MAD Families, $P^{+}(\mathcal{I})$-Ideals and Ideal Convergence

Jiakui Yu ${ }^{\text {a }}$, Shuguo Zhang ${ }^{\text {a }}$
${ }^{a}$ College of Mathematics, Sichuan University, Chengdu, Sichuan, 610064 China

Abstract

Let I be an ideal on ω, the notion of I-AD family was introduced in [3]. Analogous to the well studied ideal $I(\mathcal{A})$ generated by almost disjoint families, we introduce and investigate the ideal $I(I-\mathcal{A})$. It turns out that some properties of $I(\mathcal{I}-\mathcal{A})$ depends on the structure of I. Denoting by $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite I-MAD families, several characterizations for $\mathfrak{a}(I) \geq \omega_{1}$ will be presented. Motivated by the work in [23], we introduce the cardinality $\mathfrak{s}_{\omega, \omega}(\mathcal{I})$, and obtain a necessary condition for $\mathfrak{s}_{\omega, \omega}(\mathcal{I})=\mathfrak{s}(\mathcal{I})$. As an application, we show finally that if $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{s}(\mathcal{I})$, then $B W$ property coincides with Helly property.

1. Introduction

Let ω denote the set of all natural numbers, and we are implicitly identifying a natural number $n \in \omega$ with the set $\{0,1, \cdots, n-1\}$. An ideal on ω is a family of subsets of ω closed under taking finite unions and subsets of its elements. By Fin we denote the ideal of all finite subsets of ω. If not explicitly said we assume that all considered ideals are proper (not equal to $\mathcal{P}(\omega)$) and contain Fin. For convenience, we fix some notations: $\mathcal{I}^{+}=\{A \subseteq \omega: A \notin \mathcal{I}\} ; \mathcal{I}^{*}=\{A \subseteq \omega: \omega \backslash A \in \mathcal{I}\}$; for each $A \in \mathcal{I}^{+}$, let $\mathcal{I} \mid A=\{I \cap A: I \in \mathcal{I}\}$; $A \subseteq^{I} B$ if $A \backslash B \in I$, where A, B are subsets of ω.

A family \mathcal{A} of infinite subsets of ω is called almost disjoint (AD-family, in short) if for any different elements $A, B \in \mathcal{A}, A \cap B$ is finite. Moreover, if for any infinite $X \subseteq \omega$, there is $A \in \mathcal{A}$ such that $A \cap X$ is infinite, then \mathcal{A} is called a maximal almost disjoint family (MAD-family, in short).

The following notions are generalizations of almost disjoint families and maximal almost disjoint families, respectively. They were introduced by Farkas and Soukup, and were extensively studied in, e.g., [$4,14,17,21]$.

Definition 1.1. ([3]) Let \mathcal{I} be an ideal on ω, and let $\mathcal{A} \subseteq \mathcal{I}^{+}$be an infinite family.

- \mathcal{A} is called an \mathcal{I}-almost disjoint family (\mathcal{I}-AD, in short) if $(\forall A, B \in \mathcal{A})(A \cap B \in \mathcal{I})$.
- \mathcal{A} is an I-maximal almost disjoint family (\mathcal{I}-MAD, in short) if it is an I-AD family and not properly included in any larger \mathcal{I}-AD family or equivalently, $\left(\forall X \in I^{+}\right)(\exists A \in \mathcal{A})\left(X \cap A \in I^{+}\right)$.

[^0]Denoting by $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite \mathcal{I}-MAD families. In addition, if \mathcal{I} is an analytic P-ideal, let $\overline{\mathfrak{a}}(\mathcal{I})$ be the minimum of cardinalities of uncountable \mathcal{I}-MAD families.

The motivation of this note is to investigate the influence of I-AD families on ideal convergence. To be specific, we consider the relation among I-AD families, ideal version of Bolzano-Weierstrass property and ideal version of Helly property.

Definition 1.2. ([24]) Let \mathcal{I}, \mathcal{J} be ideals on ω, and let X be a topological space. We say that X has the $(\mathcal{I}, \mathcal{J})$-BW property if for any sequence $\left\langle x_{n}: n \in \omega\right\rangle$ from X, there exists $A \in I^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent (i.e, there is x such that for each open neighborhood U of $x,\left\{n \in A: x_{n} \notin U\right\} \in \mathcal{J}$).

Most of time, we are considering $X=[0,1]$. In such case, if $[0,1]$ has the $(\mathcal{I}, \mathcal{I})$ - $B W$ property, we write $\mathcal{I} \in B W$. If $[0,1]$ has the (\mathcal{I}, Fin)-BW property, we write $\mathcal{I} \in$ FinBW. These notations were introduced first in [6].

Recall that $\mathcal{S} \subseteq[\omega]^{\omega}$ is an (ω, ω)-splitting family if for any countable family $\left\{X_{n}: n \in \omega\right\} \subseteq[\omega]^{\omega}$, there exists $S \in \mathcal{S}$ such that both of $\left\{n:\left|S \cap X_{n}\right|=\omega\right\}$ and $\left\{n:\left|X_{n} \cap(\omega \backslash S)\right|=\omega\right\}$ are infinite. Denoting by $\mathfrak{s}_{\omega, \omega}$ the smallest size of (ω, ω)-splitting families [23]. For the cardinality \mathfrak{s} and its variation $\mathfrak{s}(\mathcal{I})$, one may refer to [7]. By proving $\mathfrak{s}^{=} \mathfrak{s}_{\omega, \omega}$, Mildenberger, Raghavan and Steprāns partially answer an open question of Shelah, one can refer to [22] for details.

In Section 3, the cardinality $\mathfrak{s}_{\omega, \omega}(\mathcal{I})$ will be introduced. We obtain a necessary condition for $\mathfrak{s}_{\omega, \omega}(\mathcal{I})=\mathfrak{s}(\mathcal{I})$ by showing that for any ideal \mathcal{I}, if $\mathcal{I} \notin B W$, then $\mathfrak{s}_{\omega, \omega}(\mathcal{I}) \neq \mathfrak{s}(\mathcal{I})$ (see Theorem 3.7).

An ideal \mathcal{I} is called selective if for every \subseteq-decreasing family $\left\{Y_{n}: n \in \omega\right\} \subseteq \mathcal{I}^{+}$there is $Y=\left\{x_{n}: n \in\right.$ $\omega\} \in \mathcal{I}^{+}$such that $Y \subseteq Y_{0}$ and $Y \backslash\left(x_{n}+1\right) \subseteq Y_{x_{n}}\left(Y\right.$ is called a diagonalization of $\left.\left\{Y_{n}: n \in \omega\right\}\right)$. It is well known that for every AD-family $\mathcal{A}, \mathcal{I}(\mathcal{A})$ is selective. This result is due to Mathias [19]. We are interested in the question that is there some analogous results for \mathcal{I}-AD families. In Section 4, we show that the answer depends on the construction of \mathcal{I}. In particular, we exam the relation between $P^{+}(\mathcal{I})$-ideals and the $P^{+}((\mathcal{I}-\mathcal{A}))$-ideals (see Theorem 4.2).

