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On a Hilfer Fractional Differential Equation With Nonlocal
ErdéLyi-Kober Fractional Integral Boundary Conditions
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Abstract. We consider a Hilfer fractional differential equation with nonlocal Erdélyi-Kober fractional
integral boundary conditions. The existence, uniqueness and Ulam-Hyers stability results are investigated
by means of the Krasnoselskii’s fixed point theorem and Banach’s fixed point theorem. An example is given
to illustrate the main results.

1. Introduction

It has become widely observed in recent years a large number of research papers interested in the theory
of fractional differential equations, whether those involving classical Riemann-Liouville and Caputo type
fractional derivatives or that include Hadamard and Hilfer type fractional derivatives, see for example
[1, 4, 6–8, 11, 13, 18, 21, 22, 24, 30, 32] and references cited therein.

On the other hand, The stability of functional equations was originally raised by Ulam [29], next by
Hyers [17]. Thereafter, this type of stability is called the Ulam-Hyers stability. The concept of stability
for a functional equation arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Considerable efforts have been made to study the Ulam-Hyers stability of all
kinds of fractional differential equations, see for example [2, 3, 5] and references therein.

In the past few years, the Erdélyi-Kober fractional derivative, as a generalization of the Riemann-
Liouville fractional derivative, is often used, too [28, 31]. An Erdélyi-Kober operator is a fractional integra-
tion operation introduced by Arthur Erdélyi and Hermann Kober in 1940 [19]. These operators have been
used by many authors, in particular, to obtain solutions of the single, dual and triple integral equations
possessing special functions of mathematical physics as their kernels. In [10], B. Ahmad et al. studied the
existence and uniqueness of solution of a class of boundary value problems of Caputo fractional differential
equations with Riemann-Liouville and Erdélyi-Kober fractional integral boundary conditions of the formC

D
qx(t) = f (t, x(t)), t ∈ [0,T],

x(0) = αIpx(ζ), x(T) = βIγ,δη x(ξ), 0 < ζ, ξ < T.
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In [9], B. Ahmad and S. K. Ntouyas considered the following Riemann-Liouville fractional differential
inclusion with Erdélyi-Kober fractional integral boundary conditionsDqx(t) ∈ F(t, x(t)), 0 < t < T, 1 < q ≤ 2,

x(0) = 0, αx(T) =
∑m

i=1 βiI
γi,δi
ηi

x(ξ), 0 < ξ < T,

they applied endpoint theory, Krasnoselskii’s multi-valued fixed point theorem and Wegrzyk’s fixed point
theorem for generalized contractions.

By using Mawhin continuation theorem, Q. Sun et al. [26] investigated the existence of solutions of the
following boundary value problem at resonanceC

D
qx(t) = f (t, x(t), x′ (t)), t ∈ [0,T],

x(0) = α Iγ,δη x(ζ), x(T) = β ρIpx(ξ), 0 < ζ, ξ < T,

where ρ
I

p denotes to the generalized Riemann-Liouville (Katugampola) type integral of order p > 0.

In the last of this brief survey, N. Thongsalee et al. [27] studied the sufficient conditions for existence
and uniqueness of solutions for system of Riemann-Liouville fractional differential equations subject to the
nonlocal Erdélyi-Kober fractional integral conditions of the form

D
q1 x(t) = f (t, x(t), y(t)), t ∈ [0,T], 1 < q1 ≤ 2
D

q2 y(t) = 1(t, x(t), y(t)), t ∈ [0,T], 1 < q2 ≤ 2
x(0) = 0, y(T) = σ1I

γ1,δ1
η1

x(ξ1), 0 < ξ1 < T,
y(0) = 0, x(T) = σ2I

γ2,δ2
η2

y(ξ2), 0 < ξ1 < T.

