lambda - \alpha_s|}{R_s(\mathcal{A}, \alpha_s)} \le 1.$$
(13)

If (12) holds, then we have $|\lambda - \alpha_t| - r_t^{\overline{\Theta}_s}(\mathcal{A}, \alpha_t) \le r_t^{\Theta_s}(\mathcal{A}, \alpha_t)$, i.e,

$$\lambda - \alpha_t | \leq r_t^{\overline{\Theta}_s}(\mathcal{A}, \alpha_t) + r_t^{\Theta_s}(\mathcal{A}, \alpha_t) = R_t(\mathcal{A}, \alpha_t).$$

So, $\lambda \in \mathcal{G}_t(\mathcal{A}, \alpha)$. Otherwise, (13) holds, we can verify $\lambda \in \mathcal{G}_s(\mathcal{A}, \alpha)$.

From the above two cases, we can get $\mathcal{O}_{t,s}(\mathcal{A}, \alpha) \subseteq \mathcal{G}_t(\mathcal{A}, \alpha) \cup \mathcal{G}_s(\mathcal{A}, \alpha)$. Thus, $\mathcal{O}(\mathcal{A}, \alpha) \subseteq \mathcal{G}(\mathcal{A}, \alpha)$ for a given parameter α . \Box

Next, we give a numerical comparison between Theorem 2.1 and Theorem 2 of [10].

Example 2.3. Consider $\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,2]}$ defined by

$$a_{ijkl} = \begin{cases} a_{1111} = 10; a_{1122} = 9; a_{1121} = a_{1211} = -1; \\ a_{2222} = 5; a_{2211} = 6; a_{2122} = a_{2212} = -1; \\ a_{ijkl} = 0, \text{ otherwise.} \end{cases}$$

All *Z*-eigenvalues of \mathcal{A} are 5.0000 and 10.0000. We choose different parameters $\alpha_1 = [3, 8]^{\top}$, $\alpha_2 = [10, 7]^{\top}$, $\alpha_3 = [9, 5]^{\top}$ and $\alpha_4 = [9, 5.5]^{\top}$, respectively. Set $\alpha_1 = [3, 8]^{\top}$ and $I_Z = (I_{ijkl})$ as Case I of Definition 1.1

$$I_{ijkl} = \begin{cases} I_{1111} = I_{1122} = I_{2211} = I_{2222} = 1; \\ 0, \text{ otherwise.} \end{cases}$$

Accordingly to Theorem 2.1, we obtain

$$\mho(\mathcal{A}, \alpha_1 = (3, 8)) = [-7.5917, 16.5498] \cup [-3.8102, 15.7178] = [-7.5917, 16.5498];$$

Similarly, we can obtain the following table:

α	[3,8]⊤	[10,7] ^T	[9 <i>,</i> 5] [⊤]	[9 <i>,</i> 5.5] [⊤]
$\mho(\mathcal{A}, \alpha)$	[-7.5917, 16.5498]	[3.5949, 12.6533]	[3.6277,11]	[3.6088, 10.6225]
$\mathcal{G}(\mathcal{A}, \alpha)$	[-12, 18]	[2, 13]	[2,12]	[2.5, 12]

Numerical results show that the bound of Theorem 2.1 is tighter than that of Theorem 2 of [10] and the suitable parameter α has a great influence on the numerical effect.

3. Positive definiteness of multivariate homogeneous forms

In this section, based on the inclusion set $\mathcal{O}(\mathcal{A}, \alpha)$ in Theorem 2.1, we propose a sufficient condition for the positive definiteness of even-order tensors. Before proceeding further, we introduce the results of [1, 10].

Definition 3.1. (*i*) We say that \mathcal{A} is symmetric if

$$a_{i_1\ldots i_m} = a_{i_{\pi(1)}\ldots i_{\pi(m)}}, \forall \pi \in \Gamma_m,$$

where Γ_m is the permutation group of *m* indices.

(ii) We say that \mathcal{A} is weakly symmetric if the associated homogeneous polynomial $f_{\mathcal{A}}(x)$ satisfies

$$\nabla f_{\mathcal{A}}(x) = m \mathcal{A} x^{m-1}.$$

Obviously, if tensor \mathcal{A} is symmetric, then \mathcal{A} weakly symmetric. However, the converse result may not hold.

Lemma 3.2. (Theorem 3 of [10]) Let λ be a Z-eigenvalue of $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. If there exists a positive real vector $\alpha = (\alpha_1, ..., \alpha_n)^T$ such that

$$\alpha_i > R_i(\mathcal{A}, \alpha_i), \forall i \in N,$$

then $\lambda > 0$. Further, if \mathcal{A} is symmetric, then \mathcal{A} is positive definite and $f_{\mathcal{A}}(x)$ defined in (1) is positive definite.

Theorem 3.3. Let λ be a Z-eigenvalue of $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. For $i \in N$, if there exist a positive real vector $\alpha = (\alpha_1, ..., \alpha_n)^{\top}$ and $j \neq i$ such that

$$(\alpha_i - r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_i))\alpha_j > r_i^{\Theta_j}(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j),$$
(14)

then $\lambda > 0$. Further, if \mathcal{A} is symmetric, then \mathcal{A} is positive definite and $f_{\mathcal{A}}(x)$ defined in (1) is positive definite.

Proof. Suppose on the contrary that $\lambda \leq 0$. From Theorem 2.1, there exists $t \in N$ with $\lambda \in O_{t,i}(\mathcal{A}, \alpha_t)$, i.e.,

$$\left(|\lambda - \alpha_t| - r_t^{\Theta_j}(\mathcal{A}, \alpha_t))|\lambda - \alpha_j| \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j), \forall j \ne t.$$

Further, it follows from $\alpha_i > 0$ and $\lambda \le 0$ that

$$(\alpha_t - r_t^{\Theta_j}(\mathcal{A}, \alpha_t))\alpha_j \leq r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j), \forall j \neq t,$$

which contradicts (14). Thus, $\lambda > 0$. When \mathcal{A} is a symmetric tensor and all *Z*-eigenvalues are positive, \mathcal{A} is positive definite and $f_{\mathcal{A}}(x)$ defined in (1) is positive definite. \Box

The following example shows the validity of Theorem 3.3.

Example 3.4. Consider $f_{\mathcal{A}}(x) = \mathcal{A}x^m$ deduced by symmetric tensor $\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,3]}$ as follows

 $\begin{aligned} a_{1111} &= 1.4; a_{2222} = 3.2; a_{3333} = 2.6; a_{1112} = a_{1121} = a_{1211} = a_{2111} = -0.1; \\ a_{1122} &= a_{1212} = a_{1221} = a_{2112} = a_{2121} = a_{2211} = 0.8; \\ a_{1133} &= a_{1313} = a_{1331} = a_{3113} = a_{3131} = a_{3311} = 1.1; \\ a_{1233} &= a_{1323} = a_{1332} = a_{2133} = a_{2313} = a_{2331} = -0.1; \\ a_{3123} &= a_{3132} = a_{3213} = a_{3221} = a_{3312} = a_{3321} = 0.1; \\ a_{2223} &= a_{2232} = a_{2232} = a_{3222} = 0.1; \\ a_{2233} &= a_{2332} = a_{2332} = a_{3223} = a_{3232} = a_{3322} = 1.0; \\ a_{1112} &= a_{1112} = a_{1112} = a_{1111} = a_{1111} = a_{1111} = -0.1; \\ a_{1113} &= a_{1113} = a_{1113} = a_{1113} = a_{1113} = a_{1113} = a_{1113} = a_{1111} = 0.1; \\ a_{2223} &= a_{2232} = a_{2232} = a_{2232} = a_{2322} = 0.1; \\ a_{2233} &= a_{2332} = a_{2332} = a_{3223} = a_{3232} = a_{3322} = a_{3323} = a_{3323} = a_{3332} = a_{3333} = a_{3332} = a_{3333} = a_{3333$

Taking I_Z as Case II (Case I) of Definition 1.1, by simple computations, we cannot find positive real number α_1 such that

$$\alpha_1 > R_1(\mathcal{A}, \alpha_1),$$

which shows that Theorem 3 of [10] cannot check the positive definiteness of \mathcal{A} and $f_{\mathcal{A}}(x)$. Set $\alpha = (2.85, 3.0, 2.7)$ and let $I_Z = (I_{ijkl})$ be Case II of Definition 1.1

$$I_{ijkl} = \left\{ \begin{array}{l} I_{1111} = I_{2222} = I_{3333} = 1; \\ I_{1122} = I_{1212} = I_{1221} = I_{1133} = I_{1313} = I_{1331} = \frac{1}{3}; \\ I_{2112} = I_{2121} = I_{2221} = I_{2233} = I_{2323} = I_{2332} = \frac{1}{3}; \\ I_{3113} = I_{3131} = I_{3311} = I_{3223} = I_{3232} = I_{3322} = \frac{1}{3}; \\ 0, \ otherwise. \end{array} \right.$$

From Theorem 3.3, we can calculate the following corresponding values

	$(\alpha_i - r_i^{\Theta_j}(\mathcal{A}, \alpha_i))\alpha_j$	$r_i^{\Theta_j}(\mathcal{A},\alpha_i)R_j(\mathcal{A},\alpha_j)$
i = 1, j = 2	2.85	1.575
i = 1, j = 3	1.755	1.275
i = 2, j = 1	4.56	2.065
i = 2, j = 3	6.21	2.55
i = 3, j = 1	6.27	3.54
i = 3, j = 2	6	1.5

From the above table, we verify

$$(\alpha_i - r_i^{\Theta_j}(\mathcal{A}, \alpha_i)))\alpha_j > r_i^{\Theta_j}(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j), \forall i \neq j \in N,$$

which implies that \mathcal{A} is positive definite and $f_{\mathcal{A}}(x)$ is positive definite.

4. Estimations of Z-spectral radius and convergence rate on the greedy rank-one algorithms

As we know, the best rank-one approximation which has numerous applications in wireless communication systems, image processing, data analysis [7, 15–17, 21]. The best rank-one approximation of $\mathcal{A} = (a_{i_1i_2...i_m})$ is to find a rank-one tensor $\kappa x^m = (\kappa x_{i_1} x_{i_2} \dots x_{i_m})$ such that

$$\min_{\kappa \in \mathbb{R}, x} \{ \|\mathcal{A} - \kappa x^m\|_F : x^T x = 1 \},\$$

where $\|\mathcal{A}\|_F := \sqrt{\sum_{i_1,i_2,...,i_m \in \mathbb{N}} a_{i_1i_2...i_m}^2}$. When \mathcal{A} is nonnegative and weakly symmetric, $\rho(\mathcal{A})x_0^m$ is a best rank-one approximation of \mathcal{A} , i.e.,

$$\min_{\kappa \in \mathbb{R}, x^T x = 1} \|\mathcal{A} - \kappa x^m\|_F = \|\mathcal{A} - \rho(\mathcal{A}) x_0^m\|_F = \sqrt{\|\mathcal{A}\|_F^2 - \rho(\mathcal{A})^2}.$$

Further, Qi [17] defined the quotient on the residual of the best rank-one approximation of tensor \mathcal{A} as follows:

$$\omega = \frac{\|\mathcal{A} - \rho(\mathcal{A})x_0^m\|_F}{\|\mathcal{A}\|_F} = \sqrt{1 - \frac{\rho(\mathcal{A})^2}{\|\mathcal{A}\|_F^2}},$$

which can estimate the convergence rate of the greedy rank-one algorithm [2, 17, 18, 25]. Hence, we shall devote to finding sharp upper bounds of the *Z*-spectral radius of weakly symmetric nonnegative tensors to estimate the convergence rate of the greedy rank-one algorithms. We recall some fundamental results of nonnegative tensors [1].

Lemma 4.1. (*Theorem 3.11 of [1]*) Assume \mathcal{A} is a weakly symmetric nonnegative tensor. Then, $\rho(\mathcal{A}) = \lambda^*$, where λ^* denotes the largest Z-eigenvalue.

Lemma 4.2. (Corollary 4.10 of [1]) Assume A is a weakly symmetric nonnegative tensor. Then,

$$\rho(\mathcal{A}) \geq \max_{i \in \mathbb{N}} a_{i\ldots i}.$$

Theorem 4.3. Let $\mathcal{A} = (a_{i_1i_2...i_m}) \in \mathbb{R}^{[m,n]}$ be a weakly symmetric nonnegative tensor and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor (Case I or Case II) with m being even. For real vector $\alpha = (\alpha_1, ..., \alpha_n)^{\top} \in \mathbb{R}^n$ with $\alpha_i \leq \max_{i \in \mathbb{N}} a_{i...i}$, then

$$\rho(\mathcal{A}) \leq \max_{i \in \mathbb{N}} \min_{j \in \mathbb{N}, i \neq j, \alpha \in \mathbb{R}^n} \frac{1}{2} (\alpha_i + \alpha_j + r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_i) + \Lambda_{i,j}^{\frac{1}{2}}(\mathcal{A}, \alpha_i)),$$

where $\Lambda_{i,j}(\mathcal{A}) = (\alpha_i - \alpha_j + r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_j))^2 + 4r_i^{\Theta_j}(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j).$

