The g-Drazin Inverse Involving Power Commutativity

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani ${ }^{\text {b }}$, Handan Kose ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Women's University of Semnan (Farzanegan), Semnan, Iran
${ }^{c}$ Department of Mathematics, Ahi Evran University, Kirsehir, Turkey

Abstract

Let \mathcal{A} be a complex Banach algebra. An element $a \in \mathcal{A}$ has g-Drazin inverse if there exists $b \in \mathcal{A}$ such that $$
b=b a b, a b=b a, a-a^{2} b \in A^{\text {qnil }} .
$$

Let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, and $a^{2} a^{d} b=a a^{d} b a$, we prove that $a+b \in \mathcal{A}^{d}$ if and only if $1+a^{d} b \in \mathcal{A}^{d}$. We present explicit formula for $(a+b)^{d}$ under certain perturbations. These extend the main results of Wang, Zhou and Chen (Filomat, 30(2016), 1185-1193) and Liu, Xu and Yu (Applied Math. Comput., 216(2010), 3652-3661).

1. Introduction

Throughout the paper, \mathcal{A} denotes a complex Banach algebra with identity. An element a in \mathcal{A} has a g-Drazin inverse provided that there exists some $b \in \mathcal{A}$ such that

$$
a b=b a, b=b a b, a-a^{2} b \in \mathcal{A}^{\text {qnil }} .
$$

Here, $\mathcal{A}^{\text {qnil }}$ is the set of all quasinilpotents in \mathcal{A}, i.e.,

$$
\mathcal{A}^{q n i l}=\left\{a \in \mathcal{A} \left\lvert\, \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=0\right.\right\} .
$$

As is well known, we have

$$
a \in \mathcal{A}^{\text {qnil }} \Leftrightarrow 1+\lambda a \in \mathcal{A}^{-1} \text { for any } \lambda \in \mathbb{C} .
$$

Here, \mathcal{A}^{-1} stands for the set of invertible elements in \mathcal{A}. The preceding b is unique, if exists, and is called the g-Drazin inverse of a. We denote it by a^{d}. We use \mathcal{A}^{d} to stand for the set of all g-Drazin invertible elements in \mathcal{A}. In [10, Theorem 4.2], it was proved that $a \in \mathcal{A}^{d}$ if and only if there exists an idempotent $p \in \mathcal{A}$ such that $a p=p a, a+p \in \mathcal{A}^{-1}$ and $a p \in \mathcal{A}^{q n i l}$.

[^0]The g-Drazin invertibility of the sum of two elements in a Banach algebra is very attractive. It plays an important role in matrix and operator theory, e.g., [3-6,12,15]. The Drazin inverse a^{D} of $a \in \mathcal{A}$ is defined as the g-Drazin inverse by replacing $\mathcal{A}^{\text {qnil }}$ by the set of all nilpotents in \mathcal{A}. In [13], Liu et al. investigated Drazin inverse $(A+B)^{D}$ of two complex matrices A and B which satisfying $A^{3} B=B A$ and $B^{3} A=A B$. Wang et al. gave representations of $(a+b)^{D}$ as a function of a, b, a^{D} and b^{D} whenever $a^{3} b=b a$ and $b^{3} a=a b$ in a ring R in which 2 has Drazin inverse (see [16, Theorem 3.7]). The motivation of this paper is to explore such conditions involving power commutativity under which the sum of two g-Drazin invertible elements in a Banach algebra has g-Drazin inverse.

Let $a, b \in \mathcal{A}^{d}$. If $a b=b a$, then $a+b \in \mathcal{A}^{d}$ if and only if $1+a^{d} b \in \mathcal{A}^{d}$ (see [6, Theorem 1]). Zou et al. extended this result to weaker conditions $a^{2} b=a b a$ and $b^{2} a=b a b$ (see [18, Theorem 3.3]). In Section 2, we investigate the relations of $a+b, a a^{d}(a+b),(a+b) b b^{d}$ and $a a^{d}(a+b) b b^{d}$ for $a, b \in \mathcal{A}^{d}$. Let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, and $a^{d} a b=a^{d} b a$, we prove that $a+b \in \mathcal{A}^{d}$ if and only if $1+a^{d} b \in \mathcal{A}^{d}$.

