Published by Faculty of Sciences and Mathematics,

Ribbon Entwining Datum

Xiaohui Zhang ${ }^{\text {a }}$, Wei Wang ${ }^{\text {b }}$, Xiaofan Zhao ${ }^{\text {c }}$, Shengxiang Wang ${ }^{\text {d }}$
aschool of Mathematical Sciences, Qufu Normal University, Qufu Shandong 273165, P. R. China
${ }^{b}$ Nanjing Research Institute of Electronic Engineering, Nanjing, 210007, P. R. China
${ }^{c}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang Henan 453007, P. R. China
${ }^{d}$ School of Mathematics Sciences, Chuzhou University, Chuzhou Anhui 239000, P. R. China

Abstract

Let (C, A, φ) be an entwining structure over a field k. In this paper, we introduce the notion of the ribbon entwined datum to generalize the definition of (co)ribbon structures, and give several necessary and sufficient conditions for the category of entwined modules to be a ribbon category. We also discuss the ribbon structures in the Long dimodule category and Yetter-Drinfel'd category for applications.

1. Introduction

Entwining structures were proposed by Brzezinski and Majid in [7] to define coalgebra principal bundles. An entwining structure over a monoidal category C consists of an algebra A, a coalgebra C and a morphism $\varphi: C \otimes A \rightarrow A \otimes C$ satisfying some axioms. The entwining modules are both A-modules and C-comodules, with compatibility relation given by φ. Note that the definition of entwined modules generalizes lots of important modules such as Hopf modules, Doi-Hopf modules, and Yetter-Drinfel'd modules ([9], [17]). Further researches on entwining structures can be found in [1], [21], [23], and so on.

Monoidal category theory played an important role in the theory of knots and links and the theory of quantum groups. Through the reconstruction theory and Tannakian duality ([12], [20]), quantum groups and monoidal categories are correspondent with each other. There are many kinds of monoidal categories with additional structure - braided, rigid, pivotal, balanced, ribbon, etc., and many of them have an associated form in low dimensional topology theory and knot theory. For example, ribbon category (see [18]) is based on the isotopy invariants of framed tangles; spherical category (see [2] and [10]) is based on the Turaev-Virostate sum model invariant of a closed piecewise-linear 3-manifold. From the reconstruction theoretical point of view, a ribbon (resp. pivotal) category is equivalent to the category of (co)modules over a (co)ribbon (resp. pivotal) Hopf algebras (or its generalizations)(see [3], [4], and [22] - [26]).

[^0]The motivations of our paper is raised from the study of how to get the ribbon structure in the center of the category of modules of a finite dimensional Hopf algebra.

A ribbon structure (see [18], and also see [13]) in a rigid braided category is a self-dual twist (or a selfdual balanced structure), which is a natural isomorphism from the identity functor to itself and compatible with the duality and the braiding. In 1993, Kauffman and Radford got a necessary and sufficient condition for a finite-dimensional Drinfel'd double to be a ribbon Hopf algebra (see [14]). As well-known, when a Hopf algebra H is finite-dimensional we have that the category of modules of Drinfel'd double $D(H)$ is actually the Yetter-Drinfel'd category $\boldsymbol{y} \mathcal{D}_{H}^{H}$. Therefore one is prompted to ask the following question: is there any other approach to get the ribbon structures in the Yetter-Drinfel'd categories? When does $\boldsymbol{y} \mathcal{D}_{H}^{H}$ becomes a ribbon category from the point of view of the category theory? To figure out these mentioned questions necessitates the following discussion about the process of the emergence of the ribbon structures in the category of entwined modules.

The paper is organized as follows. In Section 2 we recall some notions of entwining structures, and ribbon categories. Section 3 is concerned about the presentation of Hopf algebras induced by $C_{A}^{C}(\varphi)$, and about the exhibition of its (co)representation category is monoidal identified to $C_{A}^{C}(\varphi)$. In Section 4, we mainly give a necessary and sufficient condition for $\mathcal{C}_{A}^{C}(\varphi)$ to be a ribbon category. Finally, we consider the Yetter-Drinfel'd category and the category of generalized Long dimodules as applications.

2. Preliminaries

Throughout the paper, we let k be a fixed field and $\operatorname{char}(k)=0$ and $V e c_{k}$ be the category of finite dimensional k-spaces. All the algebras and coalgebras, modules and comodules are supposed to be in $V e c_{k}$. For the comultiplication Δ of a k-module C, we use the Sweedler-Heyneman's notation: $\Delta(c)=c_{1} \otimes c_{2}$, for any $c \in C$. τ means the flip map $\tau(a \otimes b)=b \otimes a$.

2.1. Entwining structure and entwined modules

In this part we first review several definitions related to entwined modules (see [7] or [11]).
Let $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ be a coalgebra and $\left(A, m_{A}, \eta_{A}\right)$ an algebra over k. A map $\varphi: C \otimes A \rightarrow A \otimes C, \varphi(c \otimes a)=$ $\sum a_{\varphi} \otimes c^{\varphi}$, is called an entwining map if the following identities hold
(E1) $\sum(a b)_{\varphi} \otimes c^{\varphi}=\sum a_{\varphi} b_{\psi} \otimes c^{\varphi \psi}$;
(E2) $\sum_{L_{\varphi}} a_{\varphi} \otimes\left(c^{\varphi}\right)_{1} \otimes\left(c^{\varphi}\right)_{2}=\sum a_{\varphi \psi} \otimes\left(c_{1}\right)^{\psi} \otimes\left(c_{2}\right)^{\varphi}$;
(E3) $\sum\left(1_{A}\right)_{\varphi} \otimes c^{\varphi}=1_{A} \otimes c$;
(E4) $\sum a_{\varphi} \varepsilon_{C}\left(c^{\varphi}\right)=a \varepsilon_{C}(c)$,
where $a, b \in A, c \in C, \psi=\varphi$. Furthermore, (C, A, φ) is called a right-right entwining structure.
Let $\varphi: C \otimes A \rightarrow A \otimes C$ be an entwining map, $M \in C,\left(M, \varrho_{M}\right)$ be a right A-module, $\left(M, \rho^{M}\right)$ be a right C-comodule. If the diagram

is commutative, then we call the triple $\left(M, \varrho_{M}, \rho^{M}\right)$ an entwined module.
The morphism between entwined modules is called entwined module morphism if it is both A-linear and C-colinear. The category of entwined modules is denoted by $C_{A}^{C}(\varphi)$.

Recall from [16], a k-linear map $f: C \rightarrow A$ is called convolution invertible if there exists $f^{-1}: C \rightarrow A$ such that $f\left(x_{1}\right) f^{-1}\left(x_{2}\right)=f^{-1}\left(x_{1}\right) f\left(x_{2}\right)=\varepsilon_{C}(x) 1_{A}$ for any $x \in C$.

Recall from [6] and [11], for any $g, f \in \operatorname{hom}_{k}(C, A)$, one can define their entwined convolution product $g \star f \in \operatorname{hom}_{k}(C, A)$ via

$$
(g \star f)(c):=\sum{\underline{f\left(c_{2}\right)}}_{\varphi} g\left(\underline{c}_{1}^{\varphi}\right), \quad c \in C,
$$

and hence $\operatorname{hom}_{k}(C, A)$ is an algebra. Note that the unit is $\eta_{A} \circ \varepsilon_{C}$.
Similarly, $\operatorname{hom}_{k}(C \otimes C, A \otimes A)$ is also an algebra with the following entwined convolution product:

$$
\left(g^{\prime} \star f^{\prime}\right):=m_{A \otimes A}\left(A \otimes A \otimes g^{\prime}\right)\left(A \otimes \tau_{C, A} \otimes C\right)(\varphi \otimes \varphi)\left(C \otimes \tau_{C, A} \otimes A\right)\left(C \otimes C \otimes f^{\prime}\right) \Delta_{C \otimes C},
$$

where $g^{\prime}, f^{\prime} \in \operatorname{hom}_{k}(C \otimes C, A \otimes A)$. Note that the unit is $\left(\eta_{A} \otimes \eta_{A}\right) \circ\left(\varepsilon_{C} \otimes \varepsilon_{C}\right)$.
Recall from [[5], Corollary 3.4,] (or see [11]) that $C \otimes A$ is an object in $\mathcal{C}_{A}^{C}(\varphi)$ via

$$
\begin{aligned}
(c \otimes a) \cdot x & =c \otimes a x ; \\
(c \otimes a)_{0} \otimes(c \otimes a)_{1} & =\sum c_{1} \otimes a_{\varphi} \otimes c_{2}{ }^{\varphi},
\end{aligned}
$$

where $a, x \in A$ and $c \in C$.
$A \otimes C$ is also an object in $C_{A}^{C}(\varphi)$ via

$$
\begin{gathered}
(a \otimes c) \cdot x=\sum a x_{\varphi} \otimes c^{\varphi} ; \\
(a \otimes c)_{0} \otimes(a \otimes c)_{1}=a \otimes \mathcal{c}_{1} \otimes c_{2} .
\end{gathered}
$$

Furthermore, for any right A-module $M, M \otimes C$ is also an entwined module by

$$
\begin{gathered}
(m \otimes c) \cdot a=\sum m \cdot a_{\varphi} \otimes c^{\varphi} ; \\
(m \otimes c)_{0} \otimes(m \otimes c)_{1}=m \otimes \mathcal{c}_{1} \otimes c_{2} .
\end{gathered}
$$

This defines a right adjoint functor for the underlying functor $U: C_{A}^{C}(\varphi) \rightarrow \mathcal{M}_{A}$.