Proof. From Lemma 4.1, we assume that $\rho(\mathcal{A}) = \lambda^*$ is the largest *Z*-eigenvalue. It follows from Theorem 2.1 that there exists $t \in N$ such that

$$(|\rho(\mathcal{A}) - \alpha_t| - r_t^{\Theta_j}(\mathcal{A}, \alpha_t))|\rho(\mathcal{A}) - \alpha_j| \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j), \forall j \ne t.$$
(15)

Since \mathcal{A} is nonnegative and Lemma 4.2 holds, for $\alpha_i \leq \max_{i \in \mathcal{N}} a_{i...i}$, we have

$$\rho(\mathcal{A}) \geq \alpha_t \text{ and } \rho(\mathcal{A}) \geq \alpha_j.$$

Thus, (15) is equivalent to

$$(\rho(\mathcal{A}) - \alpha_t - r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t))(\rho(\mathcal{A}) - \alpha_j) \le r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j), \forall j \ne t.$$
(16)

Solving for (16), we obtain

$$\rho(\mathcal{A}) \leq \frac{1}{2}(\alpha_j + \alpha_t + r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t) + \Lambda_{t,j}^{\frac{1}{2}}(\mathcal{A}, \alpha_t)),$$

where $\Lambda_{t,s}(\mathcal{A}) = (\alpha_t - \alpha_s + r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t))^2 + 4r_t^{\Theta_j}(\mathcal{A}, \alpha_t)R_j(\mathcal{A}, \alpha_j)$. Since $j \in N$ and α are chosen arbitrarily, it holds

$$\rho(\mathcal{A}) \leq \min_{j \in N, t \neq j, \alpha \in \mathbb{R}^n} \frac{1}{2} (\alpha_j + \alpha_t + r_t^{\overline{\Theta}_j}(\mathcal{A}, \alpha_t) + \Lambda_{t,j}^{\frac{1}{2}}(\mathcal{A}, \alpha_t)).$$

Consequently,

$$\rho(\mathcal{A}) \leq \max_{i \in N} \min_{j \in N, i \neq j, \alpha \in \mathbb{R}^n} \frac{1}{2} (\alpha_i + \alpha_j + r_i^{\overline{\Theta}_j}(\mathcal{A}, \alpha_i) + \Lambda_{i,j}^{\frac{1}{2}}(\mathcal{A}, \alpha_i)).$$

Thus, the conclusion holds. \Box

The following numerical experiment shows validity of Theorem 4.3 and gives an estimation for the convergence rate of the greedy rank-one algorithms.

Example 4.4. Consider tensor $\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,2]}$ defined by

$$a_{ijkl} = \begin{cases} a_{1111} = 1; a_{2222} = 3; a_{1122} = a_{1212} = a_{1221} = a_{2112} = a_{2121} = a_{2211} = \frac{1}{3}; \\ a_{1112} = a_{1121} = a_{1211} = a_{2111} = \frac{1}{3}; a_{ijkl} = 0, \text{ otherwise.} \end{cases}$$

By simple computation, we obtain ($\rho(\mathcal{A}), x$) = (3, (0, 1)) and $||\mathcal{A}||_F$ = 3.3166. For this tensor, set α = (1, 1) and let I_Z = (I_{ijkl}) be Case II of Definition 1.1. The bounds via different estimations given in the literature are shown in the following table:

<i>G</i> . '	Wang	et al./	'Filomat 3	4:9 (2020)), 3131–3139
--------------	------	---------	------------	-----------	---------------

References	upper bound	parameter α
Theorem 3.11 of [1]	$\rho(\mathcal{A}) \le 6.1283$	No
Corollary 4.5 of [19]	$\rho(\mathcal{A}) \leq 4.3333$	No
Theorems 4.5-4.7 of [20]	$\rho(\mathcal{A}) \le 4.1985$	No
Theorem 7 of [18]	$\rho(\mathcal{A}) \leq 4.0000$	No
Theorem 1 of [10]	$\rho(\mathcal{A}) \leq 3.3333$	$\alpha = (1,1)$
Theorems 4.1	$\rho(\mathcal{A}) \leq 3.1055$	$\alpha = (1, 1)$

