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Abstract. In the present study, the parameterized degree of compactness of a lattice valued fuzzy soft set
is described in a fuzzy soft topological space. The extended versions of the basic compactness properties
known in general topology are investigated for the given notion and some further characterizations of
parameterized degree of fuzzy compactness are specified. In addition, a generalized version of Tychonoff
Theorem is proved in the product fuzzy soft topological space.

1. Introduction

Since Molodtsov [18] proposed soft set theory to overcome some of the difficulties involving the
parametrization process in handling uncertainties, many researchers have applied soft set theory in differ-
ent directions. Especially, the definition of fuzzy soft set given by Maji et al. [17], has gained acceleration
to the improvement of the investigations of proposed theories in several aspects [1, 3, 4, 8, 16, 19, 20, 22,
27-30].

Compactness is one of the most significant concepts in general topology since it is sort of a topological
generalization of finiteness. If you have some object, then compactness allows you to extend results that you
know are true for all finite subobjects to the object itself. A very closely related example is the compactness
theorem in propositional logic: an infinite collection of sentences is consistent if every finite subcollection
is consistent. The notion of compactness has been generalized to L-topological space by many authors
[5, 14, 15, 23, 24]. In these approaches of compactness, fuzzy set does not have a degree of compactness
except the empty set and the whole space. Lowen and Lowen [13] considered compactness of I-topological
spaces in a matter of degree. Then Šostak [25] introduced the compactness degree of an L-fuzzy set in the
case L = I. Later Li et al. [12] observed the fuzzy compactness degree in L-fuzzy topological spaces and
Çetkin et al. [7] introduced the parameterized compactness of a fuzzy soft set in the parameterized fuzzy
topological spaces.

The goal of this study is to measure the parameterized degree of compactness of a lattice valued fuzzy
soft set in a fuzzy soft universe and study its fundamental characteristics by enlarging the well-known
properties to the parameterized fuzzy case. In this manner the paper is arranged as follows. In section 2,
we recall some lattice theoretical properties, the notion of a fuzzy soft set and some operations on fuzzy soft
sets, fuzzy soft topology. Moreover, we propose the definitions of a base and a subbase for a given fuzzy
soft topology by considering the parametrization tool. In section 3, we describe the degree of compactness
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Email address: vildan.cetkin@kocaeli.edu.tr (Vildan Çetkin )
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of a lattice valued fuzzy soft set according to a parameter by means of the implication operation of the
lattice, in such spaces. We also give a characterization and extend the elementary compactness properties.
For instance, we gain the results that the union of two compact L-fuzzy soft sets is compact, the intersection
of a compact L-fuzzy soft set and a closed L-fuzzy soft set is also compact, and the compactness is preserved
under a continuous L-fuzzy soft mapping, in the described meaning. In section 4, we observe some other
characterizations of parameterized degree of fuzzy compactness in terms of different coverings. In the last
section, we give a generalized version of the Tychonoff theorem for the product fuzzy soft topology. Hence,
we proved that the degree of compactness of a product space is computed by the meet of the degrees of
compactness of the production spaces.

2. Preliminaries

Throughout this paper, X refers to a nonempty initial universe, E,K denotes the arbitrary nonempty
sets viewed on the sets of parameters and L = (L,∨,∧,′ ) denotes a complete DeMorgan algebra with the
smallest element 0L and the largest element 1L. With the underlying lattice L, a mapping A : X → L is said
to be an L-fuzzy set on X and by LX, we denote the family of all L-fuzzy sets on X.

Let α, β and γ be elements in L. An element α in L is said to be coprime (respectively, prime) if α ≤ β∨ γ
implies that α ≤ β or α ≤ γ (respectively, if α ≥ β ∧ γ implies α ≥ β or α ≥ γ) The set of all prime and
coprime elements of L is denoted by p(L) and c(L), respectively. We say α is wedge below β, in symbols,
αC β or βB α, if for every arbitrary subset D ⊆ L, ∨D ≥ β implies α ≤ d for some d ∈ D. As shown by Raney
[21] a complete lattice L is completely distributive if and only if β =

∨
{α ∈ L | α C β} for each β ∈ L. For

any β ∈ L, define Θ(β) =
∨
{α ∈ L | α C β} as the greatest minimal family and denote the greatest maximal

family by Ω(β) through the paper. The wedge below operation in a completely distributive lattice has an
interpolation property, this means α C β implies there exists γ ∈ L such that α C γ C β. For the details of
lattices and the wedge below relation, see [10].

The binary operation 7→ in the complete DeMorgan algebra L is given by α 7→ β =
∨
{γ ∈ L | α ∧ γ ≤ β}.

For all α, β, γ, δ ∈ L and {αi}, {βi} ⊆ L, the following properties are satisfied:

(1) (α 7→ β) ≥ γ iff α ∧ γ ≤ β.