2.2. Monoidal entwining datum and double quantum group

Suppose that C and A are two bialgebras over k such that (C, A, φ) is an entwining structure. Recall that (C, A, φ) is called a monoidal entwining datum if the following equations hold
$\left\{(E 5) \sum^{\sum}\left(a_{\varphi}\right)_{1} \otimes\left(a_{\varphi}\right)_{2} \otimes(c d)^{\varphi}=\sum\left(a_{1}\right)_{\varphi} \otimes\left(a_{2}\right)_{\psi} \otimes \mathcal{c}^{\varphi} d^{\psi} ;\right.$
(E6) $\sum \varepsilon_{A}\left(a_{\varphi}\right)\left(1_{C}\right)^{\varphi}=\varepsilon_{A}(a) 1_{C}$,
where $a \in A, c \in C$.
Recall from [[11], Theorem 4.1] that $C_{A}^{C}(\varphi)$ is a monoidal category such that the forgetful functors are strict monoidal if and only if (C, A, φ) is a monoidal entwining datum. Further, for any $M, N \in C_{A}^{C}(\varphi)$, the A-action and the C-coaction on $M \otimes N$ are given by

$$
\begin{gathered}
(m \otimes n) \cdot a=m \cdot a_{1} \otimes n \cdot a_{2} \\
(m \otimes n)_{0} \otimes(m \otimes n)_{1}=m_{0} \otimes n_{0} \otimes m_{1} n_{1}
\end{gathered}
$$

where $m \in M, n \in N, a \in A$. Moreover, the tensor unit in $C_{A}^{C}(\varphi)$ is $\left(k, i d_{k} \otimes \varepsilon_{A}, i d_{k} \otimes \eta_{C}\right)$.
Recall that a pair of bialgebras C and A together with a monoidal entwining map φ (such that $C_{A}^{C}(\varphi)$ is a monoidal category) and together with a k-linear morphism $R: C \otimes C \rightarrow A \otimes A$ is called a double quantum group if the following identities hold for any $a \in A, c, d, x, y, z \in C$:

```
(E7) \(\sum R\left(c_{1} \otimes d_{1}\right) \otimes c_{2} d_{2}=\underline{R^{(1)}\left(c_{2} \otimes d_{2}\right)} R_{\varphi}^{(2)} \otimes R^{(2)}\left(c_{2} \otimes d_{2}\right) ~ \otimes d_{1}^{\varphi} c_{1} \psi^{(1)} ;\)
(E8) \(\sum a_{2 \psi} R^{(1)}\left(c^{\varphi} \otimes d^{\psi}\right) \otimes a_{1 \varphi} R^{(2)}\left(c^{\varphi} \otimes d^{\psi}\right)=R^{(1)}(c \otimes d) a_{1} \otimes R^{(2)}(c \otimes d) a_{2}\);
(E9) \(\left.\begin{array}{r}\sum \frac{R^{(1)}(x \otimes y z)}{=r^{(1)}\left(x_{2}\right.} \otimes \bar{R}^{(1)}(x \otimes y z) \otimes R^{(1)}\left(x_{1}{ }^{\varphi}\right.\end{array} \otimes z\right) \otimes r^{(2)}\left(x_{2} \otimes y\right)\)
(E10) \(\sum R^{(1)}(x y \otimes z) \otimes R^{(2)}(x y \otimes z)_{1} \otimes R^{(2)}(x y \otimes z)_{2}\)
\[
\left.={\underline{r^{(1)}}\left(y \otimes z_{2}\right)}_{\varphi} R^{(1)}\left(x \otimes z_{1}^{1}\right) \overline{\otimes R^{(2)}\left(x \otimes z_{1}^{2}\right.}{ }^{\varphi}\right) \otimes r^{(2)}\left(y \otimes z_{2}\right) ;
\]
```

(E11) $R \in \operatorname{hom}_{k}(C \otimes C, A \otimes A)$ is invertible under the entwined convolution,
where $R(m \otimes n):=\sum R^{(1)}(m \otimes n) \otimes R^{(2)}(m \otimes n) \in A \otimes A$.
Recall from [[11], Theorem 5.5] that $C_{A}^{C}(\varphi)$ is a braided monoidal category if and only if (C, A, φ, R) is a double quantum group. Further, the braiding \mathbf{C} in $C_{A}^{C}(\varphi)$ is given by

$$
\begin{equation*}
\mathbf{C}_{M, N}: M \otimes N \rightarrow N \otimes M, \quad m \otimes n \mapsto \sum n_{0} \cdot R^{(2)}\left(m_{1} \otimes n_{1}\right) \otimes m_{0} \cdot R^{(1)}\left(m_{1} \otimes n_{1}\right) \tag{2.1}
\end{equation*}
$$

where $R(m \otimes n):=\sum R^{(1)}(m \otimes n) \otimes R^{(2)}(m \otimes n), M, N \in C_{A}^{C}(\varphi)$.

Lemma 2.1. Assume that (C, A, φ, R) is a double quantum group. If the following identity holds

$$
\sum a_{\varphi} \otimes\left(1_{C}\right)^{\varphi}=a \otimes 1_{C}, \quad \text { for any } c \in C, a \in A
$$

then $\left(A, R\left(1_{C} \otimes 1_{C}\right)\right)$ is a quasitriangular Hopf algebra.
Dually, if the following identity holds

$$
\sum \varepsilon_{A}\left(a_{\varphi}\right) c^{\varphi}=\varepsilon_{A}(a) c, \quad \text { for any } c \in C, a \in A
$$

then $\left(C,\left(\varepsilon_{A} \otimes \varepsilon_{A}\right) \circ R\right)$ is a coquasitriangular Hopf algebra.
Proof. Straightforward.

2.3. Ribbon category

In this section, we will review several definitions and notations related to ribbon structures.
Let (C, \otimes, I) be a strict monoidal category. Recall from [13] or [3] that for an object $V \in C$, a left dual of V is a triple ($\left.V^{*}, e v_{V}, \operatorname{coev}_{V}\right)$, where V^{*} is an object, $e v_{V}: V^{*} \otimes V \rightarrow I$ and $\operatorname{coev}_{V}: I \rightarrow V \otimes V^{*}$ are morphisms in C, satisfying

$$
\left(V \otimes e v_{V}\right)\left(\operatorname{coev}_{V} \otimes V\right)=i d_{V}, \quad \text { and }\left(e v_{V} \otimes V^{*}\right)\left(V^{*} \otimes \operatorname{coev}_{V}\right)=i d_{V^{*}}
$$

Similarly, a right dual of V is a triple $\left({ }^{*} V, \widetilde{e v}_{V}, \widetilde{\operatorname{cov}}_{V}\right)$, where ${ }^{*} V$ is an object, $\widetilde{e v}_{V}: V \otimes{ }^{*} V \rightarrow I$ and ${\widetilde{\operatorname{coev}_{V}}}_{V}: I \rightarrow{ }^{*} V \otimes V$ are morphisms in C, satisfying

$$
\left(\widetilde{e v}_{V} \otimes V\right)\left(V \otimes \widetilde{\operatorname{cocv}}_{V}\right)=i d_{V}, \quad \text { and }\left({ }^{*} V \otimes \widetilde{\operatorname{ev}}_{V}\right)\left(\widetilde{\operatorname{coev}}_{V} \otimes{ }^{*} V\right)=i d^{*} V
$$

If each object in C admits a left dual (respectively a right dual, respectively both a left dual and a right dual), then C is called a left rigid category (respectively a right rigid category, respectively a rigid category).

Assume that C is a left rigid category. $X, Y \in C$, for a morphism $g: Y \rightarrow X$ define its transpose as follows:

$$
\begin{equation*}
g^{*}:=X^{*} \xrightarrow{i d_{X^{*}} \otimes c o e v_{Y}} X^{*} \otimes Y \otimes Y^{*} \xrightarrow{i d_{X^{*}} \otimes g \otimes i d_{Y^{*}}} X^{*} \otimes X \otimes Y^{*} \xrightarrow{e v_{X} \otimes i d_{Y^{*}}} Y^{*} . \tag{TR1}
\end{equation*}
$$

Then it is easy to get the following commutative diagrams

Further, this defines a bijection between $\operatorname{Hom}_{\mathcal{C}}\left(X^{*}, Y^{*}\right)$ and $\operatorname{Hom}_{\mathcal{C}}(Y, X)$.
Lemma 2.2. Let C be a left rigid category, U, V, W be objects in C. Then
(1). $V^{*} \otimes U^{*} \cong(U \otimes V)^{*}$;
(2). if $f: V \rightarrow W$ and $g: U \rightarrow V$ are morphisms in C, then we have $(f \circ g)^{*}=g^{*} \circ f^{*}$, and $\left(1_{V}\right)^{*}=1_{V^{*}}$;
(3). $I^{*}=I$.

Let $(C, \otimes, I, a, l, r, C)$ be a braided monoidal category with the braiding C. Recall from [13] (or [19]) that a twist (or a balanced structure) on C is a family $\theta_{V}: V \rightarrow V$ of natural isomorphisms indexed by the objects V of C satisfying

$$
\theta_{V \otimes W}=\mathbf{C}_{W, V} \mathbf{C}_{V, W}\left(\theta_{V} \otimes \theta_{W}\right), \quad \text { where } V, W \in C
$$

A twist θ on an autonomous category C is self-dual if $\theta_{V^{*}}=\left(\theta_{V}\right)^{*}$ (or equivalently, $\theta^{*} V={ }^{*}\left(\theta_{V}\right)$).
A ribbon category is a braided autonomous category endowed with a self-dual twist.

3. Entwined smash product

3.1. The entwined smash product

Definition 3.1. Let A, B be algebras in a monoidal category C. A morphism $\Phi: B \otimes A \rightarrow A \otimes B$ in C is called an algebra distributive law if Φ satisfying

Similar to [[9], Theorem 8], we have the following property.
Lemma 3.2. Let C be a finite dimensional coalgebra and A a finite dimensional algebra. Then give an entwining map $\varphi: C \otimes A \rightarrow A \otimes C$ is identified to give an algebra distributive law $\Phi: A \otimes C^{* o p} \rightarrow C^{* o p} \otimes A$.
Proof. If there is an entwining $\operatorname{map} \varphi: c \otimes a \mapsto \sum a_{\varphi} \otimes c^{\varphi}$, one can define a linear map $\Phi: A \otimes C^{* o p} \rightarrow C^{* o p} \otimes A$ by

$$
\Phi(a \otimes p)=\sum p^{\Phi} \otimes a_{\Phi}:=\sum p\left(e_{i}^{\varphi}\right) e^{i} \otimes a_{\varphi}
$$

where $c \in C, a \in A, p \in C^{*}, e_{i}$ and e^{i} are dual bases of C and C^{*}. It is obvious to see that Φ is an algebra distributive law.

Conversely, if is an algebra distributive law $\Phi: a \otimes p \mapsto \sum p^{\Phi} \otimes a_{\Phi}$, one can define a linear map $\varphi: C \otimes A \rightarrow A \otimes C$ by

$$
\varphi(c \otimes a)=\sum a_{\varphi} \otimes c^{\varphi}:=\sum e^{i^{\Phi}}(c) a_{\Phi} \otimes e_{i}
$$

Also it can be easily checked that φ is an entwining map.
Recall from [[8], Theorem 2.5], if there is an algebra distributive law $\Phi: B \otimes A \rightarrow A \otimes B$, then $\left(A \otimes B,\left(m_{A} \otimes\right.\right.$ $\left.\left.m_{B}\right) \circ\left(i d_{A} \otimes \Phi \otimes i d_{B}\right), \eta_{A} \otimes \eta_{B}\right)$ is also an algebra.

Now we suppose that (C, A, φ) is a monoidal entwining datum over k where C, A are two Hopf algebras with bijective antipodes.

