Linear Functionals on Hypervector Spaces

O. R. Dehghan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

Abstract

The study of linear functionals, as an important special case of linear transformations, is one of the key topics in linear algebra and plays a significant role in analysis. In this paper we generalize the crucial results from the classical theory and study main properties of linear functionals on hypervector spaces. In this way, we obtain the dual basis of a given basis for a finite-dimensional hypervector space. Moreover, we investigate the relation between linear functionals and subhyperspaces and conclude the dimension of the vector space of all linear functionals over a hypervector space, the dimension of sum of two subhyperspaces and the dimension of the annihilator of a subhyperspace, under special conditions. Also, we show that every superhyperspace is the kernel of a linear functional. Finally, we check out whether every basis for the vector space of all linear functionals over a hypervector space V is the dual of some basis for V.

1. Introduction

In algebra the composition of two elements under an operation is an element, whereas the composition of two elements by a hyperoperation, as a generalization of operation, is a non-empty set and an algebraic structure endowed with at least one hyperoperation is known as an algebraic hyperstructure. The theory of algebraic hyperstructures was born in 1934, when Marty [11] introduced the notion of hypergroups. Afterwards this theory has been studied in various branches of mathematics such as fields, lattices, rings, quasigroups, semigroups, modules, ordered structures, combinatorics, topology, geometry, graphs, codes, etc. The reader can find the most results of algebraic hyperstructures in the books of Corsini [3] and [4], Davvaz [5-8] and Vougiuklis [19].

In 1990, M. Scafati-Tallini [13] introduced the notion of hypervector spaces and studied basic properties of them, such as norms in such spaces ([14]), geometric point of view ([15]) and characterization of remarkable hypervector spaces ([16]). Hypervector spaces have developed by some other mathematicians: Ameri [1], the author [9], [10] and Sedghi [17] from an algebraic perspective, as well as Raja [12] and Taghavi [18] from an analytic perspective.

In previous mentioned papers about hypervector spaces, the important notions of subhyperspaces, basis, dimension, linear transformations have been studied. In this paper we generalize some main properties of linear algebra into hypervector spaces. In this regards, we study the dual basis of a finite-dimensional hypervector space and the relation between linear functionals and subhyperspaces. Also, we obtain some important results about the dimensions of special hypervector spaces and conclude $\operatorname{dim} V^{*}=\operatorname{dim} V$, $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$ and $\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V$, where V^{*} is the vector

[^0]space of all linear functionals over a hypervector space V, W, W_{1}, W_{2} are subhyperspaces of V and W° is the annihilator of W. Also, we define the notion of a superhyperspace of V and show that every superhyperspace of V is the kernel of a linear functional over V. Moreover, we investigate whether every basis for V^{*} is the dual of some basis for V.

2. Preliminaries

In the following we present some definitions and simple properties of hypervector spaces that we shall use in later.

Definition 2.1. [13] Let K be a field, $(V,+)$ be an Abelian group and $P^{*}(V)$ be the set of all non-empty subsets of V. We define a hypervector space over K to be the quadruplet $(V,+, \circ, K)$, where " \circ " is an external hyperoperation

$$
\circ: K \times V \longrightarrow P^{*}(V)
$$

such that for all $a, b \in K$ and $x, y \in V$ the following conditions hold:
$\left(H_{1}\right) a \circ(x+y) \subseteq a \circ x+a \circ y$, right distributive law,
$\left(H_{2}\right)(a+b) \circ x \subseteq a \circ x+b \circ x$, left distributive law,
$\left(H_{3}\right) a \circ(b \circ x)=(a b) \circ x$,
$\left(H_{4}\right) a \circ(-x)=(-a) \circ x=-(a \circ x)$,
$\left(H_{5}\right) x \in 1 \circ x$,
where in $\left(H_{1}\right), a \circ x+a \circ y=\{p+q: p \in a \circ x, q \in a \circ y\}$. Similarly it is in $\left(H_{2}\right)$. Also in $\left(H_{3}\right), a \circ(b \circ x)=\bigcup_{t \in b \circ x} a \circ t$.
V is called strongly right distributive, if we have equality in $\left(H_{1}\right)$. In a similar way we define the strongly left distributive hypervector spaces. V is called strongly distributive, if it is strongly right and left distributive.

A non-empty subset W of V is called a subhyperspace of V, denoted by $W \leqslant V$, if W is itself a hypervector space with the external hyperoperation on V, i.e. for all $a \in K$ and $x, y \in W, x-y \in W$ and $a \circ x \subseteq W$.

Example 2.2. [1] In $\left(\mathbb{R}^{2},+\right)$ define the external hyperoperations $\circ_{1}, \circ_{2}: \mathbb{R} \times \mathbb{R}^{2} \longrightarrow P^{*}\left(\mathbb{R}^{2}\right)$ by a $\circ_{1}(x, y)=a x \times \mathbb{R}$ and $a \circ_{2}(x, y)=\mathbb{R} \times$ ay. Then $V_{1}=\left(\mathbb{R}^{2},+, \circ_{1}, \mathbb{R}\right)$ and $V_{2}=\left(\mathbb{R}^{2},+, \circ_{2}, \mathbb{R}\right)$ are hypervector spaces.

In the sequel of this paper, V denotes a hypervector space over the field K, unless otherwise is specified. Also, the zero of V is denoted by $\underline{0}$.

Definition 2.3. [1] A subset S of V is called linearly independent iffor every vectors v_{1}, \ldots, v_{n} in S, and $c_{1}, \ldots, c_{n} \in K$, $\underline{0} \in c_{1} \circ v_{1}+\cdots+c_{n} \circ v_{n}$, implies that $c_{1}=\cdots=c_{n}=0$. S is called linearly dependent if it is not linearly independent. A basis for V is a linearly independent subset of V such that spans V, i.e. $V=\langle S\rangle$, where

$$
\begin{aligned}
\langle S\rangle & =\left\{t \in V: t \in \sum_{i=1}^{n} a_{i} \circ s_{i}, a_{i} \in K, s_{i} \in S, n \in \mathbb{N}\right\} \\
& =\left\{t_{1}+t_{2}+\cdots+t_{n}: t_{i} \in a_{i} \circ s_{i}, a_{i} \in K, s_{i} \in S, n \in \mathbb{N}\right\} .
\end{aligned}
$$

We say that V is finite-dimensional if it has a finite basis. If V is strongly left distributive, invertible (V is said to be invertible if and only if $u \in a \circ v$ implies that $v \in a^{-1} \circ u$) and finite-dimensional, then every two basis of V have the same cardinality. In this case the cardinality of any basis of V is called the dimension of V and denoted by $\operatorname{dim} V$.

Lemma 2.4. [1] Let V be strongly left distributive. Then

1. if $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for V, then every element of V belongs to a unique linear combination in the form $a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$, with $a_{i} \in K$,
2. if V is finite-dimensional and invertible and if U is a subhyperspace of V, then U is finite-dimensional and $\operatorname{dim} U \leq \operatorname{dim} V$.
3. if V is finite-dimensional and invertible, then every linearly independent subset of V is contained in a finite basis.

Proposition 2.5. [9] Let W_{1} and W_{2} be strongly left distributive and invertible subhyperspaces of V such that $W_{1} \subseteq W_{2}$ and $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}$. Then $W_{1}=W_{2}$.

Definition 2.6. [1] Let V and W be hypervector spaces over the field K. A mapping $T: V \longrightarrow W$ is called

1. linear transformation iff $T(x+y)=T(x)+T(y)$ and $T(a \circ x) \subseteq a \circ T(x)$,
2. good transformation iff $T(x+y)=T(x)+T(y)$ and $T(a \circ x)=a \circ T(x)$.