The classic Helly theorem asserts that for any sequence of real-valued functions $\left\langle f_{n}: n \in \omega\right\rangle$ that is uniformly bounded and monotone, there is a subsequence $\left\langle f_{n_{k}}: k \in \omega\right\rangle$ which is pointwise convergent. The ideal version of Helly theorem was considered by Filipów, Mrożek, Recław and Szuca in [5]. They showed that for any ideal \mathcal{I} on ω, if I can be extended to an F_{σ}-ideal or maximal P-ideal, then for any sequence of real value functions $\left\langle f_{n}: n \in \omega\right\rangle$ that is uniformly bounded and monotone, there exists $A \in \mathcal{I}^{+}$such that the subsequence $\left\langle f_{n}: n \in A\right\rangle$ is pointwise convergent ([5], Theorem 5.8). Note that every analytic P-ideal with the $B W$ property can be extended to an F_{σ}-ideal ([6], Theorem 4.2). Thus, for every analytic P-ideal I with the $B W$ property, the ideal version of Helly theorem holds.

Let $\mathbb{R}^{\mathbb{R}}$ be the set of all functions: $\mathbb{R} \rightarrow \mathbb{R}$ endowed with the Tychonoff product topology, and let $U B M(\mathbb{R})$ be the set of all sequences from $\mathbb{R}^{\mathbb{R}}$ that are uniformly bounded and monotone.

Definition 1.3. Let I be an ideal on ω. We say that I has the Helly property, and write $I \in$ Helly, if for every sequence $\left\langle f_{n}: n \in \omega\right\rangle$ from $U B M(\mathbb{R})$, there exists $A \in I^{+}$such that $\left\langle f_{n}: n \in A\right\rangle$ is I-convergent. Moreover, if for each $A \in \mathcal{I}^{+}, \mathcal{I} \mid A \in$ Helly, then we say \mathcal{I} has hereditarily Helly property, and write $\mathcal{I} \in$ hHelly.

According to these notations, the Helly theorem can be reformed as Fin \in Helly, and the ideal version of Helly theorem can be restated as follows: If I can be extended to an F_{σ}-ideal or maximal P-ideal then $I \in$ Helly.

It is well known that $I \in h B W$ if, and only if $I \in h H e l l y$ ([5], Theorem 5.9), and we are asked that if $I \in B W \Rightarrow I \in \operatorname{Helly}([5]$, Problem 5.10). In Section 5, we consider this question, and one of our main results can be viewed as a very partial answer to this question (see Theorem 5.6).

2. Preliminaries

We use the standard notions of Set theory. For a nonempty set X, let $|X|$ be the cardinality of X. Let $[X]^{<\omega}$ be the set of all finite subsets of X, and let $\mathcal{P}(X)$ be the power set of X.

A family \mathcal{S} of infinite subsets of ω is called an \mathcal{I}-splitting if for every $A \in \mathcal{I}^{+}$there exists $S \in \mathcal{S}$ such that $A \cap S \in \mathcal{I}^{+}$and $A \backslash S \in I^{+}$[6]. Denoting by $\mathfrak{s}(\mathcal{I})$ the smallest size of \mathcal{I}-splitting families, it has been showed that $\mathcal{I} \in B W$ if and only if $\mathfrak{s}(\mathcal{I}) \geq \omega_{1}$ ([6], Theorem 5.1).

2.1. The Ideal $I(I-\mathcal{A})$

Let \mathcal{I} be an ideal on ω, and let \mathcal{A} be an infinite \mathcal{I}-AD family. Put

$$
\mathcal{I}(\mathcal{I}-\mathcal{A})=\left\{I \subset \omega: \exists \mathcal{B} \in[\mathcal{A}]^{<\omega}\left(I \subseteq^{\mathcal{I}} \cup \mathcal{B}\right)\right\}
$$

it is easy to see that $\mathcal{I} \subset \mathcal{I}(\mathcal{I}-\mathcal{A})$ and $\mathcal{A} \subseteq \mathcal{I}(\mathcal{I}-\mathcal{A})$. Note that for any $A, B \in I^{*}, A \cap B \in I^{+}$, so every \mathcal{I}-AD family disjoint with I^{*}, and so there is no single $A \in \mathcal{A}$ such that $\omega \subseteq^{I} A$. Indeed, we have the following result that says $I(I-\mathcal{A})$ is an ideal that strictly extends I.

Lemma 2.1. Let I be an ideal on ω, and let \mathcal{A} be an infinite $I-A D$ family. Then $I(I-\mathcal{A})$ is an ideal on ω.
Proof. It is easy to see that $I(I-\mathcal{A})$ is closed under taking subsets and finite unions. Suppose that $\omega \in \mathcal{I}(\mathcal{I}$ $\mathcal{A})$, we may assume there are $A, B \in \mathcal{A}$ such that $\omega=A \cup B$. Note that \mathcal{A} is infinite, there exists $C \in \mathcal{A} \backslash\{A, B\}$. According to the definition of \mathcal{I}-AD family, both of $C \cap A$ and $C \cap B$ belong to \mathcal{I}. Thus, $C=(C \cap A) \cup(C \cap B) \in \mathcal{I}$, contradiction.

Corollary 2.2. For any ideal I on ω, neither \mathcal{I}^{+}nor \mathcal{I}^{*} is an I-AD family.

2.2. Submeasure

Recall that a submeasure on ω is a map $\phi: \mathcal{P}(\omega) \rightarrow[0, \infty]$ that satisfying the following conditions:
(1) $\phi(\emptyset)=0$;
(2) $\phi(A) \leq \phi(A \cup B) \leq \phi(A)+\phi(B)$ holds for every $A, B \subset \omega$.

Moreover, if for every $A \subset \omega$,
(3) $\phi(A)=\operatorname{limit}_{n \rightarrow \infty} \phi(A \cap n)$,
then ϕ is called lower semicontinuous (lsc, in short). For any given lsc submeasure ϕ, define

$$
\operatorname{Fin}(\phi)=\{A \subset \omega: \phi(A) \text { is finite }\}
$$

It is easy to see that $\operatorname{Fin}(\phi)$ is an ideal. Mazur showed that every F_{σ}-ideal has the following useful characterization via lower semicontinuous submeasures.

Theorem 2.3. ([18]) Let I be an ideal on ω. Then I is an F_{σ}-ideal if and only if $I=F i n(\phi)$ for some lsc submeasure ϕ on ω.