Definition 3.3. The entwined smash product $C^{* o p} \otimes A$ of the entwining structure (C, A, φ), in a form containing $C^{* o p}$ and A, is a Hopf algebra under the following structures:

- the multiplication \widehat{m} is given by

$$
(p \otimes a)(q \otimes b):=\sum p *^{o p} e^{i} \otimes a_{\varphi} b q\left(e_{i}^{\varphi}\right)=\sum e^{i} * p \otimes a_{\varphi} b q\left(e_{i}^{\varphi}\right)
$$

where $a, b \in A, p, q \in C^{* o p}, e_{i}$ and e^{i} are dual bases of C and C^{*};

- the unit is $\widehat{\eta}\left(1_{k}\right)=\varepsilon_{C} \otimes 1_{A}$;
- the comultiplication is given by

$$
\widehat{\Delta}(p \otimes a):=\left(p_{1} \otimes a_{1}\right) \otimes\left(p_{2} \otimes a_{2}\right)
$$

- the counit is given by

$$
\widehat{\varepsilon}(p \otimes a):=p\left(1_{C}\right) \varepsilon_{A}(a) ;
$$

- the antipode is given by

$$
\widehat{S}(p \otimes a):=\sum p\left(S_{C}^{-1}\left(e_{i}^{\varphi}\right)\right) e^{i} \otimes S_{A}(a)_{\varphi}
$$

Proof. Firstly, since Lemma 3.2, $C^{* o p} \otimes A$ is an algebra.
Next we will show $C^{* o p} \otimes A$ is a bialgebra. Obviously, $C^{* o p} \otimes A$ is a coalgebra under the given comultiplication. We only need check that $\widehat{\Delta}$ and $\widehat{\varepsilon}$ are algebra maps.

For $p, q \in C^{* o p}, a, b \in A$, we compute

$$
\begin{aligned}
& \widehat{\Delta}(p \otimes a) \widehat{\Delta}(q \otimes b) \\
= & \left(\left(p_{1} \otimes a_{1}\right) \otimes\left(p_{2} \otimes a_{2}\right)\right)\left(\left(q_{1} \otimes b_{2}\right) \otimes\left(q_{1} \otimes b_{2}\right)\right) \\
= & \sum p_{1} *^{o p} e^{i} \otimes a_{1 \varphi} b_{1} q_{1}\left(e_{i}{ }^{\varphi}\right) \otimes p_{2} *^{o p} o^{i} \otimes a_{2 \psi} b_{2} q_{2}\left(o_{i}{ }^{\psi}\right) .
\end{aligned}
$$

Thus for any $c, d \in C$, we have

$$
\begin{aligned}
& \sum\left(p_{1} *^{o p} e^{i}\right)(c) \otimes a_{1 \varphi} b_{1} q_{1}\left(e_{i}^{\varphi}\right) \otimes\left(p_{2} *^{o p} o^{i}\right)(d) \otimes a_{2 \psi} b_{2} q_{2}\left(o_{i}^{\psi}\right) \\
= & \sum p\left(c_{2} d_{2}\right) \otimes a_{1 \varphi} b_{1} \otimes q\left(c_{1}^{\varphi} d_{1}^{\psi}\right) \otimes a_{2 \psi} b_{2} .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
\widehat{\Delta}((p \otimes a)(q \otimes b)) & =\widehat{\Delta}\left(\sum p *^{o p} e^{i} \otimes a_{\varphi} b q\left(e_{i}^{\varphi}\right)\right) \\
& =\sum p_{1} *^{o p} e^{i}{ }_{1} \otimes a_{\varphi 1} b_{1} \otimes p_{2} *^{o p} e^{i}{ }_{2} \otimes a_{\varphi 2} b_{2} q\left(e_{i}^{\varphi}\right),
\end{aligned}
$$

Then for $c, d \in C$, we obtain

$$
\begin{aligned}
& \sum\left(p_{1} *^{o p} e^{i}{ }_{1}\right)(c) \otimes a_{\varphi 1} b_{1} \otimes\left(p_{2} *^{o p} e^{i}\right)(d) \otimes a_{\varphi 2} b_{2} q\left(e_{i}^{\varphi}\right) \\
= & \sum p\left(c_{2} d_{2}\right) \otimes a_{\varphi 1} b_{1} \otimes q\left(\underline{c_{1} d_{1}{ }^{\varphi}}\right) \otimes a_{\varphi 2} b_{2} \\
\stackrel{(E 5)}{=} & \sum p\left(c_{2} d_{2}\right) \otimes a_{1 \varphi} b_{1} \otimes q\left(c_{1}^{\varphi} d_{1}^{\psi}\right) \otimes a_{2 \psi} b_{2},
\end{aligned}
$$

which implies $\widehat{\Delta}((p \otimes a)(q \otimes b))=\widehat{\Delta}(p \otimes a) \widehat{\Delta}(q \otimes b)$.
Since $\widehat{\varepsilon}$ preserves multiplication, $C^{* o p} \otimes A=\left(C^{* o p} \otimes A, \widehat{m}, \varepsilon_{C} \otimes 1_{A}, \widehat{\Delta}, \widehat{\varepsilon}\right)$ is a bialgebra.
In order to prove \widehat{S} is the antipode of $C^{* o p} \otimes A$, we compute

$$
\begin{aligned}
& \widehat{S}\left((p \otimes a)_{1}\right)(p \otimes a)_{2} \\
= & \sum p_{1}\left(S_{C}^{-1}\left(e_{i}^{\varphi}\right)\right)\left(e^{i} \otimes S_{A}\left(a_{1}\right)_{\varphi}\right)\left(p_{2} \otimes a_{2}\right) \\
= & \sum p\left(S_{C}^{-1}\left(e_{i}^{\varphi}\right) o_{i}^{\psi}\right) e^{i} *^{o p} o^{i} \otimes S_{A}\left(a_{1}\right)_{\varphi \psi} a_{2} .
\end{aligned}
$$

For any $c \in C$, we have

$$
\begin{aligned}
& \sum p\left(S_{C}^{-1}\left(e_{i}^{\varphi}\right) o_{i}^{\psi}\right)\left(e^{i} *^{o p} o^{i}\right)(c) \otimes S_{A}\left(a_{1}\right)_{\varphi \psi} a_{2} \\
= & \sum p\left(S_{C}^{-1}\left(c_{2}{ }^{\varphi}\right) c_{1}{ }^{\psi}\right) \otimes S_{A}\left(a_{1}\right)_{\varphi \psi} a_{2} \\
\stackrel{(E 2)}{=} & \sum p\left(S_{C}^{-1}\left(c^{\varphi}{ }_{2}\right) c^{\varphi}{ }_{1}\right) \otimes S_{A}\left(a_{1}\right)_{\varphi} a_{2} \\
= & p\left(1_{C}\right) \varepsilon_{C}(c) \otimes S_{A}\left(a_{1}\right) a_{2}=p\left(1_{C}\right) \varepsilon_{C}(c) \otimes \varepsilon_{A}(a) 1_{A} .
\end{aligned}
$$

Thus $\widehat{S} * i d=\widehat{\eta} \widehat{\varepsilon}$. Similarly, one can show that $i d * \widehat{S}=\widehat{\eta} \widehat{\varepsilon}$. Hence $\left(C^{* o p} \otimes A, \widehat{S}\right)$ is a Hopf algebra.
Be similar with [[9], Theorem 9], we have the following property.
Proposition 3.4. The category of entwined modules $C_{A}^{C}(\varphi)$ is monoidal isomorphic to the representation category of $C^{* o p} \otimes A$.

Proof. For any object $\left(M, \theta_{M}, \rho^{M}\right)$, and morphism $\lambda: M \rightarrow N$ in $C_{A}^{C}(\varphi)$, one can define a functor Γ from $C_{A}^{C}(\varphi)$ to the category of right $C^{* o p} \otimes A$-modules via

$$
\Gamma(M):=M \text { as } k \text {-spaces }, \quad \Gamma(f):=f
$$

where the $C^{* o p} \otimes A$-module structure on M is given by

$$
m \leftharpoonup(p \otimes a):=p\left(m_{1}\right) m_{0} \cdot a, \text { for all } m \in M, p \in C^{*}, a \in A .
$$

First of all, we claim that Γ is well-defined. In fact, for any $m \in M, p, q \in C^{*}, a, b \in A$, we have

$$
m \leftharpoonup\left(\varepsilon_{C} \otimes 1_{A}\right)=\varepsilon_{C}\left(m_{1}\right) m_{0} \cdot 1_{A}=m .
$$

Also, we can get

$$
\begin{aligned}
(m \leftharpoonup(p \otimes a)) \leftharpoonup(q \otimes b) & =p\left(m_{1}\right)\left(m_{0} \cdot a\right) \leftharpoonup(q \otimes b) \\
& =\sum p\left(m_{2}\right) e^{i}\left(m_{1}\right) m_{0} \cdot a_{\varphi} b q\left(e_{i}{ }^{\varphi}\right) \\
& =m \leftharpoonup(p \otimes a)(q \otimes b),
\end{aligned}
$$

where e_{i} and e^{i} are dual bases of C and C^{*} respectively. Hence (M, \leftharpoonup) is a right $C^{* o p} \otimes A$-module.
For the morphism $\lambda: M \rightarrow N$, it is a direct computation to check $\Gamma(\lambda)$ is $C^{* o p} \otimes A$-linear. Thus Γ is well-defined.

Conversely, we define the functor Λ from the representation category of $C^{* o p} \otimes A$ to $C_{A}^{C}(\varphi)$ by

$$
\Lambda(U):=U \text { as } k \text {-spaces }, \quad \Lambda(\lambda):=\lambda
$$

where (U, \leftharpoonup) is a right $C^{* o p} \otimes A$-module, $\lambda: U \rightarrow V$ is a morphism of $C^{* o p} \otimes A$-modules. Further, the A-action on U is defined by

$$
u \cdot a:=u \leftharpoonup\left(\varepsilon_{C} \otimes a\right), \quad \text { for any } u \in U, \quad a \in A
$$

and the C-coaction on U is given by

$$
\rho^{u}(u)=u_{0} \otimes u_{1}:=\sum\left(u \leftharpoonup\left(e^{i} \otimes 1_{A}\right)\right) \otimes e_{i} .
$$

Next we will show that Λ is well defined. It is straightforward to show (U, \cdot) is an A-module and $\left(U, \rho^{U}\right)$ is a C-comodule. We only check U satisfies Diagram (E0).