The kernel of a linear transformation $T: V \longrightarrow W$ id defined by
ker $T=\left\{x \in V: T(x) \in 0 \circ 0_{W}\right\}$.
$L(V, W)$ denotes the set of all good transformations from V into W.
Proposition 2.7. [1] Let $T: V \longrightarrow W$ be a linear transformation. Then

1. if T is a good transformation and $U \leqslant V$, then $T(U) \leqslant W$,
2. if V and W are strongly left distributive, then $\operatorname{ker} T \leqslant V$.

Theorem 2.8. [9] Let V and W be strongly left distributive, invertible and finite-dimensional hypervector spaces. If $T: V \longrightarrow W$ is a linear transformation, then
$\operatorname{dim} \operatorname{ker} T+\operatorname{dim} T(V)=\operatorname{dim} V$.

3. Dual Basis

In this section we introduce a basis β^{*} for the vector space V^{*} of all linear functionals over a hypervector space V, which is obtained from a basis β for V and is called the dual basis of β. Moreover, we conclude the coordinates of a linear functional based on coordinates of vectors of V relative to β.

Raja [12] introduced the hypervector space $L(V, W)$ of all good transformations from V into W over the field \mathbb{R}. In the following, it is generalized to a hypervector space over an arbitrary field K.

Let V and W be hypervector spaces over the field K. For every $T, S \in L(V, W), a \in K$ and $x \in V$ suppose that:

1. $(T+S)(x)=T(x)+S(x)$,
2. $a \odot T=\{\dot{T} \in L(V, W): \dot{T}(x) \in T(a \circ x), \forall x \in V\}$.

It is easy to verify that $(L(V, W),+, \odot, K)$ is a hypervector space. If V and W are strongly left distributive, then $L(V, W)$ is strongly left distributive.

Definition 3.1. [16] Let $(V,+, \circ, K)$ be a hypervector space over the field K. Then a linear transformation $T: V \rightarrow K$ is called a linear functional on V, i.e. T is a function from V into K, where K is considered as the classical vector space over itself, such that for all $a \in K$ and $x, y \in V$ the followings hold:

1. $T(x+y)=T(x)+T(y)$,
2. $T(a \circ x)=a \cdot T(x)$,
where the condition (2) means that:

$$
\forall t \in a \circ x ; T(t)=a \cdot T(x) .
$$

The set V^{*} of all linear functionals over V is a classical vector space with the external operation $\cdot: K \times V^{*} \rightarrow V^{*}$ defined by $(a \cdot T)(x)=a \cdot T(x)$.

Example 3.2. Consider the hypervector spaces $V_{1}=\left(\mathbb{R}^{2},+, \circ_{1}, \mathbb{R}\right)$ and $V_{2}=\left(\mathbb{R}^{2},+, o_{2}, \mathbb{R}\right)$ in Example 2.2. Then the functions $T_{1}, T_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by $T_{1}(x, y)=x$ and $T_{2}(x, y)=y$ are linear functionals on V_{1} and V_{2}, respectively.

Recall that every vector space $(V,+, \cdot, K)$ is a trivial induced hypervector space by the external hyperoperation $\circ: K \times V \longrightarrow P^{*}(V)$ with $a \circ x=\{a x\}$. In this case every linear functional on $(V,+, \cdot, K)$ is a linear functional on $(V,+, \circ, K)$.

Proposition 3.3. Let V and W be hypervector spaces over the field K, with basis $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\dot{\beta}=\left\{y_{1}, \ldots, y_{m}\right\}$, respectively. If W is strongly left distributive, $a \circ \underline{0}_{W}=\left\{\underline{0}_{W}\right\}$, for all $a \in K$ and $0 \circ y=\left\{\underline{0}_{W}\right\}$, for all $y \in W$, then $\operatorname{dim} L(V, W)=\operatorname{dim} V \times \operatorname{dim} W$.

Proof. It is similar to the proof of Corollary 5.20 of [9].
Lemma 3.4. If $K=(K,+, \cdot)$ is a field, then $\operatorname{dim}(K,+, \circ, K)=1$, where $\circ: K \times K \longrightarrow P^{*}(K)$ is defined by $a \circ b=\{a b\}$.
Proof. It is clear that $\{1\}$ is a basis for K.
Theorem 3.5. If V is a finite-dimensional hypervector space over the field K, then

$$
\operatorname{dim} V^{*}=\operatorname{dim} V
$$

Proof. By Proposition 3.3 and Lemma 3.4 it follows that:

$$
\begin{aligned}
\operatorname{dim} V^{*} & =\operatorname{dim} L(V, K) \\
& =\operatorname{dim} V \times \operatorname{dim} K \\
& =\operatorname{dim} V .
\end{aligned}
$$

Theorem 3.6. Let $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for strongly left distributive hypervector space V. For each $i=1, \ldots, n$, define

$$
\left[\begin{array}{l}
T_{i}: V \rightarrow K \\
T_{i}(x)=a_{i}
\end{array}\right.
$$

where $a_{1}, \ldots, a_{n} \in K$, such that $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$. Then the set $\beta^{*}=\left\{T_{1}, \ldots, T_{n}\right\}$ of distinct linear functionals on V is a basis for V^{*}, which is called the dual basis of β.

Proof. By Lemma 2.4(1), T_{i} 's are well-defined. Now if $x, y \in V$ such that $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$ and $y \in b_{1} \circ x_{1}+\cdots+b_{n} \circ x_{n}$ for unique scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in K$, then

$$
\begin{aligned}
x+y & \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}+b_{1} \circ x_{1}+\cdots+b_{n} \circ x_{n} \\
& =\left(a_{1}+b_{1}\right) \circ x_{1}+\cdots+\left(a_{n}+b_{n}\right) \circ x_{n},
\end{aligned}
$$

thus $T_{i}(x+y)=a_{i}+b_{i}=T_{i}(x)+T_{i}(y)$, for all $1 \leq i \leq n$.
Also for all $a \in K, x \in V, t \in a \circ x$ and $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$, it follows that $t \in a \circ\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right)=$ $\left(a a_{1}\right) \circ x_{1}+\cdots+\left(a a_{n}\right) \circ x_{n}$. Thus $T_{i}(a \circ x)=a a_{i}=a \cdot T_{i}(x)$. Hence $T_{i}{ }^{\prime}$ s are linear functionals on V.
It is clear that T_{i} 's are distinct.
Now suppose $a_{1} T_{1}+\cdots+a_{n} T_{n}=0_{V^{*}}$, for some $a_{1}, \ldots, a_{n} \in K$. Then

$$
\begin{aligned}
0 & =0_{V^{*}}\left(x_{j}\right) \\
& =\left(a_{1} T_{1}+\cdots+a_{n} T_{n}\right)\left(x_{j}\right) \\
& =a_{1} T_{1}\left(x_{j}\right)+\cdots+a_{j} T_{j}\left(x_{j}\right)+\cdots+a_{n} T_{n}\left(x_{j}\right) \\
& =a_{1} \times 0+\cdots+a_{j} \times 1+\cdots+a_{n} \times 0 \\
& =a_{j}
\end{aligned}
$$

and so $a_{j}=0$ for all $j=1, \ldots, n$. Consequently, β^{*} is linearly independent.
Finally, we prove that β^{*} generates V^{*}. Let $T \in V^{*}$ and $x \in V$ such that $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$, for some $a_{1}, \ldots, a_{n} \in K$. Then

$$
\begin{aligned}
\left(T\left(x_{1}\right) T_{1}+\cdots+T\left(x_{n}\right) T_{n}\right)(x) & =T\left(x_{1}\right) T_{1}(x)+\cdots+T\left(x_{n}\right) T_{n}(x) \\
& =T\left(x_{1}\right) a_{1}+\cdots+T\left(x_{n}\right) a_{n} \\
& =a_{1} T\left(x_{1}\right)+\cdots+a_{n} T\left(x_{n}\right) \\
& =T\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right) \\
& =T(x) .
\end{aligned}
$$

Hence $T=T\left(x_{1}\right) T_{1}+\cdots+T\left(x_{n}\right) T_{n}$.
Theorem 3.7. Let V be a finite-dimensional strongly left distributive hypervector space and let $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for V. If $\beta^{*}=\left\{T_{1}, \ldots, T_{n}\right\}$ is the dual basis of β, then

$$
\forall T \in V^{*} ; \quad T=\sum_{i=1}^{n} T\left(x_{i}\right) T_{i},
$$

and

$$
\forall x \in V ; \quad x \in \sum_{i=1}^{n} T_{i}(x) \circ x_{i} .
$$

Proof. The first equality has been shown in the proof of Theorem 3.6. Similarly, if $x \in V$, then $x \in$ $a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$, for some $a_{1}, \ldots, a_{n} \in K$. Thus for all $j=1, \ldots, n$, it follows that:

$$
\begin{aligned}
T_{j}(x) & =T_{j}\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right) \\
& =a_{1} T_{j}\left(x_{1}\right)+\cdots+a_{n} T_{j}\left(x_{n}\right) \\
& =a_{j} .
\end{aligned}
$$

Hence x belongs to the unique linear combination of x_{1}, \ldots, x_{n} as the form $T_{1}(x) \circ x_{1}+\cdots+T_{n}(x) \circ x_{n}$.
The following Corollaries are direct results of Theorem 3.7 and it's proof.
Corollary 3.8. If $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ is an ordered basis for a strongly left distributive hypervector space V, and $\beta^{*}=\left\{T_{1}, \ldots, T_{n}\right\}$ is the dual basis of β, then T_{i} is precisely the function which assigns to each vector x in V, the ith coordinate of x relative to the ordered basis β.

Corollary 3.9. If $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ is an ordered basis for a strongly left distributive hypervector space V, then every linear functional T on V has the form

$$
T(x)=a_{1} T\left(x_{1}\right)+\cdots+a_{n} T\left(x_{n}\right)
$$

where $\left(a_{1}, \ldots, a_{n}\right)$ is the coordinates of x relative to β.
For more study on ordered basis and coordinates refer to [9].

4. Relation between Linear Functionals and Subhyperspaces

In this section we investigate the relation between linear functionals and special subhyperspaces are called superhyperspaces. We see that the kernel of a non-zero linear functional on a finite-dimensional strongly left distributive and invertible hypervector space is a superhyperspace and every superhyperspace is the kernel of a linear functional. Moreover, some important theorems about the dimension of special hypervector spaces are obtained. Let us start by definition of a superhyperspace.

Definition 4.1. Let V be an n-dimensional hypervector space over the field K. Then any subhyperspace of dimension $n-1$ is called a superhyperspace. Such subspaces are sometimes called superhyperplanes or subhyperspaces of codimension 1.

Example 4.2. In $\left(\mathbb{R}^{3},+\right)$ define the external hyperoperation $\circ: \mathbb{R} \times \mathbb{R}^{3} \rightarrow P^{*}\left(\mathbb{R}^{3}\right)$ by $a \circ(x, y, z)=\{(r, a y, a z) ; r \in \mathbb{R}\}$. Then $V=\left(\mathbb{R}^{3},+, 0, \mathbb{R}\right)$ is a hypervector space and the $x y$-plane and $x z$-plane are superhyperspaces of V. More precisely $\{(0,1,0),(0,0,1)\}$ is a basis for V and so $\operatorname{dim} V=2$, also $\{(0,1,0)\}$ and $\{(0,0,1)\}$ are basis for $x y$-plane and $x z$-plane, respectively, and so both of them are one-dimensional.

Proposition 4.3. Let V be a finite-dimensional strongly left distributive and invertible hypervector space over the field K and $T: V \rightarrow K$ be a non-zero linear functional on V. Then $\operatorname{ker} T$ is a superhyperspace in V.

Proof. By Proposition 2.7(1), Im T is a non-zero subhyperspace of the scalar field K and so $0 \neq \operatorname{dim} \operatorname{Im} T \leq$ $\operatorname{dim} K=1$, by Lemma 2.4(2), (K is finite-dimensional, invertible and strongly left distributive) and Lemma 3.4. Thus $\operatorname{dim} \operatorname{Im} T=1$. Hence by Theorem $2.8, \operatorname{dim} \operatorname{ker} T=(\operatorname{dim} V)-1$. Therefore $\operatorname{ker} T$ is a superhyperspace.
Question: Is every superhyperspace the kernel of a linear functional? The answer (yes) will be seen in Corollary 4.12.

Definition 4.4. Let V be a hypervector space over the field K and $S \subseteq V$. Then the annihilator of S is defined by

$$
S^{\circ}=\left\{T \in V^{*}: T(x)=0, \forall x \in S\right\}
$$

Example 4.5. Consider the hypervector space $V_{1}=\left(\mathbb{R}^{2},+, \circ_{1}, \mathbb{R}\right)$ in Example 2.2. If S is a subset of $X=\{0\} \times \mathbb{R}$, then $S^{\circ}=V^{*}$ and if S consists of any element of $\mathbb{R}^{2} \backslash X$, then $S^{\circ}=\left\{0_{V^{*}}\right\}$.

Example 4.6. Consider the hypervector space $V=\left(\mathbb{R}^{3},+, \circ, \mathbb{R}\right)$ in Example 4.2 with the basis $\{(0,1,0),(0,0,1)\}$, in fact $(x, y, z) \in y \circ(0,1,0)+z \circ(0,0,1)$ for all $(x, y, z) \in \mathbb{R}^{3}$. Then

$$
\begin{aligned}
\left\{\left(x_{0}, y_{0}, z_{0}\right)\right\}^{\circ} & =\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R} ; T\left(x_{0}, y_{0}, z_{0}\right)=0\right\} \\
& =\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R} ; y_{0} T(0,1,0)+z_{0} T(0,0,1)=0\right\} \\
& =\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R} ; T(0,0,1)=-\frac{y_{0}}{z_{0}} T(0,1,0)\right\} \\
& =\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R} ; T(x, y, z)=\left(y-\frac{y_{0}}{z_{0}} z\right) T(0,1,0)\right\}
\end{aligned}
$$

for all $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ such that $z_{0} \neq 0$. Also if W is the $x y$-plane, then $W^{\circ}=\langle T\rangle$, where $T \in V^{*}$ is defined by $T(x, y, z)=z$.

Proposition 4.7. If V is a hypervector space over the field K and $S \subseteq V$, then $S^{\circ} \leqslant V^{*}$.
Proof. Let $a \in K$ and $T_{1}, T_{2} \in S^{\circ}$. Then $\left(T_{1}-T_{2}\right)(x)=T_{1}(x)-T_{2}(x)=0$, for all $x \in S$, thus $T_{1}-T_{2} \in S^{\circ}$. Also if $T \in S^{\circ}$ and $T \in a \odot T$, then

$$
\begin{aligned}
& \forall x \in V, \dot{T}(x) \in T(a \circ x)=a \cdot{ }_{K} T(x), \\
\Rightarrow & \forall x \in S, \dot{T}(x) \in\left\{a \cdot{ }_{K} 0_{K}\right\}=\left\{0_{k}\right\}, \\
\Rightarrow & \forall x \in S, \dot{T}(x)=0_{k}, \\
\Rightarrow & \dot{T} \in S^{\circ},
\end{aligned}
$$

hence $a \odot T \subseteq S^{\circ}$. Therefore $S^{\circ} \leqslant V^{*}$.
Theorem 4.8. Let V be a strongly left distributive and invertible hypervector space and let W_{1}, W_{2} be finitedimensional subhyperspaces of V such that $0 \circ w=\left\{0_{V}\right\}$, for all w in any basis of W_{2}. Then $W_{1}+W_{2}$ is finitedimensional and

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Proof. By Lemma 2.4(2), $W_{1} \cap W_{2}$ is finite-dimensional and has a finite basis $\beta_{0}=\left\{x_{1}, \ldots, x_{k}\right\}$, which by Lemma 2.4(3) can expand to a basis $\beta_{1}=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}\right\}$ for W_{1} and a basis $\beta_{2}=\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{n}\right\}$ for W_{2}. We show that

$$
\beta=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right\}
$$

is a basis for $W_{1}+W_{2}$. For any $w_{1}+w_{2} \in W_{1}+W_{2}$,

$$
\begin{aligned}
w_{1}+w_{2} & \in \sum_{i=1}^{k} a_{i} \circ x_{i}+\sum_{j=1}^{m} b_{j} \circ y_{j}+\sum_{i=1}^{k} a_{i} \circ x_{i}+\sum_{r=1}^{n} c_{r} \circ z_{r} \\
& =\sum_{i=1}^{k}\left(a_{i}+\dot{a}_{i}\right) \circ x_{i}+\sum_{j=1}^{m} b_{j} \circ y_{j}+\sum_{r=1}^{n} c_{r} \circ z_{r} .
\end{aligned}
$$

Thus β generates $W_{1}+W_{2}$. Now suppose

$$
\underline{0} \in \sum_{i=1}^{k} a_{i} \circ x_{i}+\sum_{j=1}^{m} b_{j} \circ y_{j}+\sum_{r=1}^{n} c_{r} \circ z_{r}
$$

Then $\underline{0}=\dot{x}_{1}+\cdots+\dot{x}_{k}+\dot{y}_{1}+\cdots+\dot{y}_{m}+\dot{z}_{1}+\cdots+z_{n}$, for some $\dot{x}_{i} \in a_{i} \circ x_{i}, \dot{y}_{j} \in b_{j} \circ y_{j}$ and $z_{r} \in c_{r} \circ z_{r}$. Hence $-\dot{z}_{1}-\cdots-\dot{z}_{n}=\dot{x}_{1}+\cdots+\dot{x}_{k}+\dot{y}_{1}+\cdots+\dot{y}_{m} \in W_{1} \cap W_{2}$ and so $-\dot{z}_{1}-\cdots-z_{n} \in \sum_{i=1}^{k} d_{i} \circ x_{i}$. Thus $-z_{1}-\cdots-z_{n}=\bar{x}_{1}+\cdots+\bar{x}_{k}$ for some $\bar{x}_{i} \in d_{i} \circ x_{i}$ and so

$$
\underline{0}=z_{1}+\cdots+z_{n}+\bar{x}_{1}+\cdots+\bar{x}_{k} \in \sum_{r=1}^{n} c_{r} \circ z_{r}+\sum_{i=1}^{k} d_{i} \circ x_{i} .
$$

Since the set β_{2} is independent, $c_{r}=d_{i}=0,1 \leq r \leq n, 1 \leq i \leq k$. Then by assumption, $\sum_{r=1}^{n} c_{r} \circ z_{r}=\{\underline{0}\}$, which it implies that $\underline{0} \in \sum_{i=1}^{k} a_{i} \circ x_{i}+\sum_{j=1}^{m} b_{j} \circ y_{j}$. From independency of β_{1}, it follows that $a_{i}=b_{j}=0, \overline{1} \leq i \leq k$, $1 \leq j \leq m$. Therefore β is linearly independent and so it is a basis for $W_{1}+W_{2}$. Consequently,

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=k+m+n=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Proposition 4.9. Let V be a hypervector space over the field K. Then

1. $\{\underline{0}\}^{\circ}=V^{*}$ and $V^{\circ}=\{\underline{0}\}$,
2. if V is finite-dimensional and $W_{1}, W_{2} \leqslant V$, then $\left(W_{1}+W_{2}\right)^{\circ}=W_{1}^{\circ} \cap W_{2}^{\circ}$,
3. if V is strongly left distributive and invertible and if W_{1}, W_{2} are finite-dimensional subhyperspaces of V such that $0 \circ w=\{\underline{0}\}$, for all w in any basis of W_{2}, then $\left(W_{1} \cap W_{2}\right)^{\circ}=W_{1}^{\circ}+W_{2}^{\circ}$,
4. if $S \subseteq V$ and $W=\langle S\rangle$, then $W^{\circ}=S^{\circ}$.

Proof. 1) Straightforward.
2) $T \in\left(W_{1}+W_{2}\right)^{\circ} \Leftrightarrow T\left(x_{1}+x_{2}\right)=0_{k}, \forall x_{1}+x_{2} \in W_{1}+W_{2} \Leftrightarrow T\left(x_{1}\right)+T\left(x_{2}\right)=0_{k}, \forall x_{1} \in W_{1}, x_{2} \in W_{2} \Leftrightarrow$ $T\left(x_{1}\right)=0_{k}, \forall x_{1} \in W_{1}$ and $T\left(x_{2}\right)=0_{k}, \forall x_{2} \in W_{2} \Leftrightarrow T \in W_{1}^{\circ} \cap W_{2}^{\circ}$.
3) Suppose $T \in W_{1}^{\circ}+W_{2}^{\circ}$ and $w \in W_{1} \cap W_{2}$. Then $T \stackrel{2}{=} T_{1}+T_{2}$, for some $T_{1} \in W_{1}^{\circ} T_{2} \in W_{2}^{\circ}$ and so $T(w)=T_{1}(w)+T_{2}(w)=0$. Thus $T \in\left(W_{1} \cap W_{2}\right)^{\circ}$ and $W_{1}^{\circ}+W_{2}^{\circ} \subseteq\left(W_{1} \cap W_{2}\right)^{\circ}$.
Conversely, let $T \in\left(W_{1} \cap W_{2}\right)^{\circ}$. In the proof of Theorem 4.10 it was shown that we can choose a basis $\beta=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right\}$ for $W_{1}+W_{2}$, where $\left\{x_{1}, \ldots, x_{k}\right\}$ is a basis for $W_{1} \cap W_{2},\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}\right\}$ is a basis for W_{1} and $\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{n}\right\}$ is a basis for W_{2}. Then β can be expanded to a basis

$$
\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}, t_{1}, \ldots, t_{l}\right\}
$$

for V. Thus

$$
\begin{equation*}
x \in \sum_{i=1}^{k} a_{i} \circ x_{i}+\sum_{j=1}^{m} b_{j} \circ y_{j}+\sum_{p=1}^{n} c_{p} \circ z_{p}+\sum_{q=1}^{l} d_{q} \circ t_{q}, \tag{*}
\end{equation*}
$$