From the table above, it is easy to see that only the upper bound obtained by Theorem 4.1 is smaller than $\|\mathcal{A}\|_{F}$. Consequently, we have

$$\min_{\kappa \in \mathbb{R}, \kappa \in \mathbb{R}^n, \kappa^T x = 1} \|\mathcal{A} - \kappa x^m\|_F = \sqrt{\|\mathcal{A}\|_F^2 - \rho(\mathcal{A})^2} \ge 1.3559.$$

Further, we obtain that the quotient on the residual of the best rank-one approximation of \mathcal{A} is

$$\omega = \frac{\|\mathcal{A} - \rho(\mathcal{A})x_0^m\|_F}{\|\mathcal{A}\|_F} = \sqrt{1 - \frac{\rho(\mathcal{A})^2}{\|\mathcal{A}\|_F^2}} \ge 0.3511,$$

which implies the convergence rate of the greedy rank-one algorithm [2, 17, 18, 24, 25].

5. Conclusions

In this paper, we established a Brauer-type *Z*-eigenvalue inclusion set for even-order real tensors by *Z*-identity tensor and proposed some sufficient conditions for the positive definiteness of multivariate homogeneous forms. Note that the suitable parameter α has a great influence on the numerical effects and positive definiteness of $f_{\mathcal{A}}(x)$. Therefore, how to select the suitable parameter α is our further research.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments We would like to express our sincere thanks to the anonymous reviewers for their valuable suggestions and constructive comments which greatly improved the presentation of this paper.

References

- K. Chang, K. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra and its Applications 438 (2013) 4166–4182.
- [2] R. Devore and V. Telmyakov, Some remarks on greedy algorithm, Advances in Computational Mahtematics 5 (1996) 173–187.
- [3] L. Gao, Z. Cao and G. Wang, Almost sure stability of discrete-time nonlinear Markovian jump delayed systems with impulsive signals, Nonlinear Analysis: Hybrid Systems 34 (2019) 248–263.
- [4] L. Gao, F. Luo and Z. Yan, Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach, International Journal of Control 92(6) (2019) 1381–1392.
- [5] Z. Huang, L. Wang, Z. Xu and J. Cui, Some new inclusion sets for eigenvalues of tensors with application, Filomat 32(11) (2018) 3899–3916.
- [6] Z. Huang, L. Wang, Z. Xu and J. Cui, A modified S-type eigenvalue localization set of tensors applications, Filomat 32(18) (2018) 6395–6416.
- [7] E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications 23 (2002) 863–884.
- [8] T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications 34 (2011) 1095–1124.
- [9] C. Li, Y. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications 21 (2014) 39–50.
- [10] C. Li, Y. Liu and Y. Li, Note on Z-eigenvalue inclusion theorems for tensors, Journal of Industrial and Management Optimization, (2019) DOI: 10.3934/jimo.2019129.
- [11] G. Li, L. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numerical Linear Algebra with Applications 20 (2013) 1001–1029.
- [12] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta (2005) 129–132.

- [13] Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control 53 (2008) 1096–1107.
- [14] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 53 (2005) 1302–1324.
- [15] L. Qi, G. Yu and E. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM Journal on Imaging Sciences 3 (2010) 416–433.
- [16] L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Mathematical Programming 118 (2009) 301–316.
- [17] L. Qi, The best rank-one approximation ratio of a tensor space, SIAM Journal on Matrix Analysis and Applications 32 (2011) 430–442.
- [18] C. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numerical Algorithms 32 (2019) 781–794.
- [19] Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications 34 (2013) 1581–1595.
- [20] G. Wang, G. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems-Series B 22 (2017) 187–198.
- [21] G. Wang, G. Zhou and L. Caccetta, Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pacific Journal Optimization 14(2) (2018) 227–244.
- [22] G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra (2019) DOI: 10.1080/03081087.2018.1561823.
- [23] G. Wang, Y. Wang and Y. Zhang, Brauer-type upper bounds for Z-spectral radius of weakly symmetric nonnegative tensors, Journal of Mathematical Inequalities 13(4) (2019) 1105–1116.
 [24] Y. Wang, L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numerical
- [24] Y. Wang, L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numerical Linear Algebra with Applications 14 (2007) 503–519.
- [25] Y. Wang, G. Zhou and L. Caccetta, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with Applications 22 (2015) 1059–1076.
- [26] Y. Zhang, Y. Zhang ang G. Wang, Exclusion sets in the S-type eigenvalue localization sets for tensors, Open Mathematics 17 (2019) 1136–1146.