Let $x \in \mathcal{A}^{d}$. The element $x^{\pi}=1-x x^{d}$ is called the spectral idempotent of x. Let $A, B \in M_{n}(\mathbb{C})$. Hartwig et al. gave the formula of $(A+B)^{D}$ under condition $A B=0$ (see [9, Theorem 2.1]). In [1, Theorem 2.5], Castro-González gave a formula for the Drazin inverse of a sum of two complex matrices less restrictive conditions:

$$
A^{D} B=0, A B^{D}=0 \text { and } B^{\pi} A B A^{\pi}=0
$$

Guo et al. extended the preceding results and considered representations for the Drazin inverse of the sum of two complex matrices of

$$
A^{D} B=0, A B^{D}=0, B^{\pi} A B A A^{\pi}=0, B^{\pi} A B^{2} A^{\pi}=0
$$

(see [7, Theorem 2]). In [8, Theorem 2], Guo et al. deduced the expressions for the g-Drazin inverse $(a+b)^{d}$ under the conditions

$$
a^{d} b=0, a b^{d}=0 b^{\pi} a b a a^{\pi}=0 \text { and } b^{\pi} a b^{2} a^{\pi}=0 .
$$

In Section 3, we obtain the explicit formula for the g-Drazin inverse of $a+b$ under the perturbation conditions involving power commutativity. We shall derive explicit representation for $(a+b)^{d}$ under a new condition:

$$
a b^{d}=0, a^{d} b=0, b^{\pi} a^{3} b a^{\pi}=b^{\pi} b a a^{\pi}, b^{\pi} b^{3} a a^{\pi}=b^{\pi} a b a^{\pi} .
$$

Let $p \in \mathcal{A}$ be an idempotent, and let $x \in \mathcal{A}$. Then we write

$$
x=p x p+p x(1-p)+(1-p) x p+(1-p) x(1-p)
$$

and induce a Pierce representation given by the matrix

$$
x=\left(\begin{array}{cc}
p x p & p x(1-p) \\
(1-p) x p & (1-p) x(1-p)
\end{array}\right)_{p}
$$

2. Additive results

The main purpose of this section is to prove the equivalence of the g-Drazin invertibility for $a+b$ and $1+a^{d} b$ under certain power communicative condition. We begin with

Lemma 2.1. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$ and $a^{3} b=b a, b^{3} a=a b$. Then
(1) $a a^{d} b=b a a^{d}$.
(2) $b b^{d} a=a b b^{d}$.

Proof. (1) Since $a \in \mathcal{A}^{\text {qnil }}$, we have $\left\|\left(a-a^{2} a^{d}\right)^{n}\right\|^{\frac{1}{n}} \rightarrow 0(n \rightarrow \infty)$. Let $p=a a^{d}$. Then

$$
\begin{aligned}
p b-p b p & =\left(a^{d}\right)^{3 n} a^{3 n} b\left(1-a a^{d}\right) \\
& =\left(a^{d}\right)^{3 n} a^{3(n-1)} b a\left(1-a a^{d}\right) \\
& \vdots \\
& =\left(a^{d}\right)^{3 n} b a^{n}\left(1-a a^{d}\right) \\
& =\left(a^{d}\right)^{3 n} b\left(a-a^{2} a^{d}\right)^{n} .
\end{aligned}
$$

This shows that

$$
\|p b-p b p\|^{\frac{1}{n}} \leq\left\|a^{d}\right\|^{3}\|b\|^{\frac{1}{n}}\left\|\left(a-a^{2} a^{d}\right)^{n}\right\|^{\frac{1}{n}},
$$

and then

$$
\|p b-p b p\|^{\frac{1}{n}} \rightarrow 0(n \rightarrow \infty)
$$

This implies that $p b=p b p$. Similarly, we have $b p=p b p$. Accordingly, $a a^{d} b=p b=b p=b a a^{d}$.
(2) This is proved as in (1).

Lemma 2.2. Let

$$
x=\left(\begin{array}{ll}
a & 0 \\
c & b
\end{array}\right)_{p} \text { or }\left(\begin{array}{ll}
b & c \\
0 & a
\end{array}\right)_{p}
$$

Then

$$
x^{d}=\left(\begin{array}{cc}
a^{d} & 0 \\
z & b^{d}
\end{array}\right)_{p}, \text { or }\left(\begin{array}{cc}
b^{d} & z \\
0 & a^{d}
\end{array}\right)_{p},
$$

where

$$
z=\left(b^{d}\right)^{2}\left(\sum_{i=0}^{\infty}\left(b^{d}\right)^{i} c a^{i}\right) a^{\pi}+b^{\pi}\left(\sum_{i=0}^{\infty} b^{i} c\left(a^{d}\right)^{i}\right)\left(a^{d}\right)^{2}-b^{d} c a^{d} .
$$

Proof. See [14, Lemma 1.2].
Lemma 2.3. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{\text {qnil }}$. Suppose $a^{3} b=b a, b^{3} a=a b$. Then $a+b \in \mathcal{A}^{\text {qnil }}$.
Proof. By induction, we have

$$
a b=b^{3} a=a^{26}(a b) b^{2}=\cdots=a^{26 n}(a b) b^{2 n}
$$

and so

$$
\|a b\|^{\frac{1}{n}} \leq\left\|a^{26 n}\right\|^{\frac{1}{n}}\|a b\|^{\frac{1}{n}}\left\|b^{2 n}\right\| \|^{\frac{1}{n}}
$$

Hence, $a b=0$. In view of [18, Lemma 2.10], $a+b \in \mathcal{A}^{\text {qnil }}$.
Lemma 2.4. Let \mathcal{A} be a Banach algebra, and let $a \in \mathcal{A}^{d}, b \in \mathcal{A}^{\text {qnil }}$. If $a^{3} b=b a, b^{3} a=a b$, then $a+b \in \mathcal{A}^{d}$ if and only if $a a^{d}(a+b) b b^{d} \in \mathcal{A}^{d}$.

Proof. Let $p=a a^{d}$. Then we have

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{1} & b_{12} \\
b_{21} & b_{2}
\end{array}\right)_{p} .
$$

In view of Lemma 2.1, $a a^{d} b=b a a^{d}$, and so $b_{12}=a a^{d} b\left(1-a a^{d}\right)=b a a^{d}\left(1-a a^{d}\right)=0$. Likewise, we have $b_{21}=0$.
Thus

$$
a+b=\left(\begin{array}{cc}
a_{1}+b_{1} & 0 \\
0 & a_{2}+b_{2}
\end{array}\right)_{p}
$$

Clearly, $a_{2}=\left(1-a a^{d}\right) a \in \mathcal{A}^{\text {qnil }}$. Since $b_{2}=\left(1-a a^{d}\right) b\left(1-a a^{d}\right)=\left(1-a a^{d}\right) b$, we have $b_{2} \in \mathcal{A}^{\text {quil }}$ by Lemma 2.1 and [18, Lemma 2.11]. One easily checks that $a_{2} b_{2}=b_{2}^{3} a_{2}$ and $b_{2} a_{2}=a_{2}^{3} b_{2}$, it follows by Lemma 2.3 that $a_{2}+b_{2} \in \mathcal{A}^{\text {qnil }}$.

Therefore $a+b \in \mathcal{A}^{d}$ if and only if $a a^{d}(a+b) b b^{d}=a_{1}+b_{1} \in \mathcal{A}^{d}$.

We are now ready to prove the following.
Theorem 2.5. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, then the following are equivalent:
(1) $a+b \in \mathcal{A}^{d}$.
(2) $a a^{d}(a+b) \in \mathcal{A}^{d}$.
(3) $(a+b) b b^{d} \in \mathcal{A}^{d}$.
(4) $a a^{d}(a+b) b b^{d} \in \mathcal{A}^{d}$.

Proof. (1) \Leftrightarrow (4) Let $p=a a^{d}$. Then we have

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{1} & b_{12} \\
b_{21} & b_{2}
\end{array}\right)_{p}
$$

As in the proof of Lemma 2.4, we show that $b_{12}=0$ and $b_{21}=0$. Thus

$$
a+b=\left(\begin{array}{cc}
a_{1}+b_{1} & 0 \\
0 & a_{2}+b_{2}
\end{array}\right)_{p}
$$

We claim that $a_{2}+b_{2} \in \mathcal{A}^{d}$. We have $a_{2}=a-a^{2} a^{d} \in \mathcal{A}^{\text {qnil }}$. We will suffice to prove $b_{2}=\left(1-a a^{d}\right) b\left(1-a a^{d}\right) \in$ \mathcal{A}^{d}. In light of Lemma 2.1, $\left(a a^{d}\right) b=b\left(a a^{d}\right)$, and so $\left(1-a a^{d}\right) b=b\left(1-a a^{d}\right)$. Clearly, $1-a a^{d} \in \mathcal{A}^{d}$. Therefore $b_{2}=\left(1-a a^{d}\right) b \in \mathcal{A}^{d}$ by [18, Theorem 3.1]. Accordingly, $a_{2}+b_{2} \in \mathcal{A}^{d}$ by using Lemma 2.4.

Thus, $a+b \in \mathcal{A}^{d}$ if and only if $a_{1}+b_{1} \in \mathcal{F}^{d}$. In view of [18, Theorem 3.1], ($\left.a a^{d}\right) b \in \mathcal{A}^{d}$. By Cline's formula (see [11, Theorem 2.1]), we have $b_{1}=a a^{d} b a a^{d} \in \mathcal{A}^{d}$. By using [18, Theorem 3.1] again, $a_{1}=a a^{d} a \in \mathcal{A}^{d}$. Therefore $a_{1}+b_{1}=a a^{d}(a+b) a a^{d}$, as desired.
$(2) \Leftrightarrow(3) \Leftrightarrow(4)$ These are obvious by Cline's formula (see [11, Theorem 2.1]).
As an immediate consequence, we now derive
Corollary 2.6. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, then the following are equivalent:
(1) $a+b \in \mathcal{A}^{d}$.
(2) $a\left(1+a^{d} b\right) \in \mathcal{A}^{d}$.