3. Splitting Families

An ideal \mathcal{I} is called dense (or, tall) if for any $X \in[\omega]^{\omega}$ there exists $B \subseteq X$ such that $B \in \mathcal{I}$ and $B \in[\omega]^{\omega}$. Analogously, we introduce the following general notion.

Definition 3.1. Let \mathcal{A}, \mathcal{B} be subsets of $\mathcal{P}(\omega)$. We say that \mathcal{B} is \mathcal{A}-dense if for each $A \in \mathcal{A}$, there exists $B \subseteq A$ such that $B \in \mathcal{A}$ and $B \in \mathcal{B}$.

Let \mathcal{A} be the set $[\omega]^{\omega}$, and let \mathcal{B} be an ideal on ω. Then \mathcal{B} being \mathcal{A}-dense coincides with \mathcal{B} being dense.
Definition 3.2. Let I be an ideal on ω, and let \mathcal{A} be an I-AD family. Define

- $\mathcal{I}(\mathcal{I}-\mathcal{A})^{++}=\left\{X \subseteq \omega:\left(\exists \mathcal{B} \in[\mathcal{A}]^{\omega}\right)(\forall B \in \mathcal{B})\left(X \cap B \in \mathcal{I}^{+}\right)\right\}$.
- $(\mathcal{I}-\mathcal{A})^{\perp}=\{X \subset \omega:(\forall A \in \mathcal{A})(X \cap A \in \mathcal{I})\}$.

Definition 3.3. ([12]) Let \mathcal{I} be an ideal on ω, \mathcal{I} is called decomposable if there is an infinite partition $\left\{A_{n}\right.$: $n \in \omega\} \subset \mathcal{I}^{+}$of ω such that for every $A \subseteq \omega, A \in \mathcal{I}$ if and only if $A \cap A_{n} \in \mathcal{I}$ for all $n \in \omega$. \mathcal{I} is called indecomposable if it is not decomposable.

Lemma 3.4. Let I be an ideal on ω, the following conditions are equivalent:
(1) I is decomposable;
(2) There exists an infinite countable $I-A D$ family such that $I=(I-\mathcal{A})^{\perp}$;
(3) $\mathfrak{a}(\mathcal{I})=\omega$.

Proof. (1) $\Leftrightarrow(2)$ is obvious.
$(2) \Rightarrow(3)$ Assume that there exists an I-AD family $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ such that $I=(I-\mathcal{A})^{\perp}$. It is easy to see that \mathcal{A} is an \mathcal{I}-MAD family, this implies $\mathfrak{a}(\mathcal{I})=\omega$. Indeed, for any $A \in \mathcal{I}^{+}, A \notin(\mathcal{I}-\mathcal{A})^{\perp}$. So there is $n \in \omega$ such that $A \cap A_{n} \in I^{+}$. This show that \mathcal{A} is maximal.
(3) \Rightarrow (2) Assume that $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ is an \mathcal{I}-MAD family. $\mathcal{I} \subseteq(\mathcal{I}-\mathcal{A})^{\perp}$ is clear. If $A \in(\mathcal{I}-\mathcal{A})^{\perp}$, then $A \cap A_{n} \in \mathcal{I}$ for each $n \in \omega$. By the maximality of \mathcal{A}, we have that $A \in \mathcal{I}$.

The following observations are evident.
Proposition 3.5. Let I be an ideal on ω, and let \mathcal{A} be an \mathcal{I} - $A D$ family. Then
(1) $(\mathcal{I}-\mathcal{A})^{\perp} \cap I^{+} \subseteq \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$;
(2) If $A \subseteq B \in(I-\mathcal{A})^{\perp}$ then $A \in(I-\mathcal{A})^{\perp}$.

The following properties $\mathcal{I}(\mathcal{I}-\mathcal{A})$ are analogous to that of the ideal $\mathcal{I}(\mathcal{A})$ ([9], Lemma 18).
Lemma 3.6. Let \mathcal{I} be an ideal on ω, and let \mathcal{A} be an $\mathcal{I}-A D$ family. Then
(1) $\mathcal{I}(\mathcal{I}-\mathcal{A})^{++} \subseteq \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$;
(2) \mathcal{A} is an $\mathcal{I}-M A D$ family if and only if $\mathcal{I}(\mathcal{I}-\mathcal{A})$ is I^{+}-dense.
(3) $I(\mathcal{I}-\mathcal{A})^{++}=I(I-\mathcal{A})^{+}$if and only if \mathcal{A} is an $\mathcal{I}-M A D$ family.

Proof. (1) is obvious.
(2) Assume that \mathcal{A} is an \mathcal{I}-MAD family. For every $X \in \mathcal{I}^{+}$, by the maximality of \mathcal{A}, there exists $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^{+}$. Clearly, $X \cap A \in \mathcal{I}(\mathcal{I}-\mathcal{A})$.

If $X \in \mathcal{I}^{+}$, since $I(\mathcal{I}-\mathcal{A})$ is I^{+}-dense, there exists $B \subset X$ such that $B \in \mathcal{I}(\mathcal{I}-\mathcal{A})$ and $B \in I^{+}$. So there exists a finite $\mathcal{B} \in[\mathcal{A}]^{<\omega}$ such that $B \subseteq^{\mathcal{I}} \cup \mathcal{B}$. We may assume that $\mathcal{B}=\left\{B_{n_{i}}: i \leq k\right\}$ for some $k \in \omega$, then there exists some $i \leq k$ such that $B_{n_{i}} \cap X \in \mathcal{I}^{+}$, and then $X \notin \mathcal{A}$. This implies the maximality of \mathcal{A}.
(3) Assume that $\mathcal{I}(\mathcal{I}-\mathcal{A})^{++}=\mathcal{I}(I-\mathcal{A})^{+}$. By the item (2), we need to show that $\mathcal{I}(\mathcal{I}-\mathcal{A})$ is I^{+}-dense. Note that for any $X \in \mathcal{I}^{+}$, if $X \in \mathcal{I}(\mathcal{I}-\mathcal{F})$, we need to do nothing, so we may assume that $X \in \mathcal{I}(\mathcal{I}-\mathcal{F})^{+}$, and so there is an infinite set $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{A}$ such that $X \cap X_{n} \in \mathcal{I}^{+}$for all $n \in \omega$. Hence, $X \cap X_{n} \in \mathcal{I}^{+} \cap \mathcal{I}(\mathcal{I}-\mathcal{A})$ for each $n \in \omega$.