(2) α 7→ β = 1L iff α ≤ β.

(3) α 7→ (
∧

i βi) =
∧

i(α 7→ βi).

(4) (
∨

i αi) 7→ β =
∧

i(αi 7→ β).

The parameterized version of an L-fuzzy set is called an L-fuzzy soft set and it is defined as follows.

Definition 2.1. ([17]) f is called an L-fuzzy soft set on X, where f is a mapping from E into LX. This means
that fe := f (e) : X→ L, is an L-fuzzy set on X, for each parameter e ∈ E.

The family of all L-fuzzy soft sets on X is denoted by (LX)E.

The set-theoretical operations for lattice valued fuzzy soft sets are described as follows.

Definition 2.2. ([2, 17, 22]) Let f and 1 be two L-fuzzy soft sets on X. Then:

(1) we say that f is an L-fuzzy soft subset of 1 and write f v 1 if fe ≤ 1e, for each e ∈ E. f and 1 are called
equal if f v 1 and 1 v f .

(2) the union of f and 1 is an L-fuzzy soft set h = f t 1, where he = fe ∨ 1e, for each e ∈ E.

(3) the intersection of f and 1 on X is an L-fuzzy soft set h = f u 1, where he = fe ∧ 1e, for each e ∈ E.

(4) the complement of an L-fuzzy soft set f is denoted by f ′, where f ′ : E → LX is a mapping given by
f ′e = ( fe)′, for each e ∈ E. Clearly

(
f ′
)′ = f .
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Definition 2.3. ([22]) We say that

(1) An L-fuzzy soft set f on X is called a null L-fuzzy soft set and denoted by 0̃, if fe(x) = 0, for each e ∈ E
and x ∈ X.

(2) An L-fuzzy soft set f on X is called an absolute L-fuzzy soft set and denoted by 1̃, if fe(x) = 1, for each
e ∈ E, x ∈ X. Clearly (̃1)′ = 0̃ and 0̃′ = 1̃.

Notation 2.4. ([9]) The fuzzy soft inclusion [ ṽ ] : (LX)E
× (LX)E

→ L is defined by the following equality

[ f ṽ1] =
∧
x∈X

∧
e∈E

( f ′e (x) ∨ 1e(x)).

Definition 2.5. ([11]) Let ϕ : X1 → X2 and ψ : E1 → E2 be two functions, where E1 and E2 are parameter
sets for the crisp sets X1 and X2, respectively. Then the pair ϕψ is called an L-fuzzy soft mapping from X1
to X2. Let f and 1 be two L-fuzzy soft sets on X1 and X2, respectively.

(1) The image of f under the L-fuzzy soft mapping ϕψ, denoted by ϕψ( f ), is an L-fuzzy soft set on X2
defined by for all k ∈ E2, y ∈ X2,

ϕψ( f )k(y) =


∨
ϕ(x)=y

∨
ψ(a)=k

fa(x), if x ∈ ϕ−1(y), a ∈ ψ−1(k),

0, otherwise.

(2) The pre-image of 1 under the L-fuzzy soft mapping ϕψ, denoted by ϕ−1
ψ (1), is an L-fuzzy soft set on

X1 defined by

ϕ−1
ψ (1)e(x) = 1ψ(e)(ϕ(x)), for all e ∈ E1, x ∈ X1.

If ϕ and ψ is injective (surjective), then ϕψ is said to be injective (surjective).

Definition 2.6. ([4]) A mapping τ : K→ L(LX)E
is called an L-fuzzy (E,K)-soft topology on X if it satisfies the

following conditions for each k ∈ K.
(O1) τk (̃0) = τk (̃1) = 1L.
(O2) τk( f u 1) ≥ τk( f ) ∧ τk(1), for all f , 1 ∈ (LX)E.

(O3) τk(
⊔
i∈∆

fi) ≥
∧
i∈∆

τk( fi), for all fi ∈ (LX)E, i ∈ ∆.

Then the pair (X, τ) is called an L-fuzzy (E,K)-soft topological space. The value τk( f ) is interpreted as the
degree of openness of an L-fuzzy soft set f with respect to the parameter k ∈ K. The parameterized gradation
of closedness of f is computed as τ∗k( f ) = τk( f ′), where f ′ denotes the complement of the L-fuzzy soft set f .

LetU be a subfamily of (LX)E, then the value τk(U) =
∧
f∈U

τk( f ) will be called the parameterized degree of

openness of the subfamilyU ⊆ (LX)E with respect to the parameter k ∈ K.