Since for any $a \in A$, we have

$$
\begin{aligned}
\rho^{U}(u \cdot a) & =\sum\left(u \cdot a \leftharpoonup\left(e^{i} \otimes 1_{A}\right)\right) \otimes e_{i} \\
& =\sum\left(u \leftharpoonup\left(e^{i}\left(o_{i}^{\varphi}\right) o^{i} \otimes a_{\varphi}\right)\right) \otimes e_{i} \\
& =\sum\left(u \leftharpoonup\left(e^{i} \otimes 1_{A}\right)\left(\varepsilon_{C} \otimes a_{\varphi}\right)\right) \otimes e_{i}{ }^{\varphi} \\
& =\sum u_{0} \cdot a_{\varphi} \otimes u_{1}{ }^{\varphi},
\end{aligned}
$$

hence $U \in C_{A}^{C}(\varphi)$.
Since $\Lambda(\lambda): U \rightarrow V$ are both A-linear and C-colinear, Λ is well-defined, as desired.
Obviously Γ is a strict monoidal functor, and Λ is the inverse of Γ. This completes the proof.
Remark 3.5. Be similar with Lemma 3.2 and Proposition 3.4, for any finite dimensional k-algebras A and B, if $\Phi: B \otimes A \rightarrow A \otimes B, b \otimes a \mapsto \sum a^{\Phi} \otimes b_{\Phi}$, is an algebra distributive law, then there is an entwining map $\varphi: A^{* c o p} \otimes B \rightarrow B \otimes A^{* c o p}$, defined by

$$
\varphi(\gamma \otimes b):=\sum \gamma\left(e_{i}^{\Phi}\right) b_{\Phi} \otimes e^{i}, \text { where } b \in B, \gamma \in A^{*}, e_{i} \text { and } e^{i} \text { are dual bases of } A \text { and } A^{*} .
$$

Conversely, if there an entwining map $\varphi: A^{* o p} \otimes B \rightarrow B \otimes A^{* o p}, \gamma \otimes b \mapsto \sum b_{\varphi} \otimes \gamma^{\varphi}$, then one can define an algebra distributive law $\Phi: B \otimes A \rightarrow A \otimes B$ via

$$
\Phi(b \otimes a):=\sum e^{i \varphi}(a) e_{i} \otimes b_{\varphi}
$$

Moreover, the category of $A \otimes B$-modules is identified to $C_{B}^{A^{* o p}}(\varphi)$, the category of entwined modules.
Example 3.6. (1) If we define $\varphi: H \otimes H \rightarrow H \otimes H$ by $\varphi(x \otimes y)=y_{1} \otimes x y_{2}$, where $x, y \in H$ and H is a finite dimensional Hopf algebra, then the category $C_{H}^{H}(\varphi)$ is the category of Hopf modules. Recall from Lemma 3.2 and Theorem 3.4, if we define the following multiplication on $H^{* o p} \otimes H$

$$
(\delta \otimes a)(\gamma \otimes b):=\gamma\left(? a_{2}\right) \delta \otimes a_{1} b
$$

then $H^{* o p} \otimes H$ is an associative algebra, and the category of Hopf modules of H is identified to the category of $H^{* o p} \otimes H$-modules.
(2) Let H be a finite dimensional Hopf algebra and A a finite dimensional left H-module algebra. Recall that the multiplication on $A \sharp H$, the usual smash product of A and H is

$$
(a \sharp x)(b \sharp y)=a\left(x_{1} \cdot b\right) \sharp x_{2} y \text {, where } a, b \in A, x, y \in H \text {, }
$$

which implies there is an algebra distributive law $\Phi: H \otimes A \rightarrow A \otimes H, \Phi(h \otimes a)=h_{1} \cdot a \otimes h_{2}$. Thus from Remark 3.5, there exists an entwining map $\varphi: A^{* c o p} \otimes H \rightarrow H \otimes A^{* o p}$, defined by

$$
\varphi(\gamma \otimes h):=\sum \gamma\left(h_{1} \cdot e_{i}\right) h_{2} \otimes e^{i}, \text { where } h \in H, \gamma \in A^{*}, e_{i} \text { and } e^{i} \text { are dual bases of } A \text { and } A^{*} .
$$

Furthermore, the representation of $A \sharp H$ is isomorphic to the category $C_{H}^{A^{* o p p}}(\varphi)$.

3.2. The dual case

The definition and results in this section are dual to the corresponding results in Section 3.1, so we will not give the complete proof.

Definition 3.7. Let C, D be coalgebras in a monoidal category C. A morphism $\Psi: C \otimes D \rightarrow D \otimes C$ in C is called a coalgebra distributive law if Ψ satisfying

Similar to [[9], Theorem 12], we have the following property.
Lemma 3.8. Let C be a finite dimensional coalgebra and A a finite dimensional algebra over k. Then give an entwining map $\varphi: C \otimes A \rightarrow A \otimes C$ is identified to give a coalgebra distributive law $\Psi: A^{* c o p} \otimes C \rightarrow C \otimes A^{* c o p}$.

Now suppose that (C, A, φ) is a monoidal entwining datum over k where C, A are two Hopf algebras with bijective antipodes.

Definition 3.9. The entwined smash coproduct $A^{* c o p} \otimes C$ of (C, A, φ), in a form containing $A^{* C o p}$ and C, is a Hopf algebra with the following structures:

- the multiplication \bar{m} is given by
$(\gamma \otimes c)(\delta \otimes d):=\gamma * \delta \otimes a b$,
where $c, d \in A, \gamma, \delta \in A^{* c o p}$;
- the unit is $\bar{\eta}\left(1_{k}\right)=\varepsilon_{A} \otimes 1_{C}$;
- the comultiplication is given by

$$
\bar{\Delta}(\gamma \otimes c):=\sum\left(\gamma_{1}\left(e_{i \varphi}\right) \gamma_{2} \otimes c_{1}^{\varphi}\right) \otimes\left(e^{i} \otimes c_{2}\right),
$$

where e_{i} and e^{i} are dual bases of A and A^{*}

- the counit is given by

$$
\bar{\varepsilon}(\gamma \otimes c):=\gamma\left(1_{A}\right) \varepsilon_{C}(c)
$$

- the antipode is given by

$$
\bar{S}(\gamma \otimes c):=\sum \gamma\left(e_{i \varphi}\right) S_{A^{*}}^{-1}\left(e^{i}\right) \otimes S_{C}\left(c^{\varphi}\right) .
$$

Be similar with [[9], Theorem 13], we have the following property.
Proposition 3.10. $C_{A}^{C}(\varphi)$ is monoidal isomorphic to the corepresentation category of $A^{* o o p} \otimes C$.
Corollary 3.11. For any $a \in A, c \in C$, the following identities hold

$$
\begin{align*}
& S_{A}^{-1}(a) \otimes S_{C}(c)=\sum \underline{S}_{S_{A}^{-1}\left(a_{\varphi}\right)}^{\psi} \otimes \underline{S_{C}\left(m_{1}\right)^{\psi}} ; \tag{3.1}\\
& S_{A}(a) \otimes S_{C}^{-1}(c)=\sum \underline{S A}_{S_{A}\left(a_{\varphi}\right)}^{\psi} \otimes \underline{S}_{C}^{-1}\left(c^{\psi}\right)^{\varphi} \tag{3.2}
\end{align*}
$$

Proof. We only prove Eq.(3.2). For any $a \in A, c \in C, p \in C^{*}, \gamma \in A^{*}$, since \widehat{S} is the antipode of $C^{* o p} \otimes A$, we have

$$
\widehat{S}\left(\left(\varepsilon_{c} \otimes a\right)\left(p \otimes 1_{A}\right)\right)=\widehat{S}\left(p \otimes 1_{A}\right) \widehat{S}\left(\varepsilon_{c} \otimes a\right)
$$

For one thing, we compute

$$
\left.\begin{array}{rl}
\widehat{S}\left(\left(\varepsilon_{c} \otimes a\right)\left(p \otimes 1_{A}\right)\right) & =\widehat{S}\left(e^{i} \otimes a_{\varphi}\right) p\left(e_{i}{ }^{\varphi}\right) \\
& =\sum p\left(\underline{S_{C}^{-1}\left(o_{i}\right)^{\psi}}\right)
\end{array}\right) o_{i} \otimes S_{A}\left(a_{\varphi}\right)_{\psi^{\prime}}, ~ l
$$

where $e_{i}\left(o_{i}\right)$ and $e^{i}\left(o^{i}\right)$ are dual bases of C and C^{*} respectively.
For another, we have

$$
\begin{aligned}
\widehat{S}\left(p \otimes 1_{A}\right) \widehat{S}\left(\varepsilon_{c} \otimes a\right) & =\left(p\left(S_{C}^{-1}\left(e_{i}\right)\right) e^{i} \otimes 1_{A}\right)\left(\varepsilon_{C} \otimes S_{A}(a)\right) \\
& =\sum p\left(S_{C}^{-1}\left(e_{i}\right)\right) e^{i} \otimes S_{A}(a) .
\end{aligned}
$$

Thus $\sum p\left(S_{C}^{-1}\left(o_{i}{ }^{\psi}\right)^{\varphi}\right) o_{i} \otimes S_{A}\left(a_{\varphi}\right)_{\psi}=\sum p\left(S_{C}^{-1}\left(e_{i}\right)\right) e^{i} \otimes S_{A}(a)$. Indeed, we can easily get

$$
\sum p\left(\underline{S_{C}^{-1}\left(o_{i} \psi^{\varphi}\right.}{ }^{\varphi}\right) o_{i}(c) \otimes \gamma\left(S_{A}\left(a_{\varphi}\right)_{\psi}\right)=\sum p\left(S_{C}^{-1}\left(e_{i}\right)\right) e^{i}(c) \otimes \gamma\left(S_{A}(a)\right),
$$

i.e.

$$
\sum p\left(\underline{S_{C}^{-1}\left(c^{\psi}\right)^{\varphi}}\right) \otimes \gamma\left(S_{A}\left(a_{\varphi}\right)_{\psi}\right)=\sum p\left(S_{C}^{-1}(c)\right) \otimes \gamma\left(S_{A}(a)\right)
$$

which implies Eq.(3.2).
Similarly, since

$$
(\bar{S} \otimes \bar{S}) \circ \bar{\Delta}^{c o p}=\bar{\Delta} \circ \bar{S},
$$

Eq.(3.1) holds.

Assume that C and A are two Hopf algebras with bijective antipodes over k, and $\varphi: C \otimes A \rightarrow A \otimes C$ is a k-linear map such that (C, A, φ) is a monoidal entwining datum.

For any $\left(M, \varrho_{M}, \rho^{M}\right) \in C_{A}^{C}(\varphi)$, set $M^{*}={ }^{*} M=h o m_{k}(M, k)$ as spaces, and define the A-action and C-coaction on M^{*} and ${ }^{*} M$ by

$$
\begin{aligned}
& \varrho_{M^{*}}: M^{*} \otimes A \longrightarrow M^{*},(f \cdot a)(m):=f\left(m \cdot S_{A}^{-1}(a)\right), \\
& \rho^{M^{*}}: M^{*} \longrightarrow M^{*} \otimes C, \quad f_{0}(m) \otimes f_{1}:=f\left(m_{0}\right) \otimes S_{C}\left(m_{1}\right), \\
& \varrho^{*} M:{ }^{*} M \otimes A \longrightarrow{ }^{*} M,(f \cdot a)(m):=f\left(m \cdot S_{A}(h)\right) \text {, } \\
& \rho^{*} M:{ }^{*} M \longrightarrow{ }^{*} M \otimes C, \quad f_{0}(m) \otimes f_{1}:=f\left(m_{0}\right) \otimes S_{C}^{-1}\left(m_{1}\right),
\end{aligned}
$$

where $f \in \operatorname{hom}_{k}(M, k), a \in A, m \in M$, and define the evaluation map and coevaluation map by

$$
\begin{aligned}
& e v_{M}: f \otimes m \longmapsto f(m) ; \quad \operatorname{coev}_{M}: 1_{k} \longmapsto \sum_{i} e_{i} \otimes e^{i} \\
& \widetilde{e v}_{M}: m \otimes f \longmapsto f(m) ; \quad \widetilde{\operatorname{coev}_{M}}: 1_{k} \longmapsto \sum_{i} e^{i} \otimes e_{i}
\end{aligned}
$$

where e_{i} and e^{i} are dual bases in M and M^{*}. It is easy to check that M^{*} and ${ }^{*} M$ are all both A-modules and C-comodules. Further, $e v, c o e v, \widetilde{e v}, \widetilde{C O E V}$ are all both A-linear and C-colinear maps.

Theorem 3.12. $C_{A}^{C}(\varphi)$ is a rigid category.
Proof. We only show that $C_{A}^{C}(\varphi)$ admit left duality, i.e., M^{*} is an object in $\mathcal{C}_{A}^{C}(\varphi)$ for any entwined module M. Actually, for any $\mu \in M^{*}, m \in M, a \in A$, we have

$$
\left.\left.\begin{array}{rl}
(\mu \cdot a)_{0}(m) \otimes(\mu \cdot a)_{1} & =\mu\left(m_{0} \cdot S_{A}^{-1}(a)\right) \otimes S_{C}\left(m_{1}\right) \\
& \stackrel{(3.1)}{=} \sum \mu\left(m_{0} \cdot \underline{S A}_{-1}^{=}\left(a_{\varphi}\right)\right.
\end{array}\right) \otimes \underline{S_{C}\left(m_{1}{ }^{\psi}\right)^{\varphi}}\right)
$$

Thus $\mathcal{C}_{A}^{C}(\varphi)$ is a left rigid category.
Similarly, one can check that $C_{A}^{C}(\varphi)$ is a right rigid category by using Eq.(3.2).

4. The ribbon structure in the category of entwined modules

Now suppose that (C, A, φ, R) is a double quantum group over k, thus $C_{A}^{C}(\varphi)$ is a braided category with the braiding which is defined by Eq.(2.1). We also assume that $\operatorname{Nat}(F, F)$ means the collection of natural transformations from the forgetful functor $F: C_{A}^{C}(\varphi) \rightarrow V e c_{k}$ to itself. Then we have the following property.

Proposition 4.1. There is a bijective map between the algebra $\operatorname{Nat}(F, F)$ and $\operatorname{hom}_{k}(C, A)$.
Proof. See [[11], Theorem 2.1 and Proposition 2.4]
Actually, one can define a map $\Pi: \operatorname{Nat}(F, F) \rightarrow \operatorname{hom}_{k}(C, A)$ by

$$
\Pi(\theta): C \rightarrow A, \quad c \mapsto \sum\left(\varepsilon_{C} \otimes A\right) \theta_{C \otimes A}\left(c \otimes 1_{A}\right)
$$

where $\theta \in \operatorname{Nat}(F \circ i d, F \circ i d), c \in C$. Define $\Sigma: \operatorname{hom}_{k}(C, A) \rightarrow \operatorname{Nat}(F, F)$ by

$$
\Sigma(g)_{M}: M \rightarrow M, \quad m \mapsto m_{0} \cdot g\left(m_{1}\right)
$$

where $g \in \operatorname{hom}_{k}(C, A), M \in C_{A}^{C}(\varphi), m \in M$. It is a direct computation to check that Π and Σ are well-defined and inverse with each other.

From now on, assume that $\theta \in \operatorname{Nat}(F, F)$ and $g \in \operatorname{hom}_{k}(C, A)$ are in correspondence with each other.
Lemma 4.2. θ is a natural isomorphism if and only if g is invertible under the entwined convolution.
Proof. Straightforward from Proposition 4.1.
Lemma 4.3. For any $\left(M, \varrho_{M}, \rho^{M}\right) \in C_{A}^{C}(\varphi), \theta_{M}$ is A-linear if and only if g satisfies

$$
\begin{equation*}
g(c) a=\sum a_{\varphi} g\left(c^{\varphi}\right), \quad \text { for any } c \in C, a \in A . \tag{4.1}
\end{equation*}
$$

Proof. \Leftarrow : Since we have

$$
\begin{aligned}
\theta_{M}(m \cdot a) & =\sum m_{0} \cdot a_{\varphi} g\left(m_{1}^{\varphi}\right) \\
& \stackrel{(4.1)}{=} \sum m_{0} \cdot g\left(m_{1}\right) a=\theta_{M}(m) \cdot a,
\end{aligned}
$$

where $m \in M, a \in A$. Hence θ_{M} is an A-module morphism.
\Rightarrow : Conversely, since $\theta_{A \otimes C}$ is A-linear, for any $c \in C$ and $a \in A$, we have the following commute diagram

which implies

$$
\sum a_{\varphi} \underline{g\left(c_{2}^{\varphi}\right)} \psi *{\underline{c_{1}}}^{\psi}=\sum \underline{\underline{g\left(c_{2}\right)}} \underset{\varphi}{ } a_{\psi} \otimes \underline{c_{1} \varphi \psi} .
$$

Take $i d_{A} \otimes \varepsilon_{C}$ to action at the both side of the above equation, we immediately get Eq.(4.1).
Lemma 4.4. For any $\left(M, \varrho_{M}, \rho^{M}\right) \in C_{A}^{C}(\varphi), \theta_{M}$ is C-colinear if and only if g satisfies

$$
\begin{equation*}
g\left(c_{1}\right) \otimes c_{2}=\sum g\left(c_{2}\right)_{\varphi} \otimes c_{1}^{\varphi}, \quad \text { for any } c \in C \tag{4.2}
\end{equation*}
$$

Proof. Be similar with Lemma 4.3.
Lemma 4.5. If θ is both A-linear and C-colinear, then g is invertible under the entwined convolution if and only if g is convolution invertible, i.e., there exists a k-linear map $g^{\prime}: C \rightarrow A$, such that

$$
g\left(c_{1}\right) g^{\prime}\left(c_{2}\right)=g^{\prime}\left(c_{1}\right) g\left(c_{2}\right)=\varepsilon_{C}(c) 1_{A}, \quad \forall c \in C .
$$

Proof. \Rightarrow : Suppose that $g^{\star-1}$ is the inverse of g under the entwined convolution. Then for any $c \in C$, we have

$$
\begin{aligned}
g\left(c_{1}\right) g^{\star-1}\left(c_{2}\right) & \stackrel{(4.1)}{=} \sum{\underline{g^{\star-1}\left(c_{2}\right)}}_{\varphi} g\left({\underline{c_{1}}}^{\varphi}\right) \\
& =\left(g \star g^{\star-1}\right)(c)=\varepsilon_{C}(c) 1_{A}
\end{aligned}
$$

and similarly we can obtain $g^{\star-1}\left(c_{1}\right) g\left(c_{2}\right)=\varepsilon_{C}(c) 1_{A}$ from Eq.(4.2).
\Leftarrow : Conversely, if g is convolution invertible and g^{\prime} is its inverse, then it is easily to get that g^{\prime} is the inverse of g under the entwined convolution.

Remark 4.6. From Lemma 4.2-4.5, we immediately get that g is convolution invertible and satisfies Eqs.(4.1)-(4.2) if and only if θ is a natural isomorphism in $C_{A}^{C}(\varphi)$.

Lemma 4.7. Suppose that θ is a natural transformation in $C_{A}^{C}(\varphi)$, then θ is a twist if and only if for any $x, y \in C, g$ satisfies

$$
\begin{align*}
& \Delta_{A}(g(x y))= \\
& \sum g\left(x_{1}\right) r^{(2)}\left(x_{3} \otimes y_{3}\right) R^{(1)}\left({\underline{y_{2}}}^{\varphi} \otimes{\underline{x_{2}}}^{\psi}\right) \otimes g\left(y_{1}\right) r^{(1)}\left(x_{3} \otimes y_{3}\right) \underset{\varphi}{ } R^{(2)}\left({\underline{y_{2}}}^{\varphi} \otimes{\underline{x_{2}}}^{\psi}\right) . \tag{4.3}
\end{align*}
$$

Proof. $\Leftarrow:$ For any $M, N \in C_{A}^{C}(\varphi)$ and $m \in M, n \in N$, we compute that

$$
\begin{aligned}
& \left(\mathbf{C}_{N, M} \circ \mathbf{C}_{M, N} \circ\left(\theta_{M} \otimes \theta_{N}\right)\right)(m \otimes n) \\
& =\left(\mathbf{C}_{N, M} \circ \mathbf{C}_{M, N}\right)\left(m_{0} \cdot g\left(m_{1}\right) \otimes n_{0} \cdot g\left(n_{1}\right)\right) \\
& \stackrel{(4.2)}{=} \mathrm{C}_{N, M}\left(\sum\left(n_{00} \cdot \underline{g\left(n_{1}\right)} \varphi{ }_{\varphi} \otimes m_{00} \cdot \underline{g\left(m_{1}\right)} \underset{\psi}{ }\right) \cdot R\left(\underline{m 01}^{\psi} \otimes{\underline{n_{01}}}^{\varphi}\right)\right) \\
& \left.\stackrel{(E 1)}{=} \sum m_{0} \cdot \underline{g\left(m_{2}\right)} \underline{R}^{R^{(2)}\left(m_{3} \otimes n_{3}\right)} \phi^{(1)}\left(\underline{n}^{\psi \chi} \otimes \underline{m}^{\varphi \phi}\right) \otimes n_{0} \cdot \underline{g\left(n_{2}\right)} \underline{R}^{R^{(1)}\left(m_{3} \otimes n_{3}\right)} \chi^{r^{(2)}}{\underline{n_{1}}}^{\psi \chi} \otimes \underline{m}_{1}{ }^{\varphi \phi}\right) \\
& \stackrel{(4.2)}{=} \sum m_{0} \cdot g\left(m_{1}\right) \underline{R}^{(2)}\left(m_{3} \otimes n_{3}\right)_{\varphi} r^{(1)}\left({\underline{\left(n_{2}\right.}}^{\psi} \otimes \underline{m}^{\varphi}\right) \otimes n_{0} \cdot g\left(n_{1}\right) \underline{R}^{(1)}\left(m_{3} \otimes n_{3}\right) \underset{\psi}{ } r^{(2)}\left(n_{2}{ }^{\psi} \otimes \underline{m}_{2}{ }^{\varphi}\right) \\
& \stackrel{(4.3)}{=}\left(m_{0} \otimes n_{0}\right) \cdot\left(g\left(m_{1} n_{1}\right)\right) \text {, }
\end{aligned}
$$