Proof. (1) \Rightarrow (2) In view of [18, Theorem 3.1], $a a^{d}(a+b)=a a^{d} a\left(1+a^{d} b\right) \in \mathcal{A}^{d}$. It is easy to check that $\left(1-a a^{d}\right) a\left(1+a^{d} b\right)=a-a^{2} a^{d} \in \mathcal{A}^{q n i l}$. In view of Lemma 2.1,

$$
a a^{d} a\left(1+a^{d} b\right)\left(1-a a^{d}\right) a\left(1+a^{d} b\right)=0
$$

and so

$$
a\left(1+a^{d} b\right)=a a^{d} a\left(1+a^{d} b\right)+\left(1-a a^{d}\right) a\left(1+a^{d} b\right) \in \mathcal{A}^{d}
$$

by [6, Theorem 2.3].
(2) \Rightarrow (1) Clearly, $a a^{d}(a+b)=a^{2} a^{d}+a a^{d} b=a^{2} a^{d}\left(1+a^{d} b\right)=a a^{d} a\left(1+a^{d} b\right)$. By virtue of Lemma 2.1, $a a^{d} a\left(1+a^{d} b\right)=a\left(1+a^{d} b\right) a a^{d}$. Thus, it follows by $\left[18\right.$, Theorem 3.1] that $a a^{d} a\left(1+a^{d} b\right) \in \mathcal{A}^{d}$. Hence, $a a^{d}(a+b) \in \mathcal{A}^{d}$. Therefore we complete the proof by Theorem 2.5.

We have accumulated all the information necessary to prove the following.
Theorem 2.7. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, and $a^{d} a b=a^{d} b a$, then the following are equivalent:
(1) $a+b \in \mathcal{A}^{d}$.
(2) $1+a^{d} b \in \mathcal{A}^{d}$.

Proof. (1) \Rightarrow (2) In view of Lemma 2.1, we see that $a a^{d}(a+b)=a^{2} a^{d}+a a^{d} b \in \mathcal{F}^{d}$. Since $a^{d} a b=a^{d} b a$, we have

$$
\left(a^{2} a^{d}\right)\left(a a^{d} b\right)=\left(a a^{d} b\right)\left(a^{2} a^{d}\right)
$$

By virtue of $\left[18\right.$, Theorem 3.3], $1+\left(a^{2} a^{d}\right)^{d}\left(a a^{d} b\right)=1+a^{d} b \in \mathcal{A}^{d}$, as desired.
$(2) \Rightarrow(1)$ In view of $\left[18\right.$, Theorem 3.1], $a^{2} a^{d}=a\left(a a^{d}\right) \in \mathcal{A}^{d}$. By hypothesis and Lemma 2.1, we easily check that

$$
a^{2} a^{d}\left(1+a^{d} b\right)=a^{2} a^{d}+a^{d} b a=a^{2} a^{d}+a\left(a^{d}\right)^{2} b a=\left(1+a^{d} b\right) a^{2} a^{d} .
$$

Thus, $a a^{d}(a+b)=a^{2} a^{d}\left(1+a^{d} b\right) \in \mathcal{A}^{d}$ by [18, Theorem 3.1]. Therefore we complete the proof by Theorem 2.5.

Corollary 2.8. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a^{3} b=b a, b^{3} a=a b$, and $a^{d} a b=a^{d} b a$ then the following are equivalent:
(1) $a-b \in \mathcal{A}^{d}$.
(2) $1-a^{d} b \in \mathcal{A}^{d}$.

Proof. In view of [2, Theorem 2.2], $-b \in \mathcal{A}^{d}$. Applying Theorem 2.7 to a and $-b$, we complete the proof.

3. Perturbations

The aim of this section is to provide conditions on a and b in \mathcal{A}^{d} with multiplicative perturbations so that the sum $a+b$ will have g-Drazin inverse. For further use, we now derive the following.

Lemma 3.1. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a b^{d}=0, a^{d} b=0, a^{3} b=b a, b^{3} a=a b$, then $a+b \in \mathcal{A}^{d}$ and $(a+b)^{d}=a^{d}+b^{d}$.

Proof. In view of Lemma 2.1, we easily check that $b a^{d}=b a\left(a^{d}\right)^{2}=a a^{d} b a^{d}=0$ and $b^{d} a=\left(b^{d}\right)^{2} b a=\left(b^{d}\right) a b^{d} b=0$. Thus,

$$
(a+b)\left(a^{d}+b^{d}\right)=a a^{d}+b a^{d}+b b^{d}=a^{d} a+b^{d} a+b^{d} b=\left(a^{d}+b^{d}\right)(a+b)
$$

Also we have

$$
\left(a^{d}+b^{d}\right)(a+b)\left(a^{d}+b^{d}\right)=a^{d}+b^{d}
$$

Moreover, we have $(a+b)-(a+b)^{2}\left(a^{d}+b^{d}\right)=x+y$, where $x=a-a^{2} a^{d}, y=b-b^{2} d^{d} \in \mathcal{A}^{\text {qnil }}$. We easily check that $x^{3} y=y x$ and $y^{3} x=x y$. According to Lemma 2.3, $x+y \in \mathcal{A}^{\text {qnil }}$. Therefore $(a+b)^{d}=a^{d}+b^{d}$, as asserted.

Theorem 3.2. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a b^{d}=0, a^{d} b=0, a^{3} b a^{\pi}=b a a^{\pi}, b^{3} a a^{\pi}=a b a^{\pi}$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=b^{\pi} a^{d}+b^{d} a^{\pi}+b^{\pi} a^{\pi} \sum_{i=0}^{\infty}(a+b)^{i} b\left(a^{d}\right)^{i+2}
$$

Proof. Let $p=a a^{d}$. Then we have

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{11} & b_{12} \\
b_{1} & b_{2}
\end{array}\right)_{p}
$$

Since $a^{d} b=0$, we see that $b_{11}=b_{12}=0$. Hence we have

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
0 & 0 \\
b_{1} & b_{2}
\end{array}\right)_{p}
$$

Moreover, $a_{2}=(1-p) a(1-p)=a-a^{2} a^{d} \in \mathcal{A}^{\text {qnil }}$. Since $b \in \mathcal{A}^{d}$ and $a^{d} b=0$, we have $a^{\pi} b=b \in \mathcal{A}^{d}$. In light of Cline's formula, $b_{2}=a^{\pi} b a^{\pi} \in \mathcal{A}^{d}$, and so $b_{2} \in((1-p) \mathcal{A}(1-p))^{d}$. One easily checks that

$$
a_{2} b_{2}^{d}=0, a_{2}^{d} b_{2}=0, a_{2}^{3} b_{2}=b_{2} a_{2}, b_{2}^{3} a_{2}=a_{2} b_{2}
$$

In view of Lemma 3.1, $\left(a_{2}+b_{2}\right)^{d}=a_{2}^{d}+b_{2}^{d}=b^{d} a^{\pi}$. In light of Lemma 2.2, we have

$$
(a+b)^{d}=\left(\begin{array}{cc}
a_{1}^{d} & 0 \\
z & \left(a_{2}+b_{2}\right)^{d}
\end{array}\right)=\left(\begin{array}{cc}
a^{d} & 0 \\
z & b^{d} a^{\pi}
\end{array}\right)
$$

where

$$
z=b^{\pi} a^{\pi} \sum_{i=0}^{\infty}\left(a_{2}+b_{2}\right)^{i} b_{1}\left(a^{d}\right)^{i+2}-b^{d} b_{1} a^{d}
$$

Moreover, we have

$$
\left.\left.\begin{array}{rl}
& \left(\begin{array}{cc}
0 & 0 \\
\left(a_{2}+b_{2}\right)^{i} b_{1}\left(a^{d}\right)^{i+2} & 0
\end{array}\right) \\
0 & 0 \\
\left(a_{2}+b_{2}\right)^{i} b_{1} & \left(a_{2}+b_{2}\right)^{i} b_{2}
\end{array}\right)\left(\begin{array}{cc}
\left(a^{d}\right)^{i+2} & 0 \\
0 & 0
\end{array}\right)\right)
$$

and

$$
\left(\begin{array}{cc}
0 & 0 \\
b^{d} b_{1} a^{d} & 0
\end{array}\right)=b b^{d} a^{d}
$$

Therefore

$$
(a+b)^{d}=b^{\pi} a^{d}+b^{d} a^{\pi}+b^{\pi} a^{\pi} \sum_{i=0}^{\infty}(a+b)^{i} b\left(a^{d}\right)^{i+2}
$$

as asserted.
Corollary 3.3. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}^{d}$. If $a b^{d}=0, a^{d} b=0, b^{\pi} a^{3} b a^{\pi}=b^{\pi} b a a^{\pi}, b^{\pi} b^{3} a a^{\pi}=$ $b^{\pi} a b a^{\pi}$, then $a+b \in \mathcal{A}^{d}$ and

$$
\begin{aligned}
(a+b)^{d}= & b^{d} a^{\pi}+b^{\pi} a^{d}+b^{\pi} a^{\pi} \sum_{i=0}^{\infty}(a+b)^{i} b\left(a^{d}\right)^{i+2} \\
& +\sum_{i=0}^{\infty}\left[\left(b^{d}\right)^{i+2} a(a+b)^{i}-\left(b^{d}\right)^{i+2} a(a+b)^{i+1} a^{d}\right. \\
& \left.-\sum_{j=0}^{\infty}\left(b^{d}\right)^{i+2} a(a+b)^{i+j+1} b\left(a^{d}\right)^{j+2}\right] \\
& -\sum_{i=0}^{\infty} b^{d} a(a+b)^{i} b\left(a^{d}\right)^{i+2} .
\end{aligned}
$$

Proof. Let $p=b b^{d}$. Then we have

$$
a=\left(\begin{array}{ll}
a_{11} & a_{1} \\
a_{21} & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right)_{p} .
$$

Clearly, $a_{11}=a_{21}=0$, and so

$$
a=\left(\begin{array}{ll}
0 & a_{1} \\
0 & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right)_{p}
$$

Moreover, $b_{2}=(1-p) b(1-p)=b-b^{2} b^{d} \in \mathcal{A}^{q n i l}$. Since $a \in \mathcal{A}^{d}$ and $a b^{d}=0$, we see that $a b^{\pi}=a \in \mathcal{A}^{d}$. By using Cline's formula, $a_{2}=b^{\pi} a b^{\pi} \in \mathcal{A}^{d}$, and so $a_{2} \in((1-p) \mathcal{A}(1-p))^{d}$. It is easy to verify that

$$
a_{2}^{d} b_{2}=0, a_{2} b_{2}^{d}=0, a_{2}^{3} b_{2} a_{2}^{\pi}=b_{2} a_{2} a_{2}^{\pi}, b_{2}^{3} a_{2} a_{2}^{\pi}=a_{2} b_{2} a_{2}^{\pi}
$$

Since $b_{2}^{d}=0$, it follows by Theorem 3.2 that

$$
\left(a_{2}+b_{2}\right)^{d}=a_{2}^{d}+a_{2}^{\pi} \sum_{i=0}^{\infty}\left(a_{2}+b_{2}\right)^{i} b_{2}\left(a_{2}^{d}\right)^{i+2} .
$$

Therefore

$$
(a+b)^{d}=\left(\begin{array}{cc}
b^{d} & z \\
0 & \left(a_{2}+b_{2}\right)^{d}
\end{array}\right)
$$

where

$$
z=\sum_{i=0}^{\infty}\left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i}\left(a_{2}+b_{2}\right)^{\pi}-b^{d} a_{1}\left(a_{2}+b_{2}\right)^{d}
$$

Therefore we have

$$
\begin{aligned}
z= & \sum_{i=0}^{\infty}\left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i} \\
& \left(1-\left(a_{2}+b_{2}\right)\left(a_{2}^{d}+a_{2}^{\pi} \sum_{j=0}^{\infty}\left(a_{2}+b_{2}\right)^{j} b_{2}\left(a_{2}^{d}\right)^{j+2}\right)\right) \\
- & b^{d} a_{1}\left(a_{2}+b_{2}\right)^{d} .
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & \left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i} \\
0 & 0
\end{array}\right)_{p}=\left(b^{d}\right)^{i+2} a(a+b)^{i} ; \\
& \left(\begin{array}{cc}
0 & \left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i+1} a_{2}^{d} \\
0 & 0
\end{array}\right)_{p} \\
& =\left(\begin{array}{cc}
0 & \left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i+1} \\
0 & 0
\end{array}\right)_{p}^{p}\left(\begin{array}{cc}
0 & b b^{d} a^{d} \\
0 & a_{2}^{d}
\end{array}\right)_{p} \\
& =\left(b^{d}\right)^{i+2} a(a+b)^{i+1} a^{d} \text {; } \\
& \left(\begin{array}{cc}
0 & \left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i+1} a_{2}^{\pi}\left(a_{2}+b_{2}\right)^{j} b_{2}\left(a_{2}^{d}\right)^{j+2} \\
0 & 0
\end{array}\right)_{p} \\
& =\left(\begin{array}{cc}
0 & \left(b^{d}\right)^{i+2} a_{1}\left(a_{2}+b_{2}\right)^{i+1} a_{2}^{\pi}\left(a_{2}+b_{2}\right)^{j} b_{2} \\
0 & 0
\end{array}\right)_{p}\left(\begin{array}{cc}
0 & b b^{d}\left(a^{d}\right)^{j+2} \\
0 & \left(a_{2}^{d}\right)^{j+2}
\end{array}\right)_{p} \\
& =\left(b^{d}\right)^{i+2} a(a+b)^{i+1} a^{\pi}(a+b)^{j} b\left(a^{d}\right)^{j+2} \\
& =\left(b^{d}\right)^{i+2} a(a+b)^{i+j+1} b\left(a^{d}\right)^{j+2} \text {. }
\end{aligned}
$$