Example 2.7. ([7]) Let L = {(0, 0), (1, 1)} ∪ {(a, 0), (0, b), (a, a) | a, b ∈ (0, 1)} and a relation ” ≤ ” on L be defined
as follows: (m, b) ≤ (n, d) if and only if m ≤ n and b ≤ d. Define an order reversing involution ′ : L → L is
as follows: for each x, y ∈ (0, 1), (x, 0)′ = (1 − x, 0), (0, y)′ = (0, 1 − y), (x, x)′ = (1 − x, 1 − x) and (1, 1)′ = (0, 0).
Then (L,≤,′ ) is a complete DeMorgan algebra. Let X = {x, y},E = (0, 0.5] and fe(x) = fe(y) = (e, 0),
1e(x) = 1e(y) = (0, e) and he(x) = he(y) = (e, e) for each e ∈ E. If a mapping τ : E→ L(LX)E

is defined as follows:

τe(u) =


(1, 1), if u ∈ {̃0, 1̃, h};
(e, 0), if u = f ;
(0, e), if u = 1;
(0, 0), otherwise,

then τ is an L-fuzzy (E,E)-soft topology on X.
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Definition 2.8. ([4]) Let (X1, τ1) be an L-fuzzy (E1,K1)-soft topological space and (X2, τ2) be an L-fuzzy
(E2,K2)-soft topological space. Let ϕ : X1 → X2, ψ : E1 → E2 and η : K1 → K2 be functions. Then
ϕψ,η : (X1, τ1)→ (X2, τ2) is said to be continuous if τ1

k(ϕ−1
ψ (1)) ≥ τ2

η(k)(1) for all 1 ∈ (LX2 )E2 , k ∈ K1.

The parameterized fuzzy base and the subbase of a fuzzy soft topology are described in the following
manner.

Definition 2.9. Let τ be an L-fuzzy (E,K)-soft topology on X. Then the mapping

(1) B : K→ L(LX)E
is called a base of τ if it satisfies the following condition, for each f ∈ (LX)E and k ∈ K:

τk( f ) =
∨
{

∧
i∈Γ

Bk(1i) | ti∈Γ1i = f }

where the expression on the right-hand side of the equality will be denoted by Btk ( f ).

(2) S : K→ L(LX)E
is called a subbase of τ if Su : K→ L(LX)E

is a base of τ, where for all k ∈ K and f ∈ (LX)E,
S
u

k ( f ) =
∨
{

∧
λ∈J

Sk(1λ) | (u)λ∈J 1λ = f }. Here (u) standing for the finite intersection.

The product of the family of given fuzzy soft topologies are described as follows.

Definition 2.10. Let {(Xi, τi)}i∈Γ be a family of L-fuzzy (Ei,Ki)-soft topological spaces and pi : ΠXi → Xi, qi :
ΠEi → Ei, ri : ΠKi → Ki be the crisp projections. And let X = ΠXi, K = ΠKi and E = ΠEi be the cartesian
product sets. Then the L-fuzzy (E,K)-soft topology τ on X whose subbase is defined as follows, for each
k ∈ K and f ∈ (LX)E,

Sk( f ) =
∨
i∈Γ

∧
(pq)−1

i (1)= f

τi
ri(k)(1)

is called the product L-fuzzy (E,K)-soft topology of the family {τi
}i∈Γ and the pair (X, τ) is called the product

space of the family {(Xi, τi)}i∈Γ.

Lemma 2.11. ([7]) Letϕ : X1 → X2, ψ : E1 → E2 and η : K1 → K2 be three crisp functions. Then for each subfamily
U ⊆ (LX2 )E2 , the following equality is satisfied.∨

k∈E2

∨
y∈X2

ϕψ(1)′k(y) ∧
∧
f∈U

fk(y)

 =
∨
e∈E1

∨
x∈X1

1′e(x) ∧
∧
f∈U

ϕ−1
ψ ( f )e(x)

.

3. Measures of Parameterized Fuzzy Compactness

In order to generalize the notion of compactness to the fuzzy soft universe, let us consider the following
definition which reflects us the parameterized extension version of the fuzzy-crisp case.

Definition 3.1. ([9]) Let T = {Tk}k∈K be an (E,K)-soft L-topology on X (see [6]) and h ∈ (LX)E. The L-fuzzy
soft set h is said to be compact in (X,T ), if for each k and each cover U ⊆ Tk of h there exists a finite
subfamilyV ⊆ U which covers h, i.e.,

[hṽ
∨
U] ≤

∨
V∈2(U)

[hṽ
∨
V]

For each k ∈ K,U ⊆ Tk we define χTk (U) = 1, where χTk (U) =
∧
f∈U

χTk ( f ) and χTk ( f ) = 1 when f ∈ Tk,

χTk ( f ) = 0 when f < Tk. Hence we conclude that

[hṽ
∨
U] ≤

∨
V∈2(U)

[hṽ
∨
V] ⇔ [[hṽ

∨
U] ≤

∨
V∈2(U)

[hṽ
∨
V]] = 1.
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Here the symbol 2(U) demonstrates the finite subfamily ofU ⊆ (LX)E.
As a result of the above discussion, we may say that h ∈ (LX)E is compact according to the parameter k

if and only if for every familyU ