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Abstract. LetA be a complex Banach algebra. An element a ∈ A has g-Drazin inverse if there exists b ∈ A
such that

b = bab, ab = ba, a − a2b ∈ Aqnil.

Let a, b ∈ Ad. If a3b = ba, b3a = ab, and a2adb = aadba, we prove that a + b ∈ Ad if and only if 1 + adb ∈ Ad. We
present explicit formula for (a + b)d under certain perturbations. These extend the main results of Wang,
Zhou and Chen (Filomat, 30(2016), 1185–1193) and Liu, Xu and Yu (Applied Math. Comput., 216(2010),
3652–3661).

1. Introduction

Throughout the paper, A denotes a complex Banach algebra with identity. An element a in A has a
g-Drazin inverse provided that there exists some b ∈ A such that

ab = ba, b = bab, a − a2b ∈ Aqnil.

Here,Aqnil is the set of all quasinilpotents inA, i.e.,

A
qnil = {a ∈ A | lim

n→∞
‖ an
‖

1
n = 0}.

As is well known, we have
a ∈ Aqnil

⇔ 1 + λa ∈ A−1 for any λ ∈ C.

Here,A−1 stands for the set of invertible elements inA. The preceding b is unique, if exists, and is called the
g-Drazin inverse of a. We denote it by ad. We useAd to stand for the set of all g-Drazin invertible elements
in A. In [10, Theorem 4.2], it was proved that a ∈ Ad if and only if there exists an idempotent p ∈ A such
that ap = pa, a + p ∈ A−1 and ap ∈ Aqnil.
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The g-Drazin invertibility of the sum of two elements in a Banach algebra is very attractive. It plays an
important role in matrix and operator theory, e.g., [3–6, 12, 15]. The Drazin inverse aD of a ∈ A is defined
as the g-Drazin inverse by replacing Aqnil by the set of all nilpotents in A. In [13], Liu et al. investigated
Drazin inverse (A + B)D of two complex matrices A and B which satisfying A3B = BA and B3A = AB. Wang
et al. gave representations of (a + b)D as a function of a, b, aD and bD whenever a3b = ba and b3a = ab in a
ring R in which 2 has Drazin inverse (see [16, Theorem 3.7]). The motivation of this paper is to explore such
conditions involving power commutativity under which the sum of two g-Drazin invertible elements in a
Banach algebra has g-Drazin inverse.

Let a, b ∈ Ad. If ab = ba, then a + b ∈ Ad if and only if 1 + adb ∈ Ad (see [6, Theorem 1]). Zou et al.
extended this result to weaker conditions a2b = aba and b2a = bab (see [18, Theorem 3.3]). In Section 2,
we investigate the relations of a + b, aad(a + b), (a + b)bbd and aad(a + b)bbd for a, b ∈ Ad. Let a, b ∈ Ad. If
a3b = ba, b3a = ab, and adab = adba, we prove that a + b ∈ Ad if and only if 1 + adb ∈ Ad.

Let x ∈ Ad. The element xπ = 1 − xxd is called the spectral idempotent of x. Let A,B ∈ Mn(C). Hartwig
et al. gave the formula of (A + B)D under condition AB = 0 (see [9, Theorem 2.1]). In [1, Theorem 2.5],
Castro-González gave a formula for the Drazin inverse of a sum of two complex matrices less restrictive
conditions:

ADB = 0,ABD = 0 and BπABAπ = 0.

Guo et al. extended the preceding results and considered representations for the Drazin inverse of the sum
of two complex matrices of

ADB = 0,ABD = 0,BπABAAπ = 0,BπAB2Aπ = 0

(see [7, Theorem 2]). In [8, Theorem 2], Guo et al. deduced the expressions for the g-Drazin inverse (a + b)d

under the conditions
adb = 0, abd = 0 bπabaaπ = 0 and bπab2aπ = 0.

In Section 3, we obtain the explicit formula for the g-Drazin inverse of a+b under the perturbation conditions
involving power commutativity. We shall derive explicit representation for (a + b)d under a new condition:

abd = 0, adb = 0, bπa3baπ = bπbaaπ, bπb3aaπ = bπabaπ.

Let p ∈ A be an idempotent, and let x ∈ A. Then we write

x = pxp + px(1 − p) + (1 − p)xp + (1 − p)x(1 − p),

and induce a Pierce representation given by the matrix

x =

(
pxp px(1 − p)

(1 − p)xp (1 − p)x(1 − p)

)
p
.

2. Additive results

The main purpose of this section is to prove the equivalence of the g-Drazin invertibility for a + b and
1 + adb under certain power communicative condition. We begin with

Lemma 2.1. LetA be a Banach algebra, and let a, b ∈ Ad and a3b = ba, b3a = ab. Then

(1) aadb = baad.
(2) bbda = abbd.
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Proof. (1) Since a ∈ Aqnil, we have ‖ (a − a2ad)n
‖

1
n→ 0 (n→∞). Let p = aad. Then

pb − pbp = (ad)3na3nb(1 − aad)
= (ad)3na3(n−1)ba(1 − aad)
...
= (ad)3nban(1 − aad)
= (ad)3nb(a − a2ad)n.

This shows that
‖ pb − pbp ‖

1
n≤‖ ad

‖
3
‖ b ‖

1
n ‖ (a − a2ad)n

‖
1
n ,

and then
‖ pb − pbp ‖

1
n→ 0 (n→∞).

This implies that pb = pbp. Similarly, we have bp = pbp. Accordingly, aadb = pb = bp = baad.
(2) This is proved as in (1).

Lemma 2.2. Let

x =

(
a 0
c b

)
p

or
(

b c
0 a

)
p

Then

xd =

(
ad 0
z bd

)
p
, or

(
bd z
0 ad

)
p
,

where
z = (bd)2

( ∞∑
i=0

(bd)icai
)
aπ + bπ

( ∞∑
i=0

bic(ad)i
)
(ad)2

− bdcad.

Proof. See [14, Lemma 1.2].

Lemma 2.3. LetA be a Banach algebra, and let a, b ∈ Aqnil. Suppose a3b = ba, b3a = ab. Then a + b ∈ Aqnil.

Proof. By induction, we have
ab = b3a = a26(ab)b2 = · · · = a26n(ab)b2n,

and so
‖ ab ‖

1
n≤‖ a26n

‖
1
n ‖ ab ‖

1
n ‖ b2n

‖‖
1
n .

Hence, ab = 0. In view of [18, Lemma 2.10], a + b ∈ Aqnil.

Lemma 2.4. LetA be a Banach algebra, and let a ∈ Ad, b ∈ Aqnil. If a3b = ba, b3a = ab, then a + b ∈ Ad if and only
if aad(a + b)bbd

∈ A
d.

Proof. Let p = aad. Then we have

a =

(
a1 0
0 a2

)
p
, b =

(
b1 b12
b21 b2

)
p
.

In view of Lemma 2.1, aadb = baad, and so b12 = aadb(1 − aad) = baad(1 − aad) = 0. Likewise, we have b21 = 0.
Thus

a + b =

(
a1 + b1 0

0 a2 + b2

)
p
.

Clearly, a2 = (1 − aad)a ∈ Aqnil. Since b2 = (1 − aad)b(1 − aad) = (1 − aad)b, we have b2 ∈ A
qnil by Lemma

2.1 and [18, Lemma 2.11]. One easily checks that a2b2 = b3
2a2 and b2a2 = a3

2b2, it follows by Lemma 2.3 that
a2 + b2 ∈ A

qnil.
Therefore a + b ∈ Ad if and only if aad(a + b)bbd = a1 + b1 ∈ A

d.
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We are now ready to prove the following.

Theorem 2.5. LetA be a Banach algebra, and let a, b ∈ Ad. If a3b = ba, b3a = ab, then the following are equivalent:

(1) a + b ∈ Ad.
(2) aad(a + b) ∈ Ad.
(3) (a + b)bbd

∈ A
d.

(4) aad(a + b)bbd
∈ A

d.

Proof. (1)⇔ (4) Let p = aad. Then we have

a =

(
a1 0
0 a2

)
p
, b =

(
b1 b12
b21 b2

)
p
.

As in the proof of Lemma 2.4, we show that b12 = 0 and b21 = 0. Thus

a + b =

(
a1 + b1 0

0 a2 + b2

)
p
.

We claim that a2 +b2 ∈ A
d. We have a2 = a− a2ad

∈ A
qnil. We will suffice to prove b2 = (1− aad)b(1− aad) ∈

A
d. In light of Lemma 2.1, (aad)b = b(aad), and so (1 − aad)b = b(1 − aad). Clearly, 1 − aad

∈ A
d. Therefore

b2 = (1 − aad)b ∈ Ad by [18, Theorem 3.1]. Accordingly, a2 + b2 ∈ A
d by using Lemma 2.4.