Now we assume that \mathcal{A} is an \mathcal{I}-MAD family. Let $X \notin I(I-\mathcal{A})^{++}$, and let $\mathcal{B}=\left\{A \in \mathcal{A}: A \cap B \in I^{+}\right\}$. Then \mathcal{B} is finite, according to this, we may assume that \mathcal{B} can be enumerated as $\left\{A_{i}: i \leq n\right\}$. Let $Y=X \backslash \bigcup_{i \leq n} A_{i}$, then $Y \in(\mathcal{I}-\mathcal{A})^{\perp}$. Thanks to the assumption that \mathcal{A} is an \mathcal{I}-MAD family, we have that $Y \in \mathcal{I}$, and so $X \subseteq^{I} \bigcup_{i \leq n} A_{i}$. This implies that $X \in \mathcal{I}(\mathcal{I}-\mathcal{A})$.

The following definitions are motivated by (ω, ω)-splitting families and $\mathfrak{s}_{\omega, \omega}$ mentioned previously.

Definition 3.7. Let I be an ideal on ω. Define

- $\mathcal{S} \subseteq[\omega]^{\omega}$ is an \mathcal{I}-(ω, ω)-splitting family if for every countable collection $\left\{X_{n}: n \in \omega\right\} \subset I^{+}$there exists $S \in \mathcal{S}$ such that both of $\left\{n: X_{n} \cap S \in \mathcal{I}^{+}\right\}$and $\left\{n: X_{n} \cap(\omega \backslash S) \in \mathcal{I}^{+}\right\}$are infinite.
- $\mathfrak{s}_{\omega, \omega}(\mathcal{I})=\min \left\{|\mathcal{S}|: \mathcal{S} \subseteq[\omega]^{\omega} \wedge \mathcal{S}\right.$ is an \mathcal{I} - (ω, ω)-splitting family $\}$.

Theorem 3.8. Let \mathcal{I} be an ideal on ω. If $\mathfrak{s}_{\omega, \omega}(\mathcal{I})=\mathfrak{s}(\mathcal{I})$, then $\mathcal{I} \in B W$.
Proof. Let \mathcal{S} be an $\mathcal{I}-(\omega, \omega)$-splitting family such that $|\mathcal{S}|=\mathfrak{s}_{\omega, \omega}(\mathcal{I})$.
Claim 3.9. For every $\mathcal{I}-A D$ family $\mathcal{A} \subset \mathcal{I}^{+}, \mathcal{S}$ is an $\mathcal{I}(\mathcal{I}-\mathcal{A})$-splitting family.
Proof. Case 1 If \mathcal{A} is an \mathcal{I}-MAD family. For $X \in \mathcal{I}(\mathcal{I} \text { - } \mathcal{A})^{+}$, there exists $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{A}$ such that $\left\{X \cap X_{n}: n \in \omega\right\} \subset \mathcal{I}^{+}$. Since \mathcal{S} is an $\mathcal{I}-(\omega, \omega)$-splitting family, there exists $S \in \mathcal{S}$ such that $\left\{n: S \cap\left(X \cap X_{n}\right) \in I^{+}\right\}$ and $\left\{n:(\omega \backslash S) \cap\left(X \cap X_{n}\right) \in \mathcal{I}^{+}\right\}$are infinite. Thus, both of $S \cap X$ and $X \cap(\omega \backslash S)$ are in $\mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$.

Case 2. If \mathcal{A} not is an \mathcal{I}-MAD family, for $X \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$, there are two subcases:
Subcase $1 X \in \mathcal{I}(I-\mathcal{A})^{++}$. In this case we just do with the same argument as the Case 1.
Subcase 2 If $X \notin \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, we can extend \mathcal{A} to be an I-MAD family \mathcal{A}^{\prime} such that $X \in \mathcal{I}\left(\mathcal{I}-\mathcal{A}^{\prime}\right)^{+}$ as follows: note that $X \notin \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, there exists a finite family $\left\{A_{0}, A_{1}, \cdots, A_{n}\right\} \subset \mathcal{A}$ such that for each $A \in \mathcal{A} \backslash\left\{A_{0}, A_{1}, \cdots, A_{n}\right\}, A \cap X \in \mathcal{I}$. Take

$$
\tilde{X}=X \backslash \bigcup_{k \leq n} A_{k} .
$$

Since $X \in \mathcal{I}(\mathcal{I}-\mathcal{F})^{+}, \tilde{X} \in \mathcal{I}^{+}$. Let $\left\{Y_{n}: n \in \omega\right\} \subseteq \mathcal{I}^{+}$be a partition of \tilde{X}. Clearly, $\mathcal{A} \bigcup\left\{Y_{n}: n \in \omega\right\}$ is also an \mathcal{I}-AD family. Extending it to an \mathcal{I}-MAD family \mathcal{A}^{\prime}, we have that $X \in \mathcal{I}\left(\mathcal{I}-\mathcal{A}^{\prime}\right)^{++}$because of $Y_{n} \cap X \in \mathcal{I}^{+}$for each $n \in \omega$. By the Case 1, there exists $S \in \mathcal{S}$ such that $X \cap S \in \mathcal{I}\left(I-\mathcal{A}^{\prime}\right)^{+}$, and $X \cap(\omega \backslash S) \in \mathcal{I}\left(\mathcal{I}-\mathcal{A}^{\prime}\right)^{+}$. Notice that $I\left(I-\mathcal{A}^{\prime}\right)^{+} \subseteq I(I-\mathcal{A})^{+}$, we finish the proof of the Claim.

Let \mathcal{A} be an \mathcal{I}-AD family that is not maximal. By Lemma 3.5(2), $\mathcal{I}(\mathcal{I}-\mathcal{A})$ is not dense, and then it has $B W$ property ([7], Lemma 3.5). According to the Claim above, \mathcal{S} is an $\mathcal{I}(\mathcal{I}-\mathcal{A})$-splitting family. But Theorem 5.1 in [6] tell us that for any ideal I, it has $B W$ property if, and only if there is no countable I-splitting family. So,

$$
\mathfrak{s}(\mathcal{I})=\mathfrak{s}_{\omega, \omega}(\mathcal{I})=|\mathcal{S}|>\omega .
$$

Again, by Theorem 5.1 in [6] mentioned above, $\mathcal{I} \in B W$.
Remark 3.10. It has been proved in [22] that $\mathfrak{s}_{\omega, \omega}=\mathfrak{s}$, but how about the $\mathfrak{s}_{\omega, \omega}(\mathcal{I})$ and $\mathfrak{s}(\mathcal{I})$. Our result shows that the if $\mathcal{I} \notin B W$, then $\mathfrak{s}_{\omega, \omega}(\mathcal{I}) \neq \mathfrak{s}(\mathcal{I})$.

4. $P^{+}(I)$-Ideals

Definition 4.1. Let \mathcal{I} be an ideal on ω. \mathcal{I} is called a $P^{+}(\mathcal{I})$-ideal if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle$ from I^{+}there exists $A \in I^{+}$such that $A \backslash A_{n} \in \mathcal{I}$ for every $n \in \omega$.