which implies θ is a twist.
\Rightarrow : Conversely, for the entwined modules $C \otimes A$ and $A \otimes C$, since θ is a twist, then for any $x, y \in C$ we have

$$
\begin{aligned}
& \left(\mathbf{C}_{A \otimes C, C \otimes A} \circ \mathbf{C}_{C \otimes A, A \otimes C} \circ\left(\theta_{C \otimes A} \otimes \theta_{A \otimes C}\right)\right)\left(\left(x \otimes 1_{A}\right) \otimes\left(1_{A} \otimes y\right)\right) \\
= & \theta_{C \otimes A, A \otimes C}\left(\left(x \otimes 1_{A}\right) \otimes\left(1_{A} \otimes y\right)\right),
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left(\mathbf{C}_{A \otimes C, C \otimes A} \circ \mathbf{C}_{C \otimes A, A \otimes C} \circ\left(\theta_{C \otimes A} \otimes \theta_{A \otimes C}\right)\right)\left(\left(x \otimes 1_{A}\right) \otimes\left(1_{A} \otimes y\right)\right) \\
& \stackrel{(4.2)}{=}\left(\mathbf{C}_{A \otimes C, C \otimes A} \circ \mathbf{C}_{C \otimes A, A \otimes C)}\right)\left(\left(x_{1} \otimes g\left(x_{2}\right)\right) \otimes\left(g\left(y_{1}\right) \otimes y_{2}\right)\right) \\
& =\quad \mathbf{C}_{A \otimes C, C \otimes A}\left(\sum\left(g\left(y_{1}\right) \underline{R}^{(1)}\left(x_{3} \otimes y_{3}\right)_{\varphi} \otimes{\underline{y_{2}}}^{\varphi}\right) \otimes\left(x_{1} \otimes g\left(x_{2}\right) R^{(2)}\left(x_{3} \otimes y_{3}\right)\right)\right) \\
& \stackrel{(E 1)}{=} \sum x_{1} \otimes g\left(x_{3}\right)_{\psi} \underline{R^{(2)}\left(x_{4} \otimes y_{3}\right)}{ }_{\phi} r^{(1)}\left(y_{2}{ }_{2} \otimes x_{2}{ }^{\psi \phi}\right) \otimes g\left(y_{1}\right) \underline{R^{(1)}\left(x_{4} \otimes y_{3}\right)} \underline{r}^{r^{(2)}\left(y_{2}{ }_{2}{ }_{2} \otimes x_{2}{ }^{\psi \phi}\right)} \chi^{\otimes} \otimes y_{2}{ }_{1}{ }_{1}{ }^{\chi},
\end{aligned}
$$

and

$$
\begin{aligned}
& \theta_{C \otimes A, A \otimes C}\left(\left(x \otimes 1_{A}\right) \otimes\left(1_{A} \otimes y\right)\right) \\
= & x_{1} \otimes \underline{g\left(x_{1} y_{1}\right)_{1}} \otimes \underline{g\left(x_{1} y_{1}\right)} \underline{y}_{2} \otimes y_{1},
\end{aligned}
$$

we have

$$
\left.\begin{array}{l}
\sum x_{1} \otimes g\left(x_{3}\right)_{\psi} R^{(2)}\left(x_{4} \otimes y_{3}\right)^{r}
\end{array} r^{(1)}\left(y_{2}{ }_{2}{ }_{2} \otimes x_{2}{ }^{\psi \phi}\right) \otimes g\left(y_{1}\right) \underline{R^{(1)}\left(x_{4} \otimes y_{3}\right)} \varphi \underline{r^{(2)}\left(y_{2}{ }_{2}{ }_{2} \otimes x_{2}{ }^{\psi \phi}\right)} \chi \otimes y_{2}{ }_{1}^{\varphi}{ }_{1}^{\chi}\right)
$$

Take $\varepsilon_{C} \otimes i d_{A} \otimes i d_{A} \otimes \varepsilon_{C}$ to action at the both side of the above equation, we immediately get Eq.(4.3).
Recall from Theorem 3.12, we get that $C_{A}^{C}(\varphi)$ is a rigid category. Then we get the following property.
Lemma 4.8. θ is self-dual in $C_{A}^{C}(\varphi)$ if and only if g satisfies

$$
\begin{equation*}
g(c)=\sum \underline{S_{A}^{-1} g S_{C}\left(c^{\varphi}\right)} \varphi^{\prime} \quad \text { for any } c \in C \tag{4.4}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
g(c)=\sum a_{i \varphi} a^{i}\left(S_{A}^{-1} g S_{C}\left(c^{\varphi}\right)\right), \quad \text { for any } \gamma \in A^{*}, c \in C, \tag{4.5}
\end{equation*}
$$

where a_{i} and a^{i} are bases of A and A^{*} respectively, dual to each other.
Proof. \Leftarrow : For any object $M \in C_{A}^{C}(\varphi)$, suppose that o_{i} and o^{i} are dual bases of M and M^{*}, a_{i} and a^{i} are dual bases of A and $A^{*}, \mu \in M^{*}, m \in M$, then we have

$$
\left.\begin{array}{rl}
\theta_{M^{*}}(\mu)(m) & =\left(\mu_{0} \cdot g\left(\mu_{1}\right)\right)(m)=\mu_{0}\left(m \cdot S_{A}^{-1} g\left(\mu_{1}\right)\right) \\
\stackrel{(T R 2)}{=} & \sum\left(\varrho_{M}\right)^{*}\left(\mu_{0}\right)\left(m \otimes S_{A}^{-1} g\left(\mu_{1}\right)\right) \\
\stackrel{(T R 1)}{=} \sum \mu_{0}\left(o_{i} \cdot a_{i}\right) a^{i}\left(S_{A}^{-1} g\left(\mu_{1}\right)\right) o^{i}(m) \\
& =\sum \mu\left(o_{i 0} \cdot a_{i \varphi}\right) a^{i}\left(S_{A}^{-1} g S_{C}\left(o_{i 1}{ }^{\varphi}\right)\right) o^{i}(m) \\
& =\sum \mu\left(m_{0} \cdot \underline{S_{A}^{-1} g S_{C}\left(m_{1}{ }^{\varphi}\right)}\right) \\
\varphi
\end{array}\right)
$$

Thus θ is self-dual in $C_{A}^{C}(\varphi)$.
\Rightarrow : Conversely, for $(C \otimes A)^{*} \in C_{A}^{C}(\varphi)$, since θ is self-dual, we have

$$
\theta_{(C \otimes A)^{*}}\left(\gamma \otimes \varepsilon_{C}\right)\left(c \otimes 1_{A}\right)=\left(\theta_{C \otimes A}\right)^{*}\left(\gamma \otimes \varepsilon_{C}\right)\left(c \otimes 1_{A}\right), \text { where } \gamma \in A^{*}, c \in C .
$$

For one thing, consider that

$$
\begin{aligned}
\left(\theta_{C \otimes A}\right)^{*}\left(\gamma \otimes \varepsilon_{C}\right)\left(c \otimes 1_{A}\right) & =\left(\gamma \otimes \varepsilon_{C}\right)\left(\left(c_{1} \otimes 1_{A}\right) \cdot g\left(c_{2}\right)\right) \\
& =\gamma(g(c)) .
\end{aligned}
$$

For another, we compute

$$
\begin{array}{ll}
& \theta_{(C \otimes A)^{*}}\left(\gamma \otimes \varepsilon_{C}\right)\left(c \otimes 1_{A}\right) \\
\stackrel{(T R 2)}{=} & \sum\left(\varrho_{C \otimes A}\right)^{*}\left(\left(\gamma \otimes \varepsilon_{C}\right)_{0}\right)\left(\left(c \otimes 1_{A}\right) \otimes S_{A}^{-1} g\left(\left(\gamma \otimes \varepsilon_{C}\right)_{1}\right)\right) \\
\stackrel{(T R 1)}{=} & \sum\left(\gamma \otimes \varepsilon_{C}\right)_{0}\left(\left(c_{i} \otimes b_{i}\right) \cdot a_{i}\right) a^{i}\left(S_{A}^{-1} g\left(\left(\gamma \otimes \varepsilon_{C}\right)_{1}\right)\right)\left(b^{i} \otimes c^{i}\right)\left(c \otimes 1_{A}\right) \\
= & \sum\left(\gamma \otimes \varepsilon_{C}\right)\left(c_{i 1} \otimes \underline{b_{i} a_{i}}\right) a^{i}\left(S_{A}^{-1} g S_{C}\left(c_{i 2}{ }^{\varphi}\right)\right) c^{i}(c) b^{i}\left(1_{A}\right) \\
= & \sum \gamma\left(a_{i \varphi}\right) a^{i}\left(S_{A}^{-1} g S_{C}\left(c^{\varphi}\right)\right)=\gamma\left(\underline{S_{A}^{-1} g S_{C}\left(c^{\varphi}\right)}\right),
\end{array}
$$

where c_{i} and c^{i} are dual bases of C and C^{*}, a_{i} and a^{i}, b_{i} and b^{i} are two dual bases of A and A^{*}. Hence Eq.(4.4) holds.

Definition 4.9. Assume that C, A are two Hopf algebras with bijective antipodes over a field k, and (C, A, φ, R) is a double quantum group. If there exists a k-linear map $g: C \rightarrow A$, such that g is convolution invertible, and Eqs.(4.1)-(4.4) are satisfied, then g is called an entwined ribbon morphism over (C, A, φ, R). Further, (C, A, φ, R, g) is called a ribbon entwined datum.

Combining Proposition 4.1 - Lemma 4.8, we get our main theorem below.
Theorem 4.10. Assume that C, A are two Hopf algebras with bijective antipodes over $k, \varphi: C \otimes A \rightarrow A \otimes C$ and $R: C \otimes C \rightarrow A \otimes A$ are two k-linear maps such that (C, A, φ, R) is a double quantum group. Then $C_{A}^{C}(\varphi)$ is a ribbon category if and only if there is an entwined ribbon morphism $g \in \operatorname{Hom}_{k}(C, A)$. Moreover, the ribbon structure θ in $C_{A}^{C}(\varphi)$ is defined by

$$
\theta_{M}: M \rightarrow M, \quad \theta_{M}(m)=m_{0} \cdot g\left(m_{1}\right), \text { where } m \in M
$$

for any $\left(M, \theta_{M}, \rho^{M}\right) \in C_{A}^{C}(\varphi)$.