Based on the above mentioned papers, we consider the Hilfer fractional differential equations with Erdélyi-
Kober fractional integral boundary conditions of the form

H
D
α,βx(t) = f (t, x(t)), t ∈ [0,T],

x(0) = 0, x(T) =

m∑
i=1

σiI
µi,δi
ηi

x(ξi),
(1)

where H
D
α,β is the Hilfer fractional derivative of order α ∈ (0, 1) and type β ∈ [0, 1] introduced by Hilfer (see,

[14–16]) , Iµi,δi
ηi

is the Erdélyi-Kober fractional integral of order δi > 0 with ηi > 0 and µi ∈ R, i = 1, 2, · · · ,m
and σi ∈ R, ξi ∈ (0,T) are given constants.
To the best of the author’s knowledge this is the first paper dealing with Hilfer differential equation subject
to Erdélyi-Kober type integral boundary conditions.
The paper is organized as follows: Section 2 contains some preliminary concepts related to fractional
calculus and Section 3 comprises the existence and uniqueness results. In Section 4, we analyze the Ulam-
Hyres stability results. Finally, Section 5 contains an illustrative example of our main results.

2. Preliminaries

In this section we present some definitions and lemmas which will be used in our results later.
At first, we review some fundamental definitions of the Riemann-Liouville fractional integral and derivative
which will be made up to the Hilfer fractional derivative (see [12, 20]).

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a continuous function y : (0,∞) → R
is defined by

I
αy(t) =

1
Γ(α)

∫ t

0
(t − s)α−1y(s) ds, n − 1 < α < n, (2)
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where n = [α] + 1, [α] denotes the integer part of a real number α and Γ(·) is the Gamma function defined by
Γ(α) =

∫
∞

0 e−ssα−1ds, provided the integral exists.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a continuous function y : (0,∞)→ R
is defined by

RL
D
αy(t) = D

n
I

n−αy(t)

=
1

Γ(n − α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1y(s) ds, n − 1 < α < n,

Definition 2.3. (Hilfer fractional derivative) The Hilfer fractional derivative operator of order α and type β is defined
by

H
D
α,βy(t) = Iβ(n−α)

D
n
I

(1−β)(n−α)y(t), (3)

where n − 1 < α < n, 0 ≤ β ≤ 1 andD = d
dt .

This generalization (3) yields the classical Riemann-Liouville fractional derivative operator when β = 0.
Moreover, for β = 1, it gives the Caputo fractional derivative operator.

Some properties and applications of the generalized Riemann-Liouville fractional derivative are given
in [14].

Definition 2.4. The Erdélyi-Kober fractional integral of order δ > 0 with η > 0 and µ ∈ R of a continuous function
y : (0,∞)→ R is defined by

I
µ,δ
η y(t) =

ηt−η(δ+µ)

Γ(δ)

∫ t

0

sηµ+η−1y(s)
(tη − sη)1−δ

ds, (4)

provided the right side is pointwise defined on R+.

Remark 2.5. For η = 1, the above operator is reduced to the Kober operator

Kµ,δy(t) =
t−(δ+µ)

Γ(δ)

∫ t

0

sµy(s)
(t − s)1−δ

ds, µ, δ > 0,

that was introduced for the first time by Kober in [19]. For µ = 0, the Kober operator is reduced to the Riemann-
Liouville fractional integral with a power weight:

K0,δy(t) =
t−δ

Γ(δ)

∫ t

0

y(s)
(t − s)1−δ

ds, δ > 0.

Lemma 2.6. Let δ, η > 0 and µ, q ∈ R. Then we have

I
µ,δ
η tq =

tqΓ(µ + (q/η) + 1)
Γ(µ + (q/η) + δ + 1)

.

Lemma 2.7. Let η, λ and ν be positive constants. Then∫ t

0
(tη − sη)λ−1sν−1 =

tη(λ−1)+ν

η
B(
ν
η
, λ),

where B(w, v) =
∫ 1

0 (1 − s)w−1sv−1ds, (Re(w) > 0,Re(v) > 0) is the well-known beta function.
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Lemma 2.8. let 1 < α ≤ 2. Then

I
α(RL
D
α f )(t) = f (t) −

(I1−α f )(a)
Γ(α)

(t − a)α−1
−

(I2−α f )(a)
Γ(α − 1)

(t − a)α−2.

Now, We adopt the following definitions of Ulam-Hyeres and generalized Ulam-Hyers stabilities from Rus
[23].

Definition 2.9. Equation considered in problem (1) is Ulam-Hyers stable if there exists a real number C f > 0 such
that for each ε > 0 and for each solution y ∈ C([0,T],R) of the inequality∣∣∣HDα,βy(t) − f

(
t, y(t)

)∣∣∣ ≤ ε, t ∈ [0,T],

there exists a solution x ∈ C([0,T],R) of Eq.(1) with∣∣∣y(t) − x(t)
∣∣∣ ≤ C f ε, t ∈ [0,T].

Definition 2.10. Equation considered in problem (1) is generalized Ulam-Hyers stable if there existsϑ f ∈ C(R+,R+),
ϑ f (0) = 0 such that for each solution y ∈ C([0,T],R) of the inequality∣∣∣HDα,βy(t) − f

(
t, y(t)

)∣∣∣ ≤ ε, t ∈ [0,T],

there exists a solution x ∈ C([0,T],R) of Eq.(1) with∣∣∣y(t) − x(t)
∣∣∣ ≤ ϑ f (ε), t ∈ [0,T].

Remark 2.11. It is clear that Definition 2.9 =⇒ Definition 2.10.

To end this section, we recall the Krasnoselskii’s fixed point theorem, which plays a key role in the main
results for the problem (1).

Theorem 2.12. (Krasnoselskii’s fixed point theorem [25]) Let K be a closed convex and non-empty subset of a
Banach space X. LetA and B, be two operators such that

(i) Ax +By ∈ K, for all x, y ∈ K;

(ii) A is a contraction mapping;

(iii) B is compact and continuous.

Then there exists a z ∈ K such that z = Az +Bz.

3. Existence and Uniqueness Results

Let C([0,T],R) be the Banach space of all real-valued continuous functions from [0,T] into R equipped
by the norm ‖x‖C = supt∈[0,T] |x(t)|, ∀x ∈ C([0,T],R).

Lemma 3.1. let 1 < α < 2, 0 ≤ β ≤ 1, γ = α + 2β − αβ, δi, ηi > 0, µi, σi ∈ R, ξi ∈ (0,T), i = 1, 2, · · · ,m and
h ∈ C([0,T],R). Then the linear Hilfer fractional differential equation subject to the Erdélyi-Kober fractional integral
boundary conditionsH

D
α,βx(t) = h(t), t ∈ [0,T],

x(0) = 0, x(T) =
∑m

i=1 σiI
µi,δi
ηi

x(ξi),
(5)
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is equivalent to the following fractional integral equation

x(t) = Iαh(t) +
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
αh(ξi) − Iαh(T)

 , (6)

where

∆ = Tγ−1
−

m∑
i=1

σiξ
γ−1
i

Γ(µi + (γ − 1)/ηi + 1)
Γ(µi + (γ − 1)/ηi + δi + 1)

, 0. (7)

Proof. By Definition 2.3 (with n = 2), the equation H
D
α,βx(t) = h(t) can be written as

I
β(2−α)

D
2
I

(1−β)(2−α)x(t) = h(t). (8)

Applying the Riemann-Liouville fractional integral Iα of order α to the both sides of the equation (8), we
get

I
α
I
β(2−α)

D
2
I

(1−β)(2−α)x(t) = Iαh(t).

Indeed,
I
α
I
β(2−α)

D
2
I

(1−β)(2−α)x(t) = IγD2
I

2−γx(t) = Iγ(RL
D
γx)(t),

thus
I
γ(RL
D
γx)(t) = Iαh(t).

By using Lemma 2.8 (with a = 0), we get

x(t) = Iαh(t) +
(I1−γx)(0)

Γ(γ)
tγ−1 +

(I2−γx)(0)
Γ(γ − 1)

tγ−2.

Setting (I1−γx)(0) = c1, (I2−γx)(0) = c2 gives

x(t) = Iαh(t) +
c1

Γ(γ)
tγ−1 +

c2

Γ(γ − 1)
tγ−2.

From the first boundary condition x(a) = 0, we obtain c2 = 0. Then we get

x(t) = Iαh(t) +
c1

Γ(γ)
tγ−1. (9)

In view of Lemma 2.6 and the boundary condition x(T) =

m∑
i=1

σiI
µi,δi
ηi

x(ξi), we get

I
αh(T) +

c1

Γ(γ)
Tγ−1 =

m∑
i=1

σiI
µi,δi
ηi

(
I
αh(ξi) +

c1

Γ(γ)
ξγ−1

i

)

=

m∑
i=1

σiI
µi,δi
ηi
I
αh(ξi) +

c1

Γ(γ)

m∑
i=1

σiI
µi,δi
ηi
ξγ−1

i

=

m∑
i=1

σiI
µi,δi
ηi
I
αh(ξi) +

c1

Γ(γ)

m∑
i=1

σiξ
γ−1
i

Γ(µi + (γ − 1)/ηi + 1)
Γ(µi + (γ − 1)/ηi + δi + 1)

.

Therefore, we conclude that

c1 = Γ(γ)


∑m

i=1 σiI
µi,δi
ηi
I
αh(ξi) − Iαh(T)

Tγ−1 −
∑m

i=1 σiξ
γ−1
i

Γ(µi+(γ−1)/ηi+1)
Γ(µi+(γ−1)/ηi+δi+1)

 =
Γ(γ)
∆

 m∑
i=1

σiI
µi,δi
ηi
I
αh(ξi) − Iαh(T)

 .
By substitution the value of c1 in equation (9), we obtain the solution (6). The converse follows by direct
computation. This completes the proof.
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We consider the following assumptions:

(H1) The function f : [0,T] ×R→ R is continuous.

(H2) There exist constants L,M > 0 such that

| f (t, x) − f (t, y)| ≤ L|x − y|, for each t ∈ [0,T], x, y ∈ C([0,T],R),

and
M = sup

t∈[0,T]
| f (0, t)|.

(H3) There exists a function ψ ∈ C([0,T],R+) such that

| f (t, x)| ≤ ψ(t), for all (t, x) ∈ [0,T] ×R,

and
‖ψ‖ = sup

t∈[0,T]
|ψ(t)|.

We transform the problem (1) into a fixed point problem F x = x, where the operator F : C([0,T],R)→
C([0,T],R) is defined by

(F x)(t) = Iα f (s, x(s))(t) +
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α f (s, x(s))(ξi) − Iα f (s, x(s))(T)

 ,
where

I
µi,δi
ηi
I
α f (s, x(s))(ξi) =

ηiξ
−ηi(δi+µi)
i

Γ(δi)Γ(α)

∫ ξi

0

∫ y

0

yηiµi+ηi−1(y − s)α−1

(ξηi

i − yηi )1−δi
f (s, x(s))dsdy,

where ξi ∈ (0,T) for i = 1, 2, · · · ,m, and

I
α f (s, x(s))(y) =

1
Γα

∫ y

0
(y − s)α−1 f (s, x(s))ds, y ∈ {t,T}

for t ∈ [0,T].
The following uniqueness result is based on Banach’s fixed point theorem.

Theorem 3.2. Under the assumptions (H1) and (H2), the boundary value problem (1) has a unique solution on
[0,T], provided that LΩ < 1, where

Ω =
1

Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 (10)

Proof. Define the set Br = {x ∈ C([0,T],R) : ‖x‖C ≤ r}with

r ≥
MΩ

1 − LΩ
.