It is easy to see that the $P^{+}(\mathcal{I})$-ideal coincides with the notion of σ-closed in $\mathcal{P}(\omega) / \mathcal{I}$ (see [12]), and coincides with the notion of $P(\mathcal{I})$-coideal defined in [5].

Let \mathcal{I} be an ideal on ω, the game $G_{3}(\mathcal{I})$ is defined as follows: In the step n, Player I chooses $X_{n} \in \mathcal{I}^{+}$, and Player II chooses $F_{n} \in\left[X_{n}\right]^{<\omega}$. Player II wins if $\bigcup_{n \in \omega} F_{n} \in \mathcal{I}^{+}$. Otherwise, the Player I wins (see [16]).

Theorem 4.2. Let I be an ideal on ω, \mathcal{A} being an $I-A D$ family. Consider the following conditions:
(1) I is an F_{σ}-ideal;
(2) Player II has a winning strategy in $G_{3}(\mathcal{I})$;
(3) I is a P^{+}-ideal;
(4) I is a $P^{+}(\mathcal{I})$-ideal;
(5) $I(I-\mathcal{A})$ is a $P^{+}(I(I-\mathcal{A}))$-ideal;
(6) $[0,1]$ has the $(\mathcal{I}(\mathcal{I}-\mathcal{A}), \mathcal{I})$-BW property;
(7) $\mathfrak{a}(\mathcal{I})>\omega$.
$(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \Leftrightarrow(7)$.
Before giving proofs, we point out that if \mathcal{I} is analytic, then (2) implies (1) ([20], Theorem 3.2.13). If \mathcal{I} is a $P_{\text {tower }}^{+}$-ideal, then $(4) \Rightarrow(3)([12]$, Theorem 3.8 (1)).

Proof. (1) $\Rightarrow(2)$ see Theorem 3.2.13 in [20], we present here its proof for the sake of completeness. Let \mathcal{I} be an F_{σ}-ideal, by Theorem 2.2, there exists a lower semicontinuous submesure ϕ such that $\mathcal{I}=\{A \subset \omega$: $\phi(A)<\infty\}$. We define a strategy σ for Player II as the form

$$
\begin{array}{lccccccc}
\text { I } & X_{0} & & X_{1} & \cdots & X_{n} & & \cdots \\
\hline \text { II } & & \sigma\left(X_{0}\right) & & \sigma\left(X_{0}, X_{1}\right) & \cdots & & \sigma\left(X_{0}, \cdots, X_{n}\right) \\
\cdots
\end{array}
$$

such that for each $n \in \omega$,

- $X_{n} \in I^{+}$;
- $\sigma\left(X_{0}, \cdots, X_{n}\right) \in\left[X_{n}\right]^{<\omega}$;
- $\phi\left(\sigma\left(X_{0}, \cdots, X_{n}\right)\right) \geq n$.

The last item is possible since $\phi\left(X_{n}\right)=\infty$ and ϕ is lower semicontinuous. It is easy to check that the Player II will win according to this strategy.
(2) \Rightarrow (3) Assume that σ is a winning strategy for the Player II. Let $\left\{X_{n}: n \in \omega\right\} \subseteq I^{+}$such that $X_{0} \supseteq X_{1} \supseteq \cdots$. We define a run of Player I in $G_{3}(\mathcal{I})$ as form:

$$
\begin{array}{lccccccc}
\text { I } & X_{0} & & X_{1} & & \cdots & X_{n} & \\
\hline \text { II } & & \sigma(0) & & \sigma(1) & \cdots & & \sigma(n) \\
\cdots
\end{array}
$$

such that for each $n \in \omega, \sigma(n) \in\left[X_{n}\right]^{<\omega}$. Since the Player II win this run, $\bigcup_{n \in \omega} \sigma(n) \in \mathcal{I}^{+}$. In addition, it is obvious that $\bigcup_{n \in \omega} \sigma(n) \subseteq^{*} X_{n}$ for all $n \in \omega$.
$(3) \Rightarrow(4)$ is evident.
(4) \Rightarrow (5) Let $\left\{Y_{n}: n \in \omega\right\} \subset \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$such that $Y_{0} \supseteq Y_{1} \supseteq Y_{2} \supseteq \cdots$. There are two possible cases.

Case 1 If there are infinitely many $n, Y_{n} \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, we may assume that for each $n \in \omega, Y_{n} \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$. Otherwise, we remove off these not in $\mathcal{I}(\mathcal{I}-\mathcal{F})^{++}$. For Y_{0}, there is a countable family $\left\{A_{n}: n \in \omega\right\}$ such that $Y_{0} \cap A_{n} \in I^{+}$for each $n \in \omega$. Assume that the family $\left\{A_{n}: n \in \omega\right\}$ covers ω, we shall construct inductively a \subseteq-decreasing family $\left\{Z_{n}: n \in \omega\right\}$ such that for each $n \in \omega$,

- $Z_{n} \in I(I-\mathcal{A})^{++} ;$
- $Z_{n} \subseteq Y_{n} ;$
- $Z_{n} \cap A_{k}=\emptyset$ for each $k<n$.

Put $Z_{0}=A_{0}$, let $n_{1}=\min \left\{k: Y_{1} \cap A_{k} \in \mathcal{I}^{+}\right\}$, and define

$$
Z_{1}=Y_{1} \backslash \bigcup_{k \leq n_{1}} A_{k}
$$

Thanks to $Y_{1} \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}, n_{1}$ is well defined, and $Z_{1} \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$. With the same manner, we finish the construction. Note that $I(I-\mathcal{A})^{++} \subset I^{+}$, by the item (4), there exists $Z \in I^{+}$such that $Z \subseteq^{\mathcal{I}} Z_{n}$ for each $n \in \omega$. It is enough to show that $Z \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, and this follows from the following Claim.
Claim 4.3. There are infinitely many k such that $\mathrm{Z} \cap A_{k} \in \mathcal{I}^{+}$.
Proof. Suppose that there exists n such that for each $k>n, Z \cap A_{k} \in \mathcal{I}$. According to the assumption of $\left\{A_{n}: n \in \omega\right\}$ covering ω, we have that $Z \bigcap \bigcup_{k \leq n} A_{k} \in I^{+}$. Note that