Since $b^{d} a_{1}\left(a_{2}+b_{2}\right)^{d}=b^{d} a_{1} a_{2}^{d}+b^{d} a_{1} a_{2}^{\pi} \sum_{j=0}^{\infty}\left(a_{2}+b_{2}\right)^{j} b_{2}\left(a_{2}^{d}\right)^{j+2}$, we have

$$
\left(\begin{array}{cc}
0 & b^{d} a_{1}\left(a_{2}+b_{2}\right)^{d} \\
0 & 0
\end{array}\right)_{p}=b^{d} a a^{d}+\sum_{i=0}^{\infty} b^{d} a(a+b)^{i} b\left(a^{d}\right)^{i+2}
$$

Therefore we complete the proof.
Theorem 3.4. Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$, a and d have g-Drazin inverses. If $a b=0, c b=0, b d^{2}=0$ and $d^{3} c a^{\pi}=0$, then $M \in M_{2}(\mathcal{A})^{d}$ and

$$
M^{d}=Q^{\pi} P^{d}+Q^{d} P^{\pi}+Q^{\pi} P^{\pi} \sum_{i=0}^{\infty} M^{i} Q\left(P^{d}\right)^{i+2}
$$

where

$$
\begin{gathered}
P=\left(\begin{array}{cc}
a & 0 \\
c & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & b \\
0 & d
\end{array}\right) ; \\
P^{d}=\left(\begin{array}{cc}
a^{d} & 0 \\
c\left(a^{d}\right)^{2} & 0
\end{array}\right), Q^{d}=\left(\begin{array}{cc}
0 & 0 \\
0 & d^{d}
\end{array}\right) .
\end{gathered}
$$

Proof. Let $M=P+Q$, where $P=\left(\begin{array}{ll}a & 0 \\ c & 0\end{array}\right)$, and $Q=\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right)$. Then P, Q have g-Drazin inverses. Moreover, we have

$$
P^{d}=\left(\begin{array}{cc}
a^{d} & 0 \\
c\left(a^{d}\right)^{2} & 0
\end{array}\right), Q^{d}=\left(\begin{array}{cc}
0 & b\left(d^{d}\right)^{2} \\
0 & d^{d}
\end{array}\right) .
$$

Since $a^{d} b=0$ and $b d^{d}=0$, we see that $P^{d} Q=0$ and $P Q^{d}=0$. Moreover, we have

$$
P^{\pi}=\left(\begin{array}{cc}
a^{\pi} & 0 \\
-c a^{d} & 1
\end{array}\right), Q^{\pi}=\left(\begin{array}{cc}
1 & 0 \\
0 & d^{\pi}
\end{array}\right) .
$$

By hypothesis, we directly check

$$
P^{3} Q P^{\pi}=Q P P^{\pi}, Q^{3} P P^{\pi}=P Q P^{\pi} .
$$

In light of Theorem 3.2, we complete the proof.
Corollary 3.5. Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$, a and d have g-Drazin inverses. If $b c=0, d c=0, c a^{2}=0$ and $a^{3} b d^{\pi}=0$, then $M \in M_{2}(\mathcal{A})^{d}$ and

$$
M^{d}=P^{\pi} Q^{d}+P^{d} Q^{\pi}+P^{\pi} Q^{\pi} \sum_{i=0}^{\infty} M^{i} P\left(Q^{d}\right)^{i+2},
$$

where

$$
\begin{gathered}
P=\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & b \\
0 & d
\end{array}\right) ; \\
P^{d}=\left(\begin{array}{cc}
a^{d} & 0 \\
0 & 0
\end{array}\right), Q^{d}=\left(\begin{array}{cc}
0 & b\left(d^{d}\right)^{2} \\
0 & d^{d}
\end{array}\right) .
\end{gathered}
$$

Proof. It is easy to verify that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
d & c \\
b & a
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Applying Theorem 3.4 to the matrix $\left(\begin{array}{cc}d & c \\ b & a\end{array}\right)$, we complete the proof.
We note that the Drazin and g-Drazin inverse are the same for a complex matrix, and so we have
Example 3.6. Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in M_{4}(\mathbb{C})$, where