Clearly, the fixed points of the operator F are solutions of problem (1).
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We show that FBr ⊂ Br. For any x ∈ Br, we have

|(F x)(t)| ≤ sup
t∈[0,T]

{
I
α
| f (s, x(s))|(t) +

tγ−1

|∆|
I
α
| f (s, x(s))|(T)

+
tγ−1

|∆|

m∑
i=1

|σi|I
µi,δi
ηi
I
α
| f (s, x(s))|(ξi)


≤ I

α (
| f (s, x(s)) − f (s, 0)| + | f (s, 0)|

)
(T)

+
Tγ−1

|∆|
I
α (
| f (s, x(s)) − f (s, 0)| + | f (s, 0)|

)
(T)

+
Tγ−1

|∆|

m∑
i=1

|σi|I
µi,δi
ηi
I
α (
| f (s, x(s)) − f (s, 0)| + | f (s, 0)|

)
(ξi)

≤ (Lr + M)
(

1
Γ(α)

∫ T

0
(T − s)α−1ds +

Tγ−1

|∆|Γ(α)

∫ T

0
(T − s)α−1ds

+
Tγ−1

|∆|Γ(α)

m∑
i=1

|σi|
ηiξ
−ηi(δi+µi)
i

Γ(δi)

∫ ξi

0

∫ y

0

yηiµi+ηi−1(y − s)α−1

(ξηi

i − yηi )1−δi
dsdy


=

Lr + M
Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|
ηiξ
−ηi(δi+µi)
i

Γ(δi)

∫ ξi

0

yα+ηiµi+ηi−1

(ξηi

i − yηi )1−δi
dy


=

Lr + M
Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)


= (Lr + M)Ω ≤ r,

which implies that FBr ⊂ Br.

Next, for each t ∈ [0,T] and x, y ∈ C([0,T],R), , we have

|(F x)(t) − (F y)(t)| ≤ I
α (
| f (s, x(s)) − f (s, y(s))|

)
(T) +

Tγ−1

|∆|
I
α (
| f (s, x(s)) − f (s, y(s))|

)
(T)

+
Tγ−1

|∆|

m∑
i=1

|σi|I
µi,δi
ηi
I
α (
| f (s, x(s)) − f (s, y(s))|

)
(ξi)

≤
L

Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 ‖x − y‖

= LΩ‖x − y‖,

which implies that ‖F x − F y| ≤ LΩ‖x − y‖. As LΩ < 1, F is contraction.
Therefore, we deduce by the Banach’s contraction mapping principle, that F has a fixed point which is the
unique solution of the boundary value problem (1). The proof is completed.

The following existence theorem is based on the Krasnoskelskii’s fixed point theorem (Theorem 2.12).

Theorem 3.3. Assume that assumptions (H1) − (H3) hold. Then the boundary value problem (1) has at least one
solution on [0,T], provided that LΛ < 1, where

Λ =
1

Γ(α + 1)

Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 (11)
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Proof. Consider Br∗ = {x ∈ C([0,T],R) : ‖x‖C ≤ r∗}with r∗ ≥ ‖ψ‖Ω. We define two operatorsA,B on Br∗ by

(Ax)(t) =
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α f (s, x(s))(ξi) − Iα f (s, x(s))(T)

 ,
and

(Bx)(t) = Iα f (s, x(s))(t).

For each t ∈ [0,T] and any x, y ∈ Br∗ , we have

|(Ax)(t) + (Bx)(t)| ≤ sup
t∈[0,T]

{
I
α
| f (s, x(s))|(t) +

tγ−1

|∆|
I
α
| f (s, x(s))|(T)

+
tγ−1

|∆|

m∑
i=1

|σi|I
µi,δi
ηi
I
α
| f (s, x(s))|(ξi)


≤

‖ψ‖

Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)


= ‖ψ‖Ω ≤ r∗.

Therefore,Ax +Bx ∈ Br∗ .