$$
\mathrm{Z} \bigcap \bigcup_{k \leq n} A_{k} \subseteq Z \backslash Z_{k}
$$

So $Z \backslash Z_{k} \in I^{+}$, this contradict to the fact that $Z \subseteq^{I} Z_{k}$.
Case 2 If for all but finitely many $n, Y_{n} \notin \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, we may assume that $\left\{Y_{n}: n \in \omega\right\} \subset \mathcal{I}(\mathcal{I}-\mathcal{A})^{+} \backslash \mathcal{I}(\mathcal{I}-$ $\mathcal{A})^{++}$since it does no matter to removing off finitely many Y_{n} which belong to $\mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$.
Claim 4.4. Let \mathcal{A} be an infinite $I-A D$ family. For any $X \in \mathcal{I}(I-\mathcal{A})^{+} \backslash I(I-\mathcal{A})^{++}$, there is a family $\left\{Y_{n}: n \in \omega\right\}$ such that $Y_{n} \cap X \in \mathcal{I}^{+}$for each $n \in \omega$, and $\mathcal{A} \bigcup\left\{Y_{n}: n \in \omega\right\}$ is also an \mathcal{I} - $A D$ family.
Proof. Note that $X \notin \mathcal{I}(\mathcal{I}-\mathcal{A})^{++}$, there exists $\left\{A_{0}, A_{1}, \cdots, A_{n}\right\} \subset \mathcal{A}$ such that for each $A \in \mathcal{A} \backslash\left\{A_{0}, A_{1}, \cdots, A_{n}\right\}$, $A \cap X \in \mathcal{I}$. Put

$$
\tilde{X}=X \backslash \bigcup_{k \leq n} A_{k}
$$

Since $X \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}, \tilde{X} \in \mathcal{I}^{+}$. Let $\left\{Y_{n}: n \in \omega\right\} \subseteq \mathcal{I}^{+}$be a partition of \tilde{X}. Clearly, $Y_{n} \cap X \in \mathcal{I}^{+}$for each $k \in \omega$. In addition, this is also an I-AD family. Therefore, the family $\mathcal{A} \cup\left\{Y_{k}: k \in \omega\right\}$ is desired.

According to the previous claim, we can inductively construct a sequence $\left\{\mathcal{A}_{n}: n \in \omega\right\}$ of I-AD families such that

- $\mathcal{A}_{0}=\mathcal{A} ;$
- $\mathcal{A}_{n} \subseteq \mathcal{A}_{m}$ for $n<m$;
- $Y_{n} \cap A \in \mathcal{I}^{+}$for all $A \in \mathcal{A}_{n+1} \backslash \mathcal{A}_{n}$.

The last term implies that $Y_{n} \in \mathcal{I}\left(\mathcal{I}-\mathcal{A}_{n+1}\right)^{++}$. We extend the union $\bigcup_{n \in \omega} \mathcal{A}_{n}$ to an \mathcal{I}-MAD family \mathcal{B}. Note that for each $n \in \omega$,

$$
Y_{n} \in \mathcal{I}\left(I-\mathcal{A}_{n+1}\right)^{++} \subseteq I(\mathcal{I}-\mathcal{B})^{++}
$$

so $\left\{Y_{n}: n \in \omega\right\} \subseteq \mathcal{I}(\mathcal{I}-\mathcal{B})^{++}$. With the same argument as the Case 1 , we obtain $X \in \mathcal{I}(\mathcal{I}-\mathcal{B})^{+} \subseteq \mathcal{I}(\mathcal{I}-\mathcal{F})^{+}$such that $X \subseteq^{\mathcal{I}} Y_{n}$ for each $n \in \omega$.
(5) \Rightarrow (6) The Corollary 5.6 in [5] asserts that if \mathcal{I} is a $P^{+}(\mathcal{I})$-ideal, then $I \in B W$. By the item (5), $I(I-\mathcal{A}) \in$ $B W$. As we mentioned previous, $I \subset I(I-\mathcal{A})$, so $[0,1]$ has the $(I(I-\mathcal{A}), I)$-BW property.
(6) $\Rightarrow(7)$ For the sake of contradiction, suppose that $\mathfrak{a}(\mathcal{I})=\omega$ and $\mathcal{A}=\left\{A_{n}: n \in \omega\right\} \subset \mathcal{I}^{+}$be an \mathcal{I}-MAD family. We may assume that $A_{n} \cap A_{m}=\emptyset$ for any different $n, m \in \omega$. Otherwise, we can shrink them to be pairwise disjoint via replacing A_{n} by $A_{n} \backslash \bigcup_{i<n} A_{i}$. Define $\left\{x_{n}: n \in \omega\right\}$ by

$$
x_{n}=1 / k \text { if } n \in A_{k} .
$$

Since \mathcal{A} is an \mathcal{I}-MAD family, by Lemma 3.5(3), for any $A \in \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$there are infinite set $\left\{n_{k}: k \in \omega\right\}$ such that $A \cap A_{n_{k}} \in \mathcal{I}^{+} \backslash I(\mathcal{I}-\mathcal{A})^{+}$for each $k \in \omega$. The subsequence $\left\{x_{n}: n \in A\right\}$ cannot be \mathcal{I}-convergent since it has infinitely many cluster points. Indeed, for each $k \in \omega, 1 / n_{k}$ is a cluster point of this subsequence. This contradict to the the item (6).
$(7) \Rightarrow(4)$ Recall that I is a $P^{+}(\mathcal{I})$-ideal if, and only if I is indecomposable ([12], Theorem 3.8(2)), this implication follows from Lemma 3.4 above.

Remark 4.5. Let h be a function from ω to \mathbb{R}^{+}satisfying

$$
\sum_{n \in \omega} h(n)=\infty .
$$

Let

$$
\mathcal{I}_{h}=\left\{A \subset \omega: \sum_{n \in A} h(n)<\infty\right\} .
$$

It was showed in [3] that for any summable ideal $I_{h}, \mathfrak{a}\left(I_{h}\right)>\omega$. Note that every summable ideal is F_{σ}, so this result can be viewed as a special case of Theorem 4.2.
Remark 4.6. In [10], it is shown that if \mathcal{I} is a nowhere prime $P^{+}(\mathcal{I})$-ideal then $\mathfrak{a}(\mathcal{I})>\omega$ ([10], Proposition 2.9). Theorem 4.2 improves this result.

Remark 4.7. We should point out that the implication (1) \Rightarrow (3) was probably first proved by Just and Krawczyk in [13], see also [5].
Definition 4.8. Let $\left\langle P_{n}: n \in \omega\right\rangle$ be a decomposition of ω into pairwise disjoint nonempty finite sets, $\vec{\mu}=\left\langle\mu_{n}: n \in \omega\right\rangle$ being a sequence of probability measures $\mu_{n}: \mathcal{P}\left(P_{n}\right) \rightarrow[0,1]$. Let

$$
\mathcal{Z}_{\vec{\mu}}=\left\{A \subset \omega: \lim _{n} \mu_{n}\left(A \cap P_{n}\right)\right\}=0 .
$$

$\mathcal{Z}_{\vec{\mu}}$ is an ideal called the density ideal generated by $\vec{\mu}$, it was introduced by Farah in [2].
Corollary 4.9. Let I be an ideal on ω.
(1) If \mathcal{I} is not dense, then \mathcal{I} is a $P^{+}(\mathcal{I})$-ideal.
(2) $\mathfrak{a}\left(\mathcal{Z}_{\vec{u}}\right)=\omega([3]$, Theorem 2.2 (2)).
(3) If \mathcal{I} is an analytic P-ideal, then $\overline{\mathfrak{a}}(\mathcal{I})=\mathfrak{a}(\mathcal{I})$ if and only if \mathcal{I} is a $P^{+}(\mathcal{I})$-ideal.