Theorem 4.11. Suppose that (C, A, φ, R) is a double quantum group where R is a map from $C \otimes C$ to $A \otimes A$. Then there exists a k-linear map $g: C \rightarrow A$ such that (C, A, φ, R, g) is a ribbon entwined datum if and only if $C^{* o p} \otimes A$ is a ribbon Hopf algebra.
Proof. \Rightarrow : If (C, A, φ, R, g) is a ribbon entwined datum, then the R-matrix of $C^{* o p} \otimes A$ is $\sum c^{i} \otimes R^{(2)}\left(c_{i} \otimes e_{i}\right) \otimes e^{i} \otimes$ $R^{(1)}\left(c_{i} \otimes e_{i}\right)$, where e_{i} and e^{i}, c_{i} and c^{i} are all dual bases of C and C^{*} respectively. Further, the ribbon element in $C^{* o p} \otimes A$ is $\sum e^{i} \otimes g\left(e_{i}\right)$.
\Leftarrow Conversely, if $C^{* o p} \otimes A$ is a ribbon Hopf algebra with the ribbon element $L=\sum L^{(1)} \otimes L^{(2)} \in C^{* o p} \otimes A$, then the entwined ribbon morphism of $C_{A}^{C}(\varphi)$ is $c \mapsto \sum L^{(1)}(c) L^{(2)}$.
Theorem 4.12. Suppose that (C, A, φ, R) is a double quantum group where R is a map from $C \otimes C$ to $A \otimes A$. Then there exists a k-linear map $g: C \rightarrow A$ such that (C, A, φ, R, g) is a ribbon entwined datum if and only if $A^{* c o p} \otimes C$ is a coribbon Hopf algebra.

Proof. If (C, A, φ, R, g) is a ribbon entwined datum, then the coquasitriangular structure on $A^{* c o p} \otimes C$ is

$$
\zeta:\left(A^{* c o p} \otimes C\right) \otimes\left(A^{* c o p} \otimes C\right) \rightarrow k, \quad \zeta\left(\left(\gamma^{\prime} \otimes c\right) \otimes(\gamma \otimes d)\right) \mapsto\left(\gamma^{\prime} \otimes \gamma\right) R(c \otimes d)
$$

And the coribbon form on $A^{* c o p} \otimes C$ is $\gamma \otimes c \mapsto \gamma(g(c))$.
Conversely, if $A^{* c o p} \otimes C$ is a coribbon Hopf algebra with the coribbon form $\Theta \in\left(A^{* c o p} \otimes C\right)^{*}$, then the entwined ribbon morphism of $C_{A}^{C}(\varphi)$ is $c \mapsto \sum \Theta\left(e^{i} \otimes c\right) e_{i}$, where e_{i} and e^{i} are dual bases of A and A^{*}, respectively.

Example 4.13. If $C=k, \varphi=i d_{A}$, then the double quantum group (C, A, φ, R) becomes a quasitriangular Hopf algebra (A, R), where R means the R-matrix in A. And the entwined ribbon morphism becomes an invertible element $g \in A$ satisfies
$\int(1) g$ is in the center of A;
(2) $\Delta(g)=(g \otimes g) R_{21} R$;
(3) $g=S(g)$,
which implies g is a usual ribbon element in A, thus A is a ribbon Hopf algebra.
Example 4.14. Let k be a field and H_{4} be the Sweedler's 4-dimensional Hopf algebra $H_{4}=k\left\{1_{H}, e, x, y \mid e^{2}=1_{H}, x^{2}=\right.$ $0, y=e x=-x e\}$ with the following structure

$$
\begin{gathered}
\Delta(e)=e \otimes e, \Delta(x)=x \otimes 1_{H}+e \otimes x, \Delta(y)=y \otimes e+1_{H} \otimes y \\
\varepsilon(e)=1, \varepsilon(x)=\varepsilon(y)=0, S(e)=e, S(x)=-y, S(y)=x
\end{gathered}
$$

Since the triangular structure in H_{4} is

$$
\begin{equation*}
R=\frac{1}{2}\left(1_{H} \otimes 1_{H}+1_{H} \otimes e+e \otimes 1_{H}-e \otimes e\right) \tag{4.6}
\end{equation*}
$$

we immediately get that H_{4} is a ribbon Hopf algebra with the ribbon element 1_{H}.
Example 4.15. If $A=k, \varphi=i d_{C}$, then the double quantum group (C, A, φ, R) becomes a coquasitriangular Hopf algebra (C, R). And the entwined ribbon morphism is a convolution invertible k-linear character $g \in C^{*}$, satisfies
(1) $g\left(c_{1}\right) c_{2}=c_{1} g\left(c_{2}\right)$;
(2) $g(c d)=g\left(c_{1}\right) g\left(d_{1}\right) R\left(c_{2} \otimes d_{2}\right) R\left(d_{3} \otimes c_{3}\right)$;
(3) $g(c)=g(S(c))$,
for any $c, d \in C$, which implies g is a coribbon form on C, thus C is a coribbon Hopf algebra.
Example 4.16. Let k be a field and H_{4} be the Sweedler's 4-dimensional Hopf algebra. Since the cotriangular structure on H_{4} is

β	1_{H}	g	x	y
1_{H}	1	1	0	0
g	1	-1	0	0
x	0	0	0	0
y	0	0	0	0

we immediately get that H_{4} is a coribbon Hopf algebra with the coribbon form ε.
Example 4.17. Assume that (C, A, φ, R, g) is a ribbon entwined datum. If the following identity hold

$$
\sum a_{\varphi} \otimes\left(1_{C}\right)^{\varphi}=a \otimes 1_{C}, \quad \text { for any } a \in A
$$

then recall from Lemma 2.1 that $\left(A, R\left(1_{C} \otimes 1_{C}\right)\right)$ is a quasitriangular Hopf algebra. Further, $\left(A, g\left(1_{C}\right)\right)$ is a ribbon Hopf algebra.

Dually, if the following identity hold

$$
\sum \varepsilon_{A}\left(a_{\varphi}\right) c^{\varphi}=\varepsilon_{A}(a) c, \quad \text { for any } c \in C, a \in A
$$

then $\left(C,\left(\varepsilon_{A} \otimes \varepsilon_{A}\right) \circ R\right)$ is a coquasitriangular Hopf algebra. Further, $\left(C, \varepsilon_{A} \circ g\right)$ is a coribbon Hopf algebra.

5. Applications

5.1. Generalized Long dimodules

Suppose that H and B are both finite dimensional Hopf algebras over k, M is at the same time a right H-module and a right B-comodule. Recall that M is called a generalized right-right Long dimodule (see [15]) if

$$
\rho(m \cdot h)=\sum m_{(0)} \cdot h \otimes m_{(1)}
$$

for all $m \in M$ and $h \in H$. The category of generalized right-right Long dimodules and H-linear B-colinear homomorphisms is denoted by \mathcal{L}_{H}^{B}. If we define $\tau: B \otimes H \rightarrow H \otimes B$ as the flip map in $V e c_{k}$, then obviously (B, H, τ) is a monoidal entwining datum, and $\mathcal{L}_{H}^{B}=C_{H}^{B}(\tau)$.

Then from Theorem 3.4, we immediately get that the category of generalized Long dimodules is identified to the representations of the Hopf algebra $B^{* o p} \otimes H$. Here the bialgebra structure of $B^{* o p} \otimes H$ is the ordinary bialgebra structure which is induced by the tensor product of $B^{* o p}$ and H, and the antipode is defined by

$$
\bar{S}(p \otimes a)=S_{B^{*}}^{-1}(p) \otimes S_{H}(a), \quad \text { where } p \in B^{*}, a \in H
$$

Proposition 5.1. \mathcal{L}_{H}^{B} is a braided category if and only if H is a quasitriangular Hopf algebra and B is a coquasitriangular Hopf algebra.

Proof. We only need to prove the existence of the double quantum group (B, H, τ, \mathbf{R}) is equivalent to the fact that H is quasitriangular and B is coquasitriangular. Consider the following sets

$$
\mathcal{P}=\left\{\mathbf{R} \in \operatorname{Hom}_{k}(B \otimes B, H \otimes H) \mid(B, H, \tau, \mathbf{R}) \text { is a double quantum group }\right\}
$$

and
$Q=\{(\mathrm{R}, \beta) \mid$ where R is the quasitriangular structure in H, and β is the coquasitriangular structure on $B\}$.
Define the map $\mathfrak{F}: \mathcal{P} \rightarrow Q$ by

$$
\mathfrak{F}(\mathbf{R})=\left(\mathbf{R}\left(1_{C} \otimes 1_{C}\right),\left(\varepsilon_{A} \otimes \varepsilon_{A}\right) \circ \mathbf{R}\right), \quad \text { for any } \mathbf{R} \in \mathcal{P} .
$$

Clearly \mathfrak{F} is well-defined because of Lemma 2.1. Further, \mathfrak{F} is invertible, and its inverse is given by $\mathfrak{F}^{\prime}: Q \rightarrow \mathcal{P}$,

$$
\begin{aligned}
\mathfrak{F}^{\prime}(\mathrm{R}, \beta): B \otimes B & \longrightarrow H \otimes H \\
a \otimes b & \longmapsto \sum \beta(a, b) \mathrm{R}^{(1)} \otimes \mathrm{R}^{(2)}
\end{aligned}
$$

where $(\mathrm{R}, \beta) \in Q$. Thus the conclusion holds.

Example 5.2. Let k be a field and H_{4} be the Sweedler's 4-dimensional Hopf algebra. Recall from Example 4.14 and Example 4.16 that $\mathcal{L}_{H_{4}}^{H_{4}}$ is a braided category with the braiding:

$$
C_{M, N}(m \otimes n)=\sum \beta\left(m_{(1)}, n_{(1)}\right) R^{(2)} \cdot n_{(0)} \otimes R^{(1)} \cdot m_{(0)}, \quad \text { where } m \in M, n \in N, M, N \in \mathcal{L}_{H_{4}}^{H_{4}}
$$

Theorem 5.3. \mathcal{L}_{H}^{B} is a ribbon category if and only if H is a ribbon Hopf algebra and B is a coribbon Hopf algebra.
Proof. \Leftarrow : Suppose the ribbon element in H is ξ, the coribbon form on B is ζ. Define a k-linear map $g: B \rightarrow H$ by

$$
g(b):=\zeta(b) \xi, \quad \text { for any } b \in B
$$

it is easy to check that g satisfies Eqs.(4.1)-(4.4). Since Theorem 4.10, the conclusion hold.
\Rightarrow : Straightforward from Example 4.17.
Example 5.4. Let k be a field and H_{4} be the Sweedler's 4-dimensional Hopf algebra. Recall from Example 4.14 and Example 4.16 that $\mathcal{L}_{H_{4}}^{H_{4}}$ is a ribbon category and its ribbon structure is id.