Next, it is easy to show thatAx is contraction. Indeed,

|(Ax)(t) − (Ay)(t)| ≤
Tγ−1

|∆|
I
α (
| f (s, x(s)) − f (s, y(s))|

)
(T)

+
Tγ−1

|∆|

m∑
i=1

|σi|I
µi,δi
ηi
I
α (
| f (s, x(s)) − f (s, y(s))|

)
(ξi)

≤
1

Γ(α + 1)

Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 ‖x − y‖

= LΛ‖x − y‖.

Since LΛ < 1, thenA is contraction.
It remains to prove the continuity and compactness of B. In view of assumption (H1), the continuity of the
function f implies that the operator B is continuous. Also, we observe that

|(Bx)(t)| ≤ sup
t∈[0,T]

{
I
α
| f (s, x(s))|(t)

}
≤

Tα

Γ(α + 1)
‖ψ‖.

This shows that B is uniformly bounded on Br∗ .

Now, we prove the compactness of B. We define

sup
(t,x)∈[0,T]×Br∗

| f (t, x)| = f̂ < ∞.



M. I. Abbas / Filomat 34:9 (2020), 3003–3014 3011

For each t1, t2 ∈ [0,T], t1 ≤ t2 and x ∈ Br∗ , we get

|(Bx)(t2) − (Bx)(t1)| ≤
1

Γ(α)

∣∣∣∣∣∣
∫ t2

0
(t2 − s)α−1 f (s, x(s))ds −

∫ t1

0
(t1 − s)α−1 f (s, x(s))ds

∣∣∣∣∣∣
≤

1
Γ(α + 1)

(∫ t2

0
[(t2 − s)α−1

− (t1 − s)α−1]| f (s, x(s))|ds

+

∫ t2

t1

(t1 − s)α−1
| f (s, x(s))|ds

)
≤

f̂
Γ(α + 1)

|tα2 − tα1 |.

The right hand side of the above inequality tends to zero as t2 − t1 → 0, which implies that B is equicon-
tinuous. Hence B is relatively compact on Br∗ . By the Arzelá-Ascoli theorem, we deduce that the operator
B is compact. We conclude, by the Krasnoskelskii’s fixed point theorem, that the boundary value problem
(1) has at least one solution on [0,T]. The proof is completed.

4. Stability Results

In this section, we discuss the Ulam-Hyers and generalized Ulam-Hyers stability results for the problem
(1).

Remark 4.1. A function y ∈ C([0,T],R) is a solution of the inequality∣∣∣HDα,βy(t) − f
(
t, y(t)

)∣∣∣ ≤ ε, t ∈ [0,T],

if and only if there exist a function 1 ∈ C([0,T],R) (which depend on y) such that

(i) |1(t)| ≤ ε, t ∈ [0,T],

(ii) H
D
α,βy(t) = f

(
t, y(t)

)
+ 1(t), t ∈ [0,T],

Lemma 4.2. If y ∈ C([0,T],R) is a solution of the inequality∣∣∣HDα,βy(t) − f
(
t, y(t)

)∣∣∣ ≤ ε, t ∈ [0,T],

then y satisfies

|y(t) − (F y)(t)| ≤ Ωε, (12)

where Ω is defined in (10).

Proof. From Remark 4.1 and Lemma 3.1, we have

y(t) = Iα( f (s, y(s)) + 1)(t) +
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α( f (s, y(s)) + 1)(ξi) − Iα( f (s, y(s)) + 1)(T)

 .
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Then, we get

|y(t) − (F y)(t)| =

∣∣∣∣∣∣∣Iα( f (s, y(s)) + 1)(t) +
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α( f (s, y(s)) + 1)(ξi)

− I
α( f (s, y(s)) + 1)(T)

)
− I

α f (s, y(s))(t) −
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α f (s, y(s))(ξi) − Iα f (s, y(s))(T)


∣∣∣∣∣∣∣

≤ I
α
|1|(t) +

tγ−1

|∆|

 m∑
i=1

|σi|I
µi,δi
ηi
I
α
|1|(ξi) − Iα|1|(T)


≤ Ωε.

This completes the proof.

Theorem 4.3. Assume that assumptions (H1) and (H2) are satisfied. Then the problem (1) is Ulam-Hyers stable.