for all $x \in V$. Hence $T(x)=\sum_{i=1}^{k} a_{i} \cdot T\left(x_{i}\right)+\sum_{j=1}^{m} b_{j} \cdot T\left(y_{j}\right)+\sum_{p=1}^{n} c_{p} \cdot T\left(z_{p}\right)+\sum_{q=1}^{l} d_{q} \cdot T\left(t_{q}\right)$. Since $T\left(x_{i}\right)=0,1 \leq i \leq k$, it follows that $T(x)=\sum_{j=1}^{m} b_{j} \cdot T\left(y_{j}\right)+\sum_{p=1}^{n} c_{p} \cdot T\left(z_{p}\right)+\sum_{q=1}^{l} d_{q} \cdot T\left(t_{q}\right)$. Define $T_{1}(x)=\sum_{p=1}^{n} c_{p} \cdot T\left(z_{p}\right)+\sum_{q=1}^{l} d_{q} \cdot T\left(t_{q}\right)$ and $T_{2}(x)=\sum_{j=1}^{m} b_{j} \cdot T\left(y_{j}\right)$. Then $T=T_{1}+T_{2}$, such that if $w_{1} \in W_{1}$ and $w_{1} \in \dot{a}_{1} \circ x_{1}+\cdots+\hat{a}_{k} \circ x_{k}+\hat{b}_{1} \circ y_{1}+\cdots+\hat{b}_{m} \circ y_{m}$, then $w_{1} \in \dot{a}_{1} \circ x_{1}+\cdots+a_{k} \circ x_{k}+\hat{b}_{1} \circ y_{1}+\cdots+\hat{b}_{m} \circ y_{m}+0 \circ z_{1}+\cdots+0 \circ z_{p}+0 \circ t_{1}+\cdots+0 \circ t_{l}$, and so $T_{1}\left(w_{1}\right)=0 \cdot T\left(z_{1}\right)+\cdots+0 \cdot T\left(z_{p}\right)+0 \cdot T\left(t_{1}\right)+\cdots+0 \cdot T\left(t_{l}\right)=0$. Thus $T_{1} \in W_{1}^{\circ}$. Similarly $T_{2} \in W_{2}^{\circ}$. Hence $T \in W_{1}^{\circ}+W_{2}^{\circ}$. Therefore $\left(W_{1} \cap W_{2}\right)^{\circ} \subseteq W_{1}^{\circ}+W_{2}^{\circ}$.
4) Clearly $W^{\circ} \subseteq S^{\circ}$. Also if $T \in S^{*}$ and $w \in W$, then $w \in \sum_{i=1}^{n} a_{i} \circ x_{i}$ for some $a_{i} \in K$ and $x_{i} \in S$, so $T(w) \in T\left(\sum_{i=1}^{n} a_{i} \circ x_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(x_{i}\right)=0$. Thus $T(w)=0$ and $T \in W^{*}$.

Theorem 4.10. Let V be a finite-dimensional strongly left distributive and invertible hypervector space and $W \leqslant V$. Then

$$
\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V
$$

Proof. Let $\operatorname{dim} W=d$ (by Lemma 2.4(2) W is finite-dimensional) and $\beta_{W}=\left\{x_{1}, \ldots, x_{d}\right\}$ be a basis for W. Then by Lemma 2.4(3) there exists a basis $\beta=\left\{x_{1}, \ldots, x_{d}, x_{d+1}, \ldots, x_{n}\right\}$ for V. Suppose $\left\{T_{1}, \ldots, T_{n}\right\}$ is the basis of V^{*} which is the dual of β (by Theorem 3.6). We show that $\left\{T_{d+1}, \ldots, T_{n}\right\}$ is a basis for W^{0} :
Firstly, $T_{i} \in W^{\circ}, d+1 \leq i \leq n$, because if $x \in W$ then $x \in a_{1} \circ x_{1}+\cdots+a_{d} \circ x_{d}$, for some $a_{1}, \ldots, a_{d} \in K$ and so $T_{i}(x)=a_{1} \cdot T_{i}\left(x_{1}\right)+\cdots+a_{d} \cdot T_{i}\left(x_{d}\right)=0$. The linear functionals T_{d+1}, \ldots, T_{n} are independent, so we must show that they span W°. Suppose $T \in W^{\circ}$. Then

$$
T=\sum_{i=1}^{n} T\left(x_{i}\right) \cdot T_{i}=\sum_{i=d+1}^{n} T\left(x_{i}\right) \cdot T_{i},
$$

since $T\left(x_{i}\right)=0$, for $i \leq k$. Hence $\left\{T_{d+1}, \ldots, T_{n}\right\}$ is a basis for W°. Therefore

$$
\operatorname{dim} W^{\circ}=n-d=\operatorname{dim} V-\operatorname{dim} W
$$

Example 4.11. Suppose $V=\left(\mathbb{R}^{3},+, \circ, \mathbb{R}\right)$ is the 2 -dimensional hypervector space in Example 4.2. Then $\{(0,1,0)\}$ is a basis for the subhyperspace $W=\mathbb{R} \times \mathbb{R} \times\{0\}$ and so $\operatorname{dim} W=1$. Moreover the singleton $\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R} ; T(x, y, z)=z\right\}$ is a basis for W° and so $\operatorname{dim} W^{\circ}=1$. Hence as we expected from Theorem $4.10, \operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V$.

Corollary 4.12. Let V be an n-dimensional strongly left distributive and invertible hypervector space and $W \leqslant V$ such that $\operatorname{dim} W=d$. Then W is the intersection of $(n-d)$ superhyperspaces in V. Therefore every superhyperspace is the kernel of a linear functional.

Proof. By using the notations of the proof of Theorem 4.10,

$$
W=\left\{x \in V: T_{i}(x)=0, \forall d+1 \leq i \leq n\right\} .
$$

Thus $W=\bigcap_{i=d+1}^{n} \operatorname{ker} T_{i}$, where $\operatorname{ker} T_{i}, d+1 \leq i \leq n$, is a superhyperspace of V, by Proposition 4.3.
Corollary 4.13. Let V be a finite-dimensional strongly left distributive and invertible hypervector space and $W_{1}, W_{2} \leqslant$ V. Then $W_{1}=W_{2}$ if and only if $W_{1}^{\circ}=W_{2}^{\circ}$.
Proof. If $W_{1}=W_{2}$, then it is clear that $W_{1}^{\circ}=W_{2}^{\circ}$. If $W_{1} \neq W_{2}$, without loss of generality, suppose there exists $\dot{x} \in W_{2} \backslash W_{1}$. Then by using the notations of the proof of Theorem 4.10, there exists a linear functional T such that $T(x)=0$, for all $x \in W_{1}$, but $T(x) \neq 0$. Thus $T \in W_{1}^{\circ} \backslash W_{2}^{\circ}$ and hence $W_{1}^{\circ} \neq W_{2}^{\circ}$.

5. The Double Dual

In this section we check out whether every basis for V^{*} is the dual of some basis for V.
Lemma 5.1. Every $x \in V$ induces a linear functional $L_{x}: V^{*} \longrightarrow K$ defined by $L_{x}(T)=T(x)$, for all $T \in V^{*}$.
Proof. Let $x \in V, a \in K$ and $T_{1}, T_{2} \in V^{*}$. Then $L_{x}\left(T_{1}+T_{2}\right)=\left(T_{1}+T_{2}\right)(x)=T_{1}(x)+T_{2}(x)=L_{x}\left(T_{1}\right)+L_{x}\left(T_{2}\right)$. Also for all $T \in a \odot T_{1}, L_{x}(T)=T(x)=a \cdot T_{1}(x)=a \cdot L_{x}\left(T_{1}\right)$. Thus $L_{x}\left(a \odot T_{1}\right)=a \cdot L_{x}\left(T_{1}\right)$.

Proposition 5.2. If V is finite-dimensional and $x \in V \backslash\{\underline{0}\}$, then $L_{x} \neq 0$.
Proof. Let $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ be an ordered basis for V such that $x_{1}=x$. Suppose T is the linear functional which assigns to each vector in V its first coordinate in the ordered basis β. Then $T(x)=1 \neq 0$. Thus $L_{x}(T)=T(x) \neq 0$. Hence $L_{x} \neq 0$.
Lemma 5.3. Let $T: V \longrightarrow K$ be a linear functional on V. Then

1. $\bigcup_{x \in V} 0 \circ x \subseteq \operatorname{ker} T$,
2. T is injective if and only if $\operatorname{ker} T=\{\underline{0}\}$,
3. if V is strongly left distributive and \bar{T} is injective, then $\bigcup_{x \in V} 0 \circ x=\operatorname{ker} T=\{\underline{0}\}=0 \circ \underline{0}=\Omega_{V}$.