Proof. (1) It is enough to show that $\mathfrak{a}(\mathcal{I})>\omega$. Since I is not dense, it is easy to see that $I \leq_{K}$ Fin (i.e. there exists $f: \omega \rightarrow \omega$ such that $f^{-1}(I) \in$ Fin if $I \in I$ [15]).
Claim 4.10. Let $I \leq_{K}$ Fin that witnessed by $f: \omega \rightarrow \omega$. If \mathcal{A} is an $\mathcal{I}-M A D$ family then $\left\{f^{-1}(A): A \in \mathcal{A}\right\}$ is a $M A D$ family.
Proof. Let \mathcal{A} be an \mathcal{I}-MAD family, it is easy to see that $\left\{f^{-1}(A): A \in \mathcal{A}\right\}$ is a Fin-AD family. We show that it is maximal. For any $X \in[\omega]^{\omega}, f(X) \in \mathcal{I}^{+}$. So there exists $A \in \mathcal{A}$ such that $A \cap f(X) \in \mathcal{I}^{+}$, and so $f^{-1}(A \cap f(X)) \in[\omega]^{\omega}$. Note that $f^{-1}(A \cap f(X)) \subseteq f^{-1}(A) \cap X$. Thus, $f^{-1}(A) \cap X \in[\omega]^{\omega}$.

The Claim 4 implies that if I do not dense, then $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{a}>\omega$, and then we obtain the item (1).
(2) Note that $\mathcal{Z}_{\vec{u}}$ does not have the $B W$ property (see [6] or [20]), so it not be a $P^{+}\left(\mathcal{Z}_{\vec{u}}\right)$-ideal. The item (2) followed by the equivalence between (4) and (7) in Theorem 4.2.
(3) Recall that for any analytic P-ideal $I, \overline{\mathfrak{a}}(\mathcal{I})$ be the minimum of cardinalities of uncountable I-MAD families. If $\overline{\mathfrak{a}}(\mathcal{I})=\mathfrak{a}(\mathcal{I})$, then $\mathfrak{a}(\mathcal{I})>\omega$, and this implies that \mathcal{I} is a $P^{+}(\mathcal{I})$-ideal. It's the same the other way round.

Corollary 4.11. Let \mathcal{I} be an ideal on ω, and let \mathcal{A} be an $\mathcal{I}-A D$ family.
(1) If \mathcal{I} is a P^{+}-ideal, then so is the $\mathcal{I}(\mathcal{I}-\mathcal{A})$;
(2) If I is selective, then so is the $I(I-\mathcal{A})$.

Proof. Both proofs are the same as that of $(4) \Rightarrow(5)$ in Theorem 4.2, and we just consider the Case 1 since the other case is analogous. Let $\left\{Y_{n}: n \in \omega\right\} \subset \mathcal{I}(\mathcal{I}-\mathcal{A})^{+}$such that $Y_{0} \supseteq Y_{1} \supseteq Y_{2} \supseteq \cdots$. With the same notations as we have used, we obtain $Z \in I^{+}$such that $Z \subseteq^{*} Z_{n}$ for each $n \in \omega$. Thus, Z is desired.

Recall that Fin is selective, so we have the following well known result mentioned in Section 1 ([9], Lemma 19).

Corollary 4.12. (Mathias) For any $A D$-family $\mathcal{A}, \mathcal{I}(\mathcal{A})$ is selective.

5. $P_{\text {tower }}^{+}(I)$-Ideals and Comments

Definition 5.1. Let I be an ideal, we say that \mathcal{I} is a $P_{\text {tower }}^{+}(\mathcal{I})$-ideal if for every decreasing sequences $\left\langle A_{n}: n \in \omega\right\rangle$ that fulfills $X_{n} \backslash X_{n+1} \in \mathcal{I}$ for all $n \in \omega$, there exists $X \subset \omega$ such that for each $n \in \omega X \subseteq^{\mathcal{I}} X_{n}$.

The notion of $P_{\text {tower }}^{+}(\mathcal{I})$-ideal is a generalization of the $P_{\text {tower }}^{+}$-ideal introduced in [12].
Definition 5.2. ([6]) \mathcal{I} has the hereditary $B W$ property (write as $I \in h B W$) if for any $A \in I^{+}, I \mid A \in B W$. The $h F i n B W$ property was defined analogously.

Recall that I is a P-ideal if for every countable family $\left\{A_{n}: n \in \omega\right\} \subseteq I$, there exists $A \in I$ such that $A_{n} \subseteq^{*} A$ for each $n \in \omega$. It is well known that for any P-ideal $I, I \in h B W$ is coincides with $I \in h F i n B W$.

The goal of this section is to show the following diagram.

The implication of $P^{+}(\mathcal{I}) \Rightarrow h B W$ follows from the fact that if I is a $P^{+}(\mathcal{I})$-ideal, then for each $A \in I^{+}, I \mid A$ is a $P^{+}(\mathcal{I} \mid A)$-ideal.

For $s \in 2^{<\omega}, \operatorname{lh}(s)$ denotes the length of s. For $i \in\{0,1\}, s \frown i$ denotes the sequence $\langle s(0), \cdots, s(\operatorname{lh}(s)-1), i\rangle$. In order to prove $h B W \Rightarrow P_{\text {tower }}^{+}(\mathcal{I})$, we need the following result, which is the Proposition 2.9 in [7].

Lemma 5.3. Let $r \in \omega$, and let I be an ideal. I has BW property if and only if for every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that fulfills the following conditions:

$$
\begin{aligned}
& S_{1} A_{\emptyset}=\omega ; \\
& S_{2} A_{s}=A_{s \frown 0} \cup A_{s \sim 1} ; \\
& S_{3} A_{s \sim 0} \cap A_{s \sim 1}=\emptyset .
\end{aligned}
$$

There exists $x \in 2^{\omega}$ and $B \subset \omega$ such that

- $B \in \mathcal{I}^{+}$;
- $B \backslash A_{x \mid n} \in \mathcal{I}$ for all $n \in \omega$.