Proof. Let ε > 0, y ∈ C([0,T],R) be a solution of the inequality∣∣∣HDα,βy(t) − f
(
t, y(t)

)∣∣∣ ≤ ε, t ∈ [0,T],

and let x ∈ C([0,T],R) be the unique solution of problem (1). Then, we have

|y(t) − x(t)| =

∣∣∣∣∣∣∣y(t) − Iα f (s, x(s))(t) −
tγ−1

∆

 m∑
i=1

σiI
µi,δi
ηi
I
α f (s, x(s))(ξi) − Iα f (s, x(s))(T)


∣∣∣∣∣∣∣

= |y(t) − (F x)(t)|
= |y(t) − (F y)(t) + (F y)(t) − (F x)(t)|
≤ |y(t) − (F y)(t)| + |(F y)(t) − (F x)(t)|
≤ Ωε + LΩ|y − x|,

which implies that

|y(t) − x(t)| ≤
Ωε

1 − LΩ
, LΩ < 1.

By setting C f = Ω
1−LΩ , we get

|y(t) − x(t)| ≤ C f ε.

Thus, the problem (1) is Ulam-Hyers stable.
If we set ϑ f (ε) = C f ε, ϑ f (0) = 0, then the problem (1) is generalized Ulam-Hyers stable.

5. An example

In this section we consider the following Hilfer fractional differential equation with Erdélyi-Kober
fractional integral boundary condition:

H
D

4
3 ,

5
6 x(t) =

|x(t)|
25
√

4+t2(1+|x(t)|)
, t ∈ [0, 1],

x(0) = 0, x(1) = 1
3I

1
4 ,

3
7

1
5

x( 5
4 ) + 2

5I
2
3 ,

5
8

2
9

x( 3
2 ) + 5

6I
1
6 ,

1
5

1
3

x( 2
7 ),

(13)
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where α = 4
3 , β = 5

6 , γ = 17
9 ,T = 1,m = 3, σ1 = 1

3 , σ2 = 2
5 , σ3 = 5

6 , µ1 = 1
4 , µ2 = 2

3 , µ3 = 1
6 , δ1 = 3

7 , δ2 = 5
8 , δ3 =

1
5 , η1 = 1

5 , η2 = 2
9 , η3 = 1

3 , ξ1 = 5
4 , ξ2 = 3

2 , ξ3 = 2
7 and the function f (t, x(t)) =

|x(t)|
25
√

4+t2(1+|x(t)|)
.

We can see that

| f (t, x(t) − f (t, y(t)| =

∣∣∣∣∣∣∣ |x(t)|

25
√

4 + t2(1 + |x(t)|)
−

|y(t)|

25
√

4 + t2(1 + |y(t)|)

∣∣∣∣∣∣∣
≤

1

25
√

4 + t2

|x(t)| − |y(t)|
(1 + |x(t)|)(1 + |y(t)|)

≤
1

50
|x − y|,

which implies, by assumption (H2), that L = 1
50 .

Simple calculations give

∆ = Tγ−1
−

m∑
i=1

σiξ
γ−1
i

Γ(µi + (γ − 1)/ηi + 1)
Γ(µi + (γ − 1)/ηi + δi + 1)

≈ −0.029801394 , 0,

Ω =
1

Γ(α + 1)

Tα +
Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 ≈ 43.74995072,

and

Λ =
1

Γ(α + 1)

Tγ+α−1

|∆|
+

Tγ−1

|∆|

m∑
i=1

|σi|ξαi Γ(α/ηi + µi + 1)

Γ(δi + α/ηi + µi + 1)

 ≈ 42.91006582.

Hence, we get LΩ ≈ 0.8749990144 < 1 and LΛ ≈ 0.8582013164 < 1.
Therefore, the conclusion of Theorem 3.3 implies that the boundary value problem (13) has at least one
solution on [0, 1] and by Theorem 3.2, this solution is unique.
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