Proof. 1) Suppose $t \in 0 \circ x$, for some $x \in V$. Then $T(t) \in T(0 \circ x)=0 \cdot T(x)=0_{K}=0 \cdot 0_{K}=\Omega_{K}$. Thus $t \in \operatorname{ker} T$.
2) If T is injective and $x \in \operatorname{ker} T$, then $T(x) \in \Omega_{K}=0 \cdot 0_{K}=\left\{0_{K}\right\}$. Thus $T(x)=0=T(\underline{0})$ and so $x=\underline{0}$. Conversely, if $x, y \in V$ such that $T(x)=T(y)$, then $x-y \in \operatorname{ker} T$. Thus $x=y$.
3) If $t \in \operatorname{ker} T$, then by (2) $t=\underline{0}$. Thus $t \in 0 \circ x$, for all $x \in V$. Hence by (1) $\operatorname{ker} T=\bigcup_{x \in V} 0 \circ x$. Also $\underline{0} \in 0 \circ \underline{0}$, and so by (2) $\operatorname{ker} T \subseteq 0 \circ \underline{0}$. But $x \in 0 \circ \underline{0}$ implies that $T(x)=0 \cdot T(\underline{0})=0_{K}$ and so $x \in \operatorname{ker} T$. Therefore $\operatorname{ker} T=0 \circ \underline{0}$, which completes the proof.

Theorem 5.4. Let V be a finite-dimensional strongly left distributive and invertible hypervector space over the field K. Then $V \cong V^{* *}$.

Proof. We show that the mapping $\phi: V \longrightarrow V^{* *}$ defined by $\phi(x)(T)=L_{x}(T)=T(x)$, for all $x \in V$ and $T \in V^{*}$, is an isomorphism. For any $x \in V$, by Lemma 5.1 the function L_{x} is a linear functional, so ϕ is well-defined. Suppose $x, y \in V, a \in K$ and $T \in V^{*}$. Then

$$
\begin{aligned}
\phi(x+y)(T) & =L_{x+y}(T)=T(x+y) \\
& =T(x)+T(y)=L_{x}(T)+L_{y}(T) \\
& =\phi(x)(T)+\phi(y)(T) \\
& =(\phi(x)+\phi(y))(T)
\end{aligned}
$$

and so $\phi(x+y)=\phi(x)+\phi(y)$. Also for any $t \in a \circ x$,

$$
\begin{aligned}
\phi(t)(T) & =L_{t}(T)=T(t) \\
& =a \cdot T(x)=a \cdot L_{x}(T) \\
& =a \cdot \phi(x)(T)=(a \cdot \phi(x))(T)
\end{aligned}
$$

so $\phi(t)=a \cdot \phi(x)$, which implies that $\phi(a \circ x)=a \cdot \phi(x)$. Hence ϕ is a good transformation from V into $V^{* *}$.
Now if $x, y \in V$, such that $\phi(x)=\phi(y)$, then

$$
\begin{array}{ll}
& \forall T \in V^{*} ; \phi(x)(T)=\phi(y)(T) \\
\Longrightarrow & \forall T \in V^{*} ; L_{x}(T)=L_{y}(T) \\
\Longrightarrow & \forall T \in V^{*} ; L_{x-y}(T)=0 \\
\Longrightarrow & L_{x-y}=0 \\
\Longrightarrow & x-y=0 \quad(\text { by Lemma } 5.3) \\
\Longrightarrow & x=y .
\end{array}
$$

Thus ϕ is one-to-one. But if $x \in \operatorname{ker} \phi$, then $\phi(x) \in \Omega_{V^{* *}}=\left\{0_{V^{* *}}\right\}$ and by injectivity of $\phi, x=\underline{0}$. Thus $x \in 0 \circ \underline{0}$, since V is strongly left distributive. Hence $\operatorname{ker} \phi \subseteq 0 \circ \underline{0}$. On the other hand, if $x \in 0 \circ \underline{0}$, then $\phi(x) \in 0 \cdot \phi(\underline{0})=$ $0 \cdot 0_{V^{* *}}=\Omega_{V^{* *}}$ and so $x \in \operatorname{ker} \phi$. Hence $\operatorname{ker} \phi=0 \circ \underline{0}=\Omega_{V}$. Therefore $\operatorname{dim} \operatorname{ker} \phi=\operatorname{dim} \Omega_{V}=0$ ([15] If V is strongly left distributive, then $\operatorname{dim} \Omega_{V}=0$). Then $\bar{b} y$ Theorems 2.8 and $3.5, \operatorname{dim} \phi(V)=\operatorname{dim} V=\operatorname{dim} V^{* *}$. Consequently, by Proposition 2.5, $\phi(V)=V^{* *}$ and so ϕ is onto, which completes the proof.
Corollary 5.5. Let V be a finite-dimensional strongly left distributive and invertible hypervector space over the field K. If L is a linear functional on the dual space V^{*} of V, then there exists a unique vector x in V such that $L(T)=T(x)$, for all $T \in V^{*}$.
Proof. ϕ in the proof of Theorem 5.4 is onto.
Theorem 5.6. Let V be a finite-dimensional strongly left distributive and invertible hypervector space over the field K. Then any basis for V^{*} is dual of some basis for V.
Proof. Let $\beta^{*}=\left\{T_{1}, \ldots, T_{n}\right\}$ be a basis for V^{*}. Then by Theorem 3.6, there exists a basis $\beta^{* *}=\left\{L_{1}, \ldots, L_{n}\right\}$ for $V^{* *}$ such that $L_{i}(T)=a_{i}, 1 \leq i \leq n$, where $T=a_{1} T_{1}+\cdots+a_{n} T_{n}$; in other words, $L_{i}\left(T_{j}\right)=\delta_{i j}$. By Corollary 5.5 for any $1 \leq i \leq n$ there exists a unique vector $x_{i} \in V$ such that $L_{i}(x)=T\left(x_{i}\right)$, for all $T \in V^{*}$, i.e. $L_{i}=L_{x_{i}}$. We show that $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for V :

By Theorem 5.4, the mapping $\phi: V \longrightarrow V^{* *}$ defined by $\phi(x)(T)=L_{x}(T)=T(x)$ is an isomorphism. Thus for all $x \in V, \phi(x)=a_{1} L_{1}+\cdots+a_{n} L_{n}=a_{1} L_{x_{1}}+\cdots+a_{n} L_{x_{n}}$, for some $a_{1}, \ldots, a_{n} \in K$. Hence

$$
\begin{aligned}
\phi(x)(T) & =\left(a_{1} L_{x_{1}}+\cdots+a_{n} L_{x_{n}}\right)(T) \\
& =\left(a_{1} L_{x_{1}}\right)(T)+\cdots+\left(a_{n} L_{x_{n}}\right)(T) \\
& =a_{1} L_{x_{1}}(T)+\cdots+a_{n} L_{x_{n}}(T) \\
& =L_{x_{1}}\left(a_{1} T\right)+\cdots+L_{x_{n}}\left(a_{n} T\right) \\
& =\left(a_{1} T\right)\left(x_{1}\right)+\cdots+\left(a_{n} T\right)\left(x_{n}\right) \\
& =a_{1} \cdot T\left(x_{1}\right)+\cdots+a_{n} \cdot T\left(x_{n}\right) \\
& =T\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right) \\
& =\phi\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right)(T) .
\end{aligned}
$$

Hence $\phi(x)=\phi\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right)$ and so $\phi(x)=\phi(t)$, for some $t \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$. By injectivity of ϕ, $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$. Therefore β generates V. Now let $\underline{0} \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$, for some $a_{1}, \ldots, a_{n} \in K$. Then

$$
0_{K}=T(\underline{0}) \in T\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right)=a_{1} T\left(x_{1}\right)+\cdots+a_{n} T\left(x_{n}\right),
$$

for any $T \in V^{*}$. Thus

$$
\begin{aligned}
& \forall T \in V^{*} ; a_{1} L_{1}(T)+\cdots+a_{n} L_{n}(T)=0_{K} \\
\Longrightarrow & \forall T \in V^{*} ;\left(a_{1} L_{1}+\cdots+a_{n} L_{n}\right)(T)=0_{K} \\
\Longrightarrow & a_{1} L_{1}+\cdots+a_{n} L_{n}=0_{K} .
\end{aligned}
$$