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), D=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Then

$$
A B=0, C B=0, B D^{2}=0 \text { and } D^{3} C A^{\pi}=0
$$

and

$$
M^{D}=\left(\begin{array}{cc}
A & 0 \\
-C & D
\end{array}\right) .
$$

Proof. Clearly, $A^{D}=A, D^{D}=D, A^{\pi}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), D^{\pi}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. We easily check that

$$
A B=0, C B=0, B D^{2}=0 \text { and } D^{3} C A^{\pi}=0
$$

Then M has g-Drazin inverse by Theorem 3.4. In this case,

$$
M^{D}=Q^{\pi} P^{D}+Q^{D} P^{\pi}+Q^{\pi} P^{\pi} \sum_{i=0}^{\infty} M^{i} Q\left(P^{D}\right)^{i+2}
$$

where

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
A & 0 \\
C & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & B \\
0 & D
\end{array}\right) \\
P^{d} & =\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right), Q^{D}=\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right) .
\end{aligned}
$$

By computing, we deduce thet

$$
M^{i} Q\left(P^{D}\right)^{i+2}=\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)
$$

and so $Q^{\pi} P^{\pi} M^{i} Q\left(P^{D}\right)^{i+2}=0$ for all $i \geq 0$. Therefore

$$
\begin{aligned}
M^{D} & =Q^{\pi} P^{D}+Q^{D} P^{\pi} \\
& =\left(\begin{array}{cc}
I_{2} & 0 \\
0 & I_{2}-D
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I_{2}-A & 0 \\
-C & I_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & 0 \\
-C & D
\end{array}\right),
\end{aligned}
$$

as desired.

References

[1] N. Castro-González, Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 397(2005), 279-297.
[2] H. Chen and M. Sheibani, Generalized Drazin inverses in a ring, Filomat, 32(2018), 5289-5295.
[3] D.S. Cvetković-Ilić, The generalized Drazin inverse with commutativity up to a factor in a Banach algebra, Linear Algebra Appl., 431(2009), 783-791.
[4] D.S. Cvetković-Ilić; X. Liu and Y. Wei, Some additive results for the generalized Drazin inverse in a Banach algebra, Electronic J. Linear Algebra, 22(2011), 1049-1058.
[5] C. Deng, D. S. Cvetcović-Ilić and Y. Wei, Some results on the genrealized Derazin inverse of operator matrices, Linear and Multilinear Algebra 58(2010), 503-521.
[6] D.S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73(2002), 115-125.
[7] L. Guo; H. Zou and W. Du, Representations for Drazin inverses of sum of two matrices, J. Jilin Univ., 54(2016), $1033-1035$.
[8] L. Guo; J. Chen and H. Zou, Some additive results for the generalized Drazin inverse in a Banach algebra, J. Southeast Univ. (English Edition), 33(2017), 382-386.
[9] R. Hartwig; G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl., 322(2001), 207-217.
[10] J.J. Koliha, A generalized Drazin Inverse, Glasgow Math. J., 38(1996), 367-381.
[11] Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[12] X. Liu; X. Qin and J. Benítez, New additive results for the generalized Drazin inverse in a Banach Algebra, Filomat, 30(2016), 2289-2294.
[13] X. Liu; L. Xu and Y. Yu, The representations of the Drazin inverse of differences of two matrices, Applied Math. Comput., 216(2010), 3652-3661.
[14] J. Ljubisavljevic and D.S. Cvetkovic-Ilic, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math. 235(2011), 3683-3690.
[15] D. Mosić; H. Zou and J. Chen, The generalized Drazin inverse of the sum in a Banach algebra, Ann. Funct. Anal., 8(2017), 90-105.
[16] L. Wang; Xia Zhu and J. Chen, Additive property of Drazin invertibility of elements in a ring, Filomat, 30(2016), 1185-1193.
[17] H. Zhu and J. Chen, Additive and product properties of Drazin inverses of elements in a ring, Bull. Malays. Math. Sci. Soc., 40(2017), 259-278.
[18] H. Zou; D. Mosić and J. Chen, Generalized Drazin invertiblity of the product and sum of two elements in a Banach algebra and its applications, Turkish. J. Math., 41(2017), 548-563.

[^0]: 2010 Mathematics Subject Classification. 15A09; Secondary 47L10, 32A65
 Keywords. g-Drazin inverse; additive property; perturbation; Banach algebra.
 Received: 18 September 2019; Accepted: 20 April 2020
 Communicated by Dragana Cvetković-Ilić
 Corresponding author: Marjan Sheibani
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018).
 Email addresses: huanyinchen@aliyun.com (Huanyin Chen), sheibani@fgusem.ac.ir (Marjan Sheibani), handankose@gmail.com (Handan Kose)