It is easy to check the following result.
Lemma 5.4. Let $r \in \omega$, and let I be an ideal. I has the $h B W$ property if and only if for every $X \in \mathcal{I}^{+}$, and for every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that fulfils the following conditions:

$$
\begin{aligned}
& S_{1} A_{\emptyset}=X ; \\
& S_{2} A_{s}=A_{s \frown 0} \cup A_{s \sim 1} ; \\
& S_{3} A_{s \frown 0} \cap A_{s \sim 1}=\emptyset .
\end{aligned}
$$

There exists $x \in 2^{\omega}$ and $B \subset \omega$ such that

- $B \in \mathcal{I}^{+}$;
- $B \backslash A_{x \mid n} \in \mathcal{I}$ for all $n \in \omega$.

If I is a weak Q-ideal such that $I \in h$ FinBW, then the set B is a diagonalization of the sequence $\left\{A_{x \mid n}: n \in \omega\right\}$ ([7], Theorem 3.16).

Theorem 5.5. Let \mathcal{I} be an ideal on ω. If $I \in h B W$, then it is a $P_{\text {tower }}^{+}(\mathcal{I})$-ideal.
Proof. Let $X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \cdots$ be a decreasing sequence from I^{+}such that $X_{n} \backslash X_{n+1} \in \mathcal{I}$ for all $n \in \omega$. We construct a family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ such that
(1) $A_{\emptyset}=X_{0}$;
(2) $A_{s \frown 0}=X_{l h(s)}, A_{s \frown 1}=X_{\operatorname{lh}(s)} \backslash X_{l h(s)+1}$ for all $s \in\{0\}^{<\omega}$.

Since \mathcal{I} has the $h B W$ property, according to Lemma 5.4 above, there exists $r \in 2^{\omega}, B \in \mathcal{I}^{+}$such that $B \backslash A_{r \mid n} \in \mathcal{I}$ for all $n \in \omega$. The condition of $X_{n} \backslash X_{n+1} \in \mathcal{I}$ actually force $r=0^{\omega}$. So $X \subseteq^{I} X_{n}$ for all $n \in \omega$.

Note that $I \in B W$ is equal to $\mathfrak{s}(\mathcal{I}) \geq \omega_{1}$, and $I \in h B W$ is equal to I having the hereditarily \mathcal{I}-Helly property ([5], Theorem 5.9). We observe the following result.
Theorem 5.6. Let \mathcal{I} be an ideal on ω. If $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{s}(\mathcal{I})$, then the following conditions are equivalent:
(1) $I \in B W$;
(2) \mathcal{I} is a $P^{+}(\mathcal{I})$-ideal;
(3) $I \in h B W$;
(4) $I \in$ hHelly;
(5) $I \in$ Helly.

Acknowledgement

We are grateful to the referee for pointing out several errors in the preliminary version of this paper and for valuable suggestions which improved the presentation of the paper.

References

[1] A. Blass, Combinatorial cardinal characteristics of the continuum, In: M. Foreman, A. Kanamori (eds), Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 395-489.
[2] I. Farah, Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, pp. xvi+177.
[3] B. Farkas, L. Soukup, More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin. 50 (2009) $281-295$.
[4] B. Farkas, Y. Khomskii, Z. Vidnyánszky, Almost disjoint refinements and mixing reals, Fund. Math. 242 (2018) 25-48.
[5] R. Filipów, N. Mrożek, I. Recław, P. Szuca, I-selection principles for sequences of functions, J. Math. Anal. Appl. 396 (2012) 680-688.
[6] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal Convergence of Bounded Sequences, J. Symbolic Logic 72 (2007) $501-512$.
[7] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal version of Ramsy Theorem, Czech. Math. J. 136 (2011) 289-308.
[8] R. Filipów, P. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391 (2012) 1-9.
[9] O. Guzmán-González, P-points, MAD families and cardinal invariants. Ph.D thesis, https://arxiv.xilesou.top/abs/1810.09680
[10] J. Hong, S. Zhang. Cardinal invariants associated with Fubini product of ideals, Science China Mathematics 53 (2010) 425-430.
[11] M. Hrusak, Combinatorics of filters and ideals. In: Set Theory and its Applications, volume 533 of Contemp. Math, pages 29-69, Amer. Math. Soc. Providence, RI, 2011.
[12] M. Hrusak, D. Meza-Alcántara, E. Thüummel, C. Uzcátegui, Ramsey type properties of ideals, Ann. Pure Appl. Logic 5 (2017) 367-368.
[13] W. Just, A. Krawczyk, On certain Boolean algebras $\mathcal{P}(\omega) / \mathcal{I}$, Trans. Amer. Math. Soc. 285 (1984) 411-429.
[14] T. Kania, A letter concerning Leonetti's paper "Continuous projections onto ideal convergent sequences", Results Math. 74:1 (2019), Art. 12, 4.
[15] M. Katetov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968) 173-189.
[16] C. Laflamme, C. Leary, Filter games on ω and the dual ideal, Fund. Math. 173 (2002) 159-173.
[17] P. Leonetti, Continuous projections onto ideal convergent sequences, Results Math. 73:3 (2018), Art. 114, 5.
[18] K. Mazur, F_{σ}-ideals and $\omega_{1} \omega_{1}^{*}$-gaps in the Boolean algebras $\mathcal{P}(\omega) / \mathcal{I}$, Fund. Math. 138 (1991) 103-111.
[19] A.R.D. Mathias, Happy family, Ann. Math. Logic 12 (1977) 59-111.
[20] D. Meza-Alcántara, Ideals and filters on countable sets, Ph.D thesis, UNAM México, 2009.
[21] M. Messerschmidt, A family of quotient maps of ℓ^{∞} that do not admit uniformly continuous right inverses, https://arxiv.org/abs/1909.10417.
[22] H. Mildenberger, D. Raghavan, J. Steprāns. Splitting Families and Complete Separability, Canadian Math. Bull. 57 (2014) 119-124.
[23] D. Raghavan, J. Steprāns. On weakly tight families, Canadian J. Math. 64 (2010) 1378-1394.
[24] J. Yu, S. Zhang, Ideal-versions of Bolzano-Weierstrass property, Filomat 33 (2019) 2963-2973.

[^0]: 2010 Mathematics Subject Classification. Primary 05D10; Secondary 40A35, 54A20
 Keywords. MAD families, cardinality, Bolzano-Weierstrass property, Helly property, $P^{+}(I)$-ideals
 Received: 06 October 2019; Revised: 27 Februar 2020; Accepted: 15 March 2020
 Communicated by Ljubiša D. R. Kočinac
 Research supported by NSFC \#11771311
 Email addresses: 770186166@qq.com (Jiakui Yu), zhangsg@scu.edu.cn (Shuguo Zhang)