Hence $a_{1}=\cdots=a_{n}=0$, which implies that β is independent and so it is a basis for V. Finally we show that β^{*} is the dual of β. Let $\left\{\hat{T}_{1}, \ldots, \dot{T}_{n}\right\}$ be the dual of β, i.e. $\dot{T}_{i}(x)=a_{i}$, for all $x \in V$, such that $x \in a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}$. Then

$$
\begin{aligned}
T_{i}(x) & \in T_{i}\left(a_{1} \circ x_{1}+\cdots+a_{n} \circ x_{n}\right) \\
& =a_{1} T_{i}\left(x_{1}\right)+\cdots+a_{n} T_{i}\left(x_{n}\right) \\
& =a_{1} L_{x_{1}}\left(T_{i}\right)+\cdots+a_{n} L_{x_{n}}\left(T_{i}\right) \\
& =a_{1} L_{1}\left(T_{i}\right)+\cdots+a_{n} L_{n}\left(T_{i}\right) \\
& =a_{1} \delta_{1 i}+\cdots+a_{n} \delta_{n i} \\
& =a_{i} \\
& =T_{i}(x),
\end{aligned}
$$

for all $1 \leq i \leq n$. Thus $T_{i}=\dot{T}_{i}$, for all $1 \leq i \leq n$. Hence $\left\{T_{1}, \ldots, T_{n}\right\}=\left\{\dot{T}_{1}, \ldots, \dot{T}_{n}\right\}$.
Theorem 5.7. Let V be a finite-dimensional strongly left distributive and invertible hypervector space over the field K. If $S \subseteq V$, then $S^{\circ \circ}=\langle S\rangle$, up to isomorphism.

Proof. Suppose $W=\langle S\rangle$. By Proposition 4.9(4), $W^{\circ}=S^{\circ}$. Thus it is sufficient to prove that $W=W^{\circ \circ}$, up to isomorphism. By Theorem 4.10, $\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V$ and $\operatorname{dim} W^{\circ}+\operatorname{dim} W^{\circ \circ}=\operatorname{dim} V^{*}($ by Proposition $4.9(1), S^{\circ} \leqslant V^{*}$). Also by Theorem $3.5 \operatorname{dim} V=\operatorname{dim} V^{*}$, so $\operatorname{dim} W=\operatorname{dim} W^{\circ \circ}$. By considering the isomorphism $\phi: V \longrightarrow W^{*}$ in Theorem 5.4, with $\phi(x)(T)=L_{x}(T)=T(x)$, for all $x \in V$ and $T \in V^{*}$, it follows that $\phi(w)(T)=L_{w}(T)=T(w)=0$, for all $w \in W$ and $T \in W^{\circ}$. Then $\phi(w) \in W^{\circ \circ}$, i.e. $\phi(W) \subseteq W^{\circ \circ}$, such that $\operatorname{dim} W=\operatorname{dim} \phi(W)=\operatorname{dim} W^{\circ \circ}$. Thus $W \cong \phi(W)=W^{\circ \circ}$, by Proposition 2.5.

The notion of a superhyperspace of finite-dimensional hypervector space was defined in Definition 4.1, which it can be defined for arbitrary hypervector spaces in the following way:

Definition 5.8. If V is a hypervector space over K, then a superhyperspace in V is a maximal proper subhyperspace of V.

Theorem 5.9. Let V be a strongly left distributive hypervector space over the field K and T be a non-zero linear functional on V. Then ker T is a superhyperspace in V. Conversely, if V is strongly right distributive and invertible and W is a superhyperspace in V, then there exists a non-zero linear functional T on V such that $\operatorname{ker} T=W+0 \circ v$, for some $v \in V \backslash W$.

Proof. By Proposition 2.7(2), ker $T \leqslant V$. Clearly ker T is a proper subhyperspace of V. Now let $\operatorname{ker} T \leqslant W \leqslant V$ such that $\operatorname{ker} T \neq W$ and $x \in W \backslash \operatorname{ker} T$, i.e. $T(x) \neq 0$. We shall show that $V=\langle\operatorname{ker} T \cup\{x\}\rangle$.

Suppose $t \in V$. Then

$$
\begin{aligned}
t & \in t+0 \circ x \\
& =t+\left(-T(t) T(x)^{-1}+T(t) T(x)^{-1}\right) \circ x \\
& \subseteq\left[t-\left(T(t) T(x)^{-1}\right) \circ x\right]+\left(T(t) T(x)^{-1}\right) \circ x,
\end{aligned}
$$

such that

$$
\begin{aligned}
T\left[t-\left(T(t) T(x)^{-1}\right) \circ x\right] & =T(t)-T\left(T(t) T(x)^{-1} \circ x\right) \\
& =T(t)-T(t) T(x)^{-1} T(x) \\
& =0,
\end{aligned}
$$

i.e. $t-\left(T(t) T(x)^{-1}\right) \circ x \subseteq \operatorname{ker} T$. Thus $V=\langle\operatorname{ker} T \cup\{x\}\rangle$. Hence

$$
\langle\operatorname{ker} T \cup\{x\}\rangle \subseteq W \subseteq V=\langle\operatorname{ker} T \cup\{x\}\rangle,
$$

and so $W=V$. Therefore ker T is a maximal subhyperspace of V.
Conversely, if W is a subhyperspace of V, then similar to above $V=\langle W \cup\{v\}\rangle$, for some fix vector $v \in V \backslash W$. Then every $x \in V$ is belonging to $w+a \circ v$, for some $w \in W$ and $a \in K$. Define a mapping $T: V \longrightarrow K$ by $g(x)=a$. If $x \in w+a \circ v$ and $x \in \tilde{w}+a ́ \circ v$, then $x=w+y$ and $x=\tilde{w}+y$, with $y \in a \circ v$ and $y \in a \circ v$. Thus $\tilde{w}-w=y-y \in a \circ v-a \circ v=(a-a ́) \circ v$. But if $a-a \neq 0$, then $v \in(a-a)^{-1} \circ(\tilde{w}-w) \subseteq W$, which is a contradiction. Hence $a=a ́ a$ and so T is well-defined.
Now suppose $x, y \in V$. Then $x \in w_{1}+a \circ v$ and $y \in w_{2}+b \circ v$, for some $w_{1}, w_{2} \in W$ and $a, b \in K$. Thus $x+y \in w_{1}+a \circ v+w_{2}+b \circ v=\left(w_{1}+w_{2}\right)+(a+b) \circ v$, so $T(x+y)=a+b=T(x)+T(y)$. Also if $x \in V, a \in K$ and $t \in a \circ x$, then $x \in w+a \circ v$, for some $w \in W$ and $a ́ \in K$ and so $t \in a \circ(w+a \circ v) \subseteq a \circ w+(a \dot{a}) \circ v$. Hence $T(t)=a \dot{a}=a T(x)$, which implies that $T(a \circ x)=a T(x)$. Therefore T is a linear functional in V. Finally,

$$
\begin{aligned}
\operatorname{ker} T & =\left\{x \in V: T(x)=0_{K}\right\} \\
& =\{w+t: w \in W, y \in a \circ v, a=0\} \\
& =W+0 \circ v .
\end{aligned}
$$

Lemma 5.10. Let V be a strongly left distributive hypervector space over the field K. If T_{1} and T_{2} are linear functionals on V, then T_{2} is a scalar multiple of T_{1} if and only if $\operatorname{ker} T_{1} \subseteq \operatorname{ker} T_{2}$.