Thus, a + b ∈ Ad if and only if a1 + b1 ∈ A
d. In view of [18, Theorem 3.1], (aad)b ∈ Ad. By Cline’s formula

(see [11, Theorem 2.1]), we have b1 = aadbaad
∈ A

d. By using [18, Theorem 3.1] again, a1 = aada ∈ Ad.
Therefore a1 + b1 = aad(a + b)aad, as desired.

(2)⇔ (3)⇔ (4) These are obvious by Cline’s formula (see [11, Theorem 2.1]).

As an immediate consequence, we now derive

Corollary 2.6. LetA be a Banach algebra, and let a, b ∈ Ad. If a3b = ba, b3a = ab, then the following are equivalent:

(1) a + b ∈ Ad.
(2) a(1 + adb) ∈ Ad.

Proof. (1) ⇒ (2) In view of [18, Theorem 3.1], aad(a + b) = aada(1 + adb) ∈ Ad. It is easy to check that
(1 − aad)a(1 + adb) = a − a2ad

∈ A
qnil. In view of Lemma 2.1,

aada(1 + adb)(1 − aad)a(1 + adb) = 0,

and so
a(1 + adb) = aada(1 + adb) + (1 − aad)a(1 + adb) ∈ Ad

by [6, Theorem 2.3].
(2) ⇒ (1) Clearly, aad(a + b) = a2ad + aadb = a2ad(1 + adb) = aada(1 + adb). By virtue of Lemma 2.1,

aada(1+adb) = a(1+adb)aad. Thus, it follows by [18, Theorem 3.1] that aada(1+adb) ∈ Ad.Hence, aad(a+b) ∈ Ad.
Therefore we complete the proof by Theorem 2.5.

We have accumulated all the information necessary to prove the following.

Theorem 2.7. Let A be a Banach algebra, and let a, b ∈ Ad. If a3b = ba, b3a = ab, and adab = adba, then the
following are equivalent:

(1) a + b ∈ Ad.
(2) 1 + adb ∈ Ad.
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Proof. (1)⇒ (2) In view of Lemma 2.1, we see that aad(a + b) = a2ad + aadb ∈ Ad. Since adab = adba, we have

(a2ad)(aadb) = (aadb)(a2ad).

By virtue of [18, Theorem 3.3], 1 + (a2ad)d(aadb) = 1 + adb ∈ Ad, as desired.
(2)⇒ (1) In view of [18, Theorem 3.1], a2ad = a(aad) ∈ Ad. By hypothesis and Lemma 2.1, we easily check

that
a2ad(1 + adb) = a2ad + adba = a2ad + a(ad)2ba = (1 + adb)a2ad.

Thus, aad(a + b) = a2ad(1 + adb) ∈ Ad by [18, Theorem 3.1]. Therefore we complete the proof by Theorem
2.5.

Corollary 2.8. Let A be a Banach algebra, and let a, b ∈ Ad. If a3b = ba, b3a = ab, and adab = adba then the
following are equivalent:

(1) a − b ∈ Ad.
(2) 1 − adb ∈ Ad.

Proof. In view of [2, Theorem 2.2], −b ∈ Ad. Applying Theorem 2.7 to a and −b, we complete the proof.

3. Perturbations

The aim of this section is to provide conditions on a and b in Ad with multiplicative perturbations so
that the sum a + b will have g-Drazin inverse. For further use, we now derive the following.

Lemma 3.1. LetA be a Banach algebra, and let a, b ∈ Ad. If abd = 0, adb = 0, a3b = ba, b3a = ab, then a + b ∈ Ad

and (a + b)d = ad + bd.

Proof. In view of Lemma 2.1, we easily check that bad = ba(ad)2 = aadbad = 0 and bda = (bd)2ba = (bd)abdb = 0.
Thus,

(a + b)(ad + bd) = aad + bad + bbd = ada + bda + bdb = (ad + bd)(a + b).

Also we have
(ad + bd)(a + b)(ad + bd) = ad + bd.

Moreover, we have (a + b) − (a + b)2(ad + bd) = x + y, where x = a − a2ad, y = b − b2dd
∈ A

qnil. We easily
check that x3y = yx and y3x = xy. According to Lemma 2.3, x + y ∈ Aqnil. Therefore (a + b)d = ad + bd, as
asserted.