5.2. Yetter-Drinfel'd modules

Let H be a finite dimensional Hopf algebra over k. Recall that if M is both a right H-module and a right H-comodule, and satisfies

$$
\rho(m \cdot h)=\sum m_{(0)} \cdot h_{2} \otimes S\left(h_{1}\right) m_{(1)} h_{3}
$$

for any $h \in H, m \in M$, then M is a right-right Yetter-Drinfel'd module. The category of Yetter-Drinfel'd modules and H-linear H-colinear homomorphisms is denoted by $\mathcal{y} \mathcal{D}_{H}^{H}$.

If we define

$$
\begin{aligned}
\ddot{\varphi}: H \otimes H & \longrightarrow H \otimes H \\
c \otimes a & \longmapsto \sum a_{\ddot{\varphi}} \otimes c^{\ddot{\varphi}}:=a_{2} \otimes S\left(a_{1}\right) c a_{3} .
\end{aligned}
$$

It is straightforward to show $\ddot{\varphi}$ is a right-right entwining structure, and $C_{H}^{H}(\ddot{\varphi})=\mathcal{Y}_{\mathcal{D}}^{H}$. Further, it is easy to see that the entwined smash product $H^{* o p} \otimes H$ is the Drinfel'd double of H, and the entwined smash coproduct of $(H, H, \ddot{\varphi})$ is the Drinfel'd codouble (see [16], Section 10) of H.

Since $\boldsymbol{y} \mathcal{D}_{H}^{H}$ is a braided category with the braiding

$$
t_{M, N}: M \otimes N \rightarrow N \otimes M, m \otimes n \mapsto n_{(0)} \otimes m \cdot n_{(1)}, \text { where } M, N \in \mathcal{Y D}_{H}^{H}, m \in M, n \in N,
$$

we immediately get that $(H, H, \ddot{\varphi}, \mathbf{R})$ is a double quantum group, where \mathbf{R} is defined by

$$
\begin{aligned}
\mathbf{R}: H \otimes H & \longrightarrow H \otimes H \\
a \otimes b & \longmapsto 1_{H} \otimes \varepsilon(a) b .
\end{aligned}
$$

Then we have the following result from Theorem 4.10.
Theorem 5.5. $\boldsymbol{y} \mathcal{D}_{H}^{H}$ is a ribbon category if and only if there is a k-linear map $g: H \rightarrow H$, which is convolution invertible and satisfies the following identities for any $a, b \in H$:
(1) $g(b) a=a_{2} g\left(S\left(a_{1}\right) b a_{3}\right)$;
(2) $g\left(a_{1}\right) \otimes a_{2}=\underline{g\left(a_{2}\right)} 2 \otimes S\left(g\left(a_{2}\right)_{1}\right) a_{1} g\left(a_{2}\right)_{3}$;
(3) $\Delta(g(a b))=g\left(a_{1}\right) b_{3} \otimes g\left(b_{1}\right) S\left(b_{2}\right) a_{2} b_{4}$;
(4) $g(b)=\sum \underline{a}_{i_{2}} a^{i}\left(S^{-1} g S\left(S\left(\underline{a}_{i_{1}}\right) b a_{i_{3}}\right)\right)$,
where a_{i} and a^{i} are bases of A and A^{*} respectively, dual to each other.

Recall from [16] that if (H, R) is a quasitriangular Hopf algebra, then any $M \in \mathcal{M}_{H}$ can be seen as an object in $\mathcal{Y} \mathcal{D}_{H}^{H}$ by the coaction defined by

$$
\rho^{M}(m)=\sum m \cdot R^{(2)} \otimes R^{(1)}, \text { for any } m \in M
$$

Hence $\mathcal{M}_{H} \subseteq \mathcal{y} \mathcal{D}_{H}^{H}$. We denote this subcategory by $\mathcal{M} \mathcal{Y}_{\mathcal{D}}^{H}$. Dually, if (H, β) is a coquasitriangular Hopf algebra, then $\mathcal{M}^{H} \subseteq \boldsymbol{y} \mathcal{D}_{H}^{H}$ by the following H-action

$$
h \cdot m=\beta\left(h, m_{(1)}\right) m_{(0)}, \text { for any } M \in \mathcal{M}^{H}, h \in H, m \in M .
$$

We denote this subcategory of $\boldsymbol{y} \mathcal{D}_{H}^{H}$ by $\mathcal{C} \mathcal{D}_{H}^{H}$.
Proposition 5.6. (1) If (H, R, ξ) is a ribbon Hopf algebra, then $\mathcal{M} \mathcal{V}_{H}^{H}$ is a ribbon category;
(2) If (H, β, ζ) is a coribbon Hopf algebra, then $C \mathcal{Y} \mathcal{D}_{H}^{H}$ is a ribbon category.

Proof. (1) If the ribbon element in H is ξ, then we can define a k-linear map $g: H \rightarrow H$ via $g(x)=\varepsilon(x) \xi$. It is a direct computation to check that g is an entwined ribbon morphism of $\mathcal{M} \mathcal{y} \mathcal{D}_{H}^{H}$.
(2) Similarly, if the coribbon form on H is ζ, then we can define define $g^{\prime}: H \rightarrow H$ by $g^{\prime}(x)=\zeta(x) 1_{H}$. It is easy to check that g^{\prime} also satisfies Eqs.(4.1)-(4.4).

Example 5.7. Let H_{4} be the Sweedler's 4-dimensional Hopf algebra. After a direct calculation, we get that $\boldsymbol{y} \mathcal{D}_{H_{4}}^{H_{4}}$ is not a ribbon category. However, $\mathcal{M} \mathcal{D}_{H_{4}}^{H_{4}}$ and $\mathcal{C} \mathcal{D}_{H_{4}}^{H_{4}}$ are both ribbon categories.

References

[1] Alonso Álvarez J N, Fernández Vilaboa J M, González Rodríguez R. (2018) Cleft extensions for quasi-entwining structures. Math. Slovaca 68(2): 339-352.
[2] Barrett J W, Westbury B W. (1999) Spherical Categories. Adv. Math. 143: 357-375.
[3] Bichon J. (2001) Cosovereign Hopf algebras. J. Pure Appl. Algebra 157(2-3): 121-133.
[4] Bruguières A, Virelizier A. (2007) Hopf monads. Adv. Math. 215(2): 679-733.
[5] Brzeziński T. (1999) On modules associated to coalgebra Galois extensions. J. Algebra 215: 290-317.
[6] Brzeziński T. (2001) The cohomology structure of an algebra entwined with a coalgebra. J. Algebra 235: 176-202.
[7] Brzeziński T, Majid S. (1998) Coalgebra bundles. Comm. Math. Phys. 191: 467-492.
[8] Caenepeel S, Ion B, Militaru G, Zhu S L. (2000) The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3(1):19-42.
[9] Caenepeel S, Militaru G, Zhu S L. (2002) Frobenius and separable functors for generalized module categories and nonlinear equations. Lecture Notes in Mathematics, Vol 1787, Springer, Berlin.
[10] Freyd P J, Yetter D N. (1992) Coherence theorems via knot theory. J. Pure Appl. Algebra 78(1): 49-76.
[11] Hobst D, Pareigis B. (2001) Double quantum groups. J. Algebra 242(2): 460-494.
[12] Joyal A, Street R. (1991) An introduction to Tannaka duality and quantum groups. Lecture Notes in Mathematics, Vol. 1488, Springer, Berlin.
[13] Kassel C. (1995) Quantum Groups, Springer-Verlag, New York.
[14] Kauffman L H, Radford D E. (1993). A Necessary and Sufficient Condition for a Finite-Dimensional Drinfel'd Double to Be a Ribbon Hopf Algebra. J. Algebra 159: 98-114.
[15] Long F. (1974) The Brauer group of dimodule algebras. J. Algebra 30: 559-601.
[16] Montgomery S. (1993) Hopf algebras and their actions on rings. CMBS Reg. Conf. Ser. In Math. 82, Am. Math. Soc., Providence.
[17] Mesablishvili B. (2008) Entwining structures in monoidal categories. J. Algebra 319(6): 2496-2517.
[18] Reshetikhin N Y, Turaev V G. (1990) Ribbon Graphs and Their Invariants Derived from Quantum Groups. Comm. Math. Phys. 127: 1-26.
[19] Selinger P. (2009) A survey of graphical languages for monoidal categories. e-Print, ArXiv: math.QA/0908.3347.
[20] Ulbrich K H. (1990) On Hopf algebras and rigid monoidal categories. Israel J. Math. 72: 252"C256.
[21] Wang D G, Chen Q G. (2014) A Maschke Type Theorem for Weak Group Entwined Modules and Applications. Israel J. Math. 204(1): 329-358
[22] Zhang X H, Zhao X F, Wang S H. (2015) Sovereign and ribbon weak Hopf algebras. Kodai Math. J. 38(2): 451-469.
[23] Zhang X H, Dong L H. (2018) Braided mixed datums and their applications on Hom-quantum groups. Glasgow Math. J. 60, 231-251.
[24] Zhu H X. (2017) The group of braided autoequivalences of the category of comodules over a coquasi-triangular Hopf algebra. J. Geom. Phys. 114, 12-18.
[25] Zhu H X. (2018) The crossed structure of Hopf bimodules. J. Algebra Appl. 17(9), 1850172.
[26] Zhu, H X, Liu G H and Yang T. (2020) Characterization of quasi-Yetter-Drinfeld modules. J. Algebra Appl. 19(3), 2050058, 16 pp.

[^0]: 2010 Mathematics Subject Classification. 16T15; 16W30
 Keywords. entwining structure; ribbon category; Yetter-Drinfel'd module; Long dimodule
 Received: 03 October 2019; Revised: 26 December 2019; Accepted: 02 March 2020
 Communicated by Dijana Mosić
 Corresponding author: Xiaohui Zhang
 The work was partially supported by the National Natural Science Foundation of China (Nos. 11801304, 11801306, 11871301, 12001174), the Project funded by China Postdoctoral Science Foundation (No. 2018M630768) and the Anhui Provincial Natural Science Foundation (Nos. 1908085MA03 and 1808085MA14), the NSF of Shandong (No. ZR2018MA012), and the Young Talents Invitation Program of Shandong Province.

 Email addresses: zxhhhhh@hotmail.com (Xiaohui Zhang), weiwang2012spring@yahoo.com (Wei Wang), zhaoxiaofan8605@gmail.com (Xiaofan Zhao), wangsx-math@163.com (Shengxiang Wang)