Proof. Note that $a \odot T=\left\{\hat{T} \in V^{*} ; T(x) \in T(a \circ x), \forall x \in V\right\}=a T$, for all $a \in K$ and $T \in V^{*}$. Now if $T_{2}=a T_{1}$, for some $a \in K$, then clearly $\operatorname{ker} T_{1} \subseteq \operatorname{ker} T_{2}$. Conversely, let $\operatorname{ker} T_{1} \subseteq \operatorname{ker} T_{2}$. If $T_{1}=0$, then $T_{2}=0$. If $T_{1} \neq 0$, then similar to the proof of Theorem $5.9, V=\left\langle\operatorname{ker} T_{1} \cup\{x\}\right\rangle$, for some $x \in V \backslash \operatorname{ker} T_{1}$ and $T=T_{2}-T_{1}(x)^{-1} T_{2}(x) T_{1}$ is a linear functional on V such that $T(t)=T_{2}(t)-T_{1}(x)^{-1} T_{2}(x) T_{1}(t)=0$, for all $t \in \operatorname{ker} T_{1}$, and $T(x)=T_{2}(x)-T_{1}(x)^{-1} T_{2}(x) T_{1}(x)=0$. Thus for all $v \in t+a \circ x$, where $t \in \operatorname{ker} T_{1}$, $T(v)=T(t)+a T(x)=0$. Hence $T=0$ and so $T_{2}=T_{1}(x)^{-1} T_{2}(x) T_{1}$.

Theorem 5.11. Let T, T_{1}, \ldots, T_{n} be linear functionals on strongly left distributive hypervector space V over the field K. Then T is a linear combination of T_{1}, \ldots, T_{n} if and only if $\operatorname{ker} T_{1} \cap \cdots \cap \operatorname{ker} T_{n} \subseteq \operatorname{ker} T$.

Proof. If $T=a_{1} T_{1}+\cdots+a_{n} T_{n}$ and $x \in \operatorname{ker} T_{1} \cap \cdots \cap \operatorname{ker} T_{n}$, then $T_{1}(x)=\cdots=T_{n}(x)=0$ and so $T(x)=$ $a_{1} T_{1}(x)+\cdots+a_{n} T_{n}(x)=0$. Thus $x \in \operatorname{ker} T$.
We prove the converse by induction on n. The case $n=1$ is hold by Lemma 5.10. Suppose the result is true for $n=k-1$ and let T_{1}, \ldots, T_{k} be linear functionals such that $\operatorname{ker} T_{1} \cap \cdots \cap \operatorname{ker} T_{k} \subseteq \operatorname{ker} T$. Let $\dot{T}, \dot{T}_{1}, \ldots, \dot{T}_{k-1}$ be the restrictions of $T, T_{1}, \ldots, T_{k-1}$ to the subhyperspace ker T_{k}. Then $\dot{T}, \dot{T}_{1}, \ldots, \dot{T}_{k-1}$ are linear functionals on the hypervector space ker T_{k}, such that ker $\grave{T}_{1} \cap \cdots \cap \operatorname{ker} \dot{T}_{k-1} \subseteq \operatorname{ker} \dot{T}$. Thus if $x \in \operatorname{ker} \dot{T}_{1} \cap \cdots \cap \operatorname{ker} \dot{T}_{k-1} \cap \operatorname{ker} T_{k}$, then $x \in \operatorname{ker} T_{1} \cap \cdots \cap \operatorname{ker} T_{k-1} \cap \operatorname{ker} T_{k}$, which implies that $x \in \operatorname{ker} T$, i.e. $T(x)=0$. Also by the induction hypothesis, $\dot{T}=a_{1} \dot{T}_{1}+\cdots+a_{k-1} \dot{T}_{k-1}$, for some $a_{1}, \ldots, a_{k-1} \in K$. Now suppose

$$
S=T-a_{1} T_{1}-\cdots-a_{k-1} T_{k-1} .
$$

Then S is a linear functional on V such that $S(x)=0$ for all $x \in \operatorname{ker} T_{k}$. Hence by Lemma $5.10, S=a_{k} T_{k}$, for some $a_{k} \in K$. Therefore

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

which completes the proof.

6. Conclusion

The motivation of this paper was to generalize the notion of linear functionals over vector spaces into hypervector spaces. In this regards, we investigated some essential concepts and properties about linear functionals on hypervector spaces under special conditions such as:

- dual basis of a given basis of a finite-dimensional hypervector space,
- relation between linear functionals and subhyperspaces,
- superhyperspace of V and annihilator of a subset of V,
$-\operatorname{dim} V^{*}=\operatorname{dim} V$,
$-\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$,
$-\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V$,
- every superhyperspace is the kernel of a linear functional,
- whether every basis for V^{*} is the dual of some basis for V.

One can follow this paper and study some concepts from the algebraic and analytic points of view, such as transpose of linear transformations between hypervector spaces, linear functionals on an inner product hyperspace, linear functionals on convex hypervector spaces specially on normed hypervector spaces. Also investigation the fuzzy case of above concluded results is an idea for studying in the future.

References

[1] R. Ameri, O. R. Dehghan, On dimension of hypervector spaces, European Journal of Pure and Applied Mahematics 1(2) (2008) 32-50.
[2] N. Antampoufis, S. Hoskova-Mayerova, A brief survey on the two different approaches of fundamental equivalence relations on hyperstructures, Ratio Mathematica 33 (2017) 47-60.
[3] P. Corsini, Prolegomena of Hypergroup Theory, Second Edition, Aviani Editor, 1993.
[4] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publications, 2003.
[5] B. Davvaz, Polygroup Theory and Related Systems, World Scientific, 2013.
[6] B. Davvaz, Semihypergroup Theory, Elsevier, 2016.
[7] B. Davvaz, I. Cristea, Fuzzy Algebraic Hyperstructures-An Introduction, Springer, 2015.
[8] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
[9] O. R. Dehghan, R. Ameri, H. A. Ebrahimi Aliabadi, Some results on hypervector spaces, Italian Journal of Pure and Applied Mathematics 41 (2019) 23-41.
[10] O. R. Dehghan, M. Nodehi, Some results on soft hypervector spaces, Caspean Journal of Mathematical Sciences, In Press, doi:10.22080/CJMS.2020.17968.1452.
[11] F. Marty, Sur une generalization de la notion de groupe, $8^{\text {th }}$ Congres des Mathematiciens Scandinaves, Stockholm (1934) 45-49.
[12] P. Raja, S. M. Vaezpour, On 2-strong homomorphisms and 2-normed hypersets in hypervector spaces, Journal of Nonlinear Sciences and Applications 1(4) (2008) 213-223.
[13] M. Scafatti-Tallini, Hypervector spaces, $4^{\text {th }}$ International Congress on Algebraic Hyperstructures and Applications, Xanthi, Greece (1990) 167-174.
[14] M. Scafatti-Tallini, Weak hypervector spaces and norms in such spaces, $5^{\text {th }}$ International Congress on Algebraic Hyperstructres and Applications, Iasi, Romania (1994) 199-206.
[15] M. Scafatti-Tallini, Matroidal hypervector spaces, Journal of Geometry 42 (1999) 132-140.
[16] M. Scafatti-Tallini, Characterization of remarkable hypervector spaces, $8^{\text {th }}$ International Congress on Algebraic Hyperstructures and Applications, Samotraki, Greece (2002) 231-237.
[17] M. Sedghi, O. R. Dehghan, M. Norouzi, N-normed hypervector spaces, Journal of Mathematical Sciences: Advances and Applications 45 (2017) 41-59.
[18] A. Taghavi, R. Hosseinzadeh, Hahn-Banach theorem for functionals on hypervector spaces, The Journal of Mathematics and Computer Sciences 2(4) (2011) 682-690.
[19] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, 1994.

[^0]: 2010 Mathematics Subject Classification. 20N20; 15A03
 Keywords. hypervector space, basis, linear functional, dual basis, superhyperspace
 Received: 28 September 2019; Revised: 21 February 2020; Accepted: 07 August 2020
 Communicated by Dijana Mosić
 Email address: dehghan@ub.ac.ir (O. R. Dehghan)