Theorem 3.2. Let A be a Banach algebra, and let a, b ∈ Ad. If abd = 0, adb = 0, a3baπ = baaπ, b3aaπ = abaπ, then
a + b ∈ Ad and

(a + b)d = bπad + bdaπ + bπaπ
∞∑

i=0

(a + b)ib(ad)i+2.

Proof. Let p = aad. Then we have

a =

(
a1 0
0 a2

)
p
, b =

(
b11 b12
b1 b2

)
p
.

Since adb = 0, we see that b11 = b12 = 0. Hence we have

a =

(
a1 0
0 a2

)
p
, b =

(
0 0
b1 b2

)
p
.
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Moreover, a2 = (1 − p)a(1 − p) = a − a2ad
∈ A

qnil. Since b ∈ Ad and adb = 0, we have aπb = b ∈ Ad. In light of
Cline’s formula, b2 = aπbaπ ∈ Ad, and so b2 ∈ ((1 − p)A(1 − p))d. One easily checks that

a2bd
2 = 0, ad

2b2 = 0, a3
2b2 = b2a2, b3

2a2 = a2b2.

In view of Lemma 3.1, (a2 + b2)d = ad
2 + bd

2 = bdaπ. In light of Lemma 2.2, we have

(a + b)d =

(
ad

1 0
z (a2 + b2)d

)
=

(
ad 0
z bdaπ

)
,

where

z = bπaπ
∞∑

i=0

(a2 + b2)ib1(ad)i+2
− bdb1ad.

Moreover, we have (
0 0

(a2 + b2)ib1(ad)i+2 0

)
=

(
0 0

(a2 + b2)ib1 (a2 + b2)ib2

) (
(ad)i+2 0

0 0

)
= (a + b)ib(ad)i+2,

and (
0 0

bdb1ad 0

)
= bbdad.

Therefore

(a + b)d = bπad + bdaπ + bπaπ
∞∑

i=0

(a + b)ib(ad)i+2,

as asserted.

Corollary 3.3. Let A be a Banach algebra, and let a, b ∈ Ad. If abd = 0, adb = 0, bπa3baπ = bπbaaπ, bπb3aaπ =
bπabaπ, then a + b ∈ Ad and

(a + b)d = bdaπ + bπad + bπaπ
∞∑

i=0
(a + b)ib(ad)i+2

+
∞∑

i=0

[
(bd)i+2a(a + b)i

− (bd)i+2a(a + b)i+1ad

−

∞∑
j=0

(bd)i+2a(a + b)i+ j+1b(ad) j+2
]

−

∞∑
i=0

bda(a + b)ib(ad)i+2.

Proof. Let p = bbd. Then we have

a =

(
a11 a1
a21 a2

)
p
, b =

(
b1 0
0 b2

)
p
.

Clearly, a11 = a21 = 0, and so

a =

(
0 a1
0 a2

)
p
, b =

(
b1 0
0 b2

)
p
.

Moreover, b2 = (1 − p)b(1 − p) = b − b2bd
∈ A

qnil. Since a ∈ Ad and abd = 0, we see that abπ = a ∈ Ad. By
using Cline’s formula, a2 = bπabπ ∈ Ad, and so a2 ∈ ((1 − p)A(1 − p))d. It is easy to verify that

ad
2b2 = 0, a2bd

2 = 0, a3
2b2aπ2 = b2a2aπ2 , b

3
2a2aπ2 = a2b2aπ2 .
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Since bd
2 = 0, it follows by Theorem 3.2 that

(a2 + b2)d = ad
2 + aπ2

∞∑
i=0

(a2 + b2)ib2(ad
2)i+2.

Therefore

(a + b)d =

(
bd z
0 (a2 + b2)d

)
,

where

z =

∞∑
i=0

(bd)i+2a1(a2 + b2)i(a2 + b2)π − bda1(a2 + b2)d.

Therefore we have

z =
∞∑

i=0
(bd)i+2a1(a2 + b2)i(

1 − (a2 + b2)(ad
2 + aπ2

∞∑
j=0

(a2 + b2) jb2(ad
2) j+2)

)
− bda1(a2 + b2)d.

We see that (
0 (bd)i+2a1(a2 + b2)i

0 0

)
p

= (bd)i+2a(a + b)i;

(
0 (bd)i+2a1(a2 + b2)i+1ad

2
0 0

)
p

=

(
0 (bd)i+2a1(a2 + b2)i+1

0 0

)
p

(
0 bbdad

0 ad
2

)
p

= (bd)i+2a(a + b)i+1ad;(
0 (bd)i+2a1(a2 + b2)i+1aπ2 (a2 + b2) jb2(ad

2) j+2

0 0

)
p

=

(
0 (bd)i+2a1(a2 + b2)i+1aπ2 (a2 + b2) jb2
0 0

)
p

(
0 bbd(ad) j+2

0 (ad
2) j+2

)
p

= (bd)i+2a(a + b)i+1aπ(a + b) jb(ad) j+2

= (bd)i+2a(a + b)i+ j+1b(ad) j+2.

Since bda1(a2 + b2)d = bda1ad
2 + bda1aπ2

∞∑
j=0

(a2 + b2) jb2(ad
2) j+2, we have

(
0 bda1(a2 + b2)d

0 0

)
p

= bdaad +

∞∑
i=0

bda(a + b)ib(ad)i+2.

Therefore we complete the proof.

Theorem 3.4. Let M =

(
a b
c d

)
∈ M2(A), a and d have g-Drazin inverses. If ab = 0, cb = 0, bd2 = 0 and

d3caπ = 0, then M ∈M2(A)d and

Md = QπPd + QdPπ + QπPπ
∞∑

i=0

MiQ(Pd)i+2.
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where

P =

(
a 0
c 0

)
,Q =

(
0 b
0 d

)
;

Pd =

(
ad 0

c(ad)2 0

)
,Qd =

(
0 0
0 dd

)
.

Proof. Let M = P + Q, where P =

(
a 0
c 0

)
, and Q =

(
0 b
0 d

)
. Then P,Q have g-Drazin inverses. Moreover,

we have

Pd =

(
ad 0

c(ad)2 0

)
,Qd =

(
0 b(dd)2

0 dd

)
.

Since adb = 0 and bdd = 0, we see that PdQ = 0 and PQd = 0. Moreover, we have

Pπ =

(
aπ 0
−cad 1

)
,Qπ =

(
1 0
0 dπ

)
.

By hypothesis, we directly check
P3QPπ = QPPπ,Q3PPπ = PQPπ.

In light of Theorem 3.2, we complete the proof.

Corollary 3.5. Let M =

(
a b
c d

)
∈ M2(A), a and d have g-Drazin inverses. If bc = 0, dc = 0, ca2 = 0 and

a3bdπ = 0, then M ∈M2(A)d and

Md = PπQd + PdQπ + PπQπ
∞∑

i=0

MiP(Qd)i+2,

where

P =

(
a 0
c 0

)
,Q =

(
0 b
0 d

)
;

Pd =

(
ad 0
0 0

)
,Qd =

(
0 b(dd)2

0 dd

)
.

Proof. It is easy to verify that (
a b
c d

)
=

(
0 1
1 0

) (
d c
b a

) (
0 1
1 0

)
.

Applying Theorem 3.4 to the matrix
(

d c
b a

)
, we complete the proof.

We note that the Drazin and g-Drazin inverse are the same for a complex matrix, and so we have

Example 3.6. Let M =

(
A B
C D

)
∈M4(C), where

A =

(
0 0
0 1

)
,B =

(
0 1
0 0

)
,C =

(
0 1
0 0

)
,D =

(
1 0
0 0

)
.

Then
AB = 0,CB = 0,BD2 = 0 and D3CAπ = 0

and

MD =

(
A 0
−C D

)
.
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Proof. Clearly, AD = A,DD = D,Aπ =

(
1 0
0 0

)
,Dπ =

(
0 0
0 1

)
. We easily check that

AB = 0,CB = 0,BD2 = 0 and D3CAπ = 0.

Then M has g-Drazin inverse by Theorem 3.4. In this case,

MD = QπPD + QDPπ + QπPπ
∞∑

i=0
MiQ(PD)i+2,

where

P =

(
A 0
C 0

)
,Q =

(
0 B
0 D

)
;

Pd =

(
A 0
C 0

)
,QD =

(
0 0
0 D

)
.

By computing, we deduce thet

MiQ(PD)i+2 =

(
0 0
C 0

)
,

and so QπPπMiQ(PD)i+2 = 0 for all i ≥ 0. Therefore

MD = QπPD + QDPπ

=

(
I2 0
0 I2 −D

) (
A 0
C 0

)
+

(
0 0
0 D

) (
I2 − A 0
−C I2

)
=

(
A 0
−C D

)
,

as desired.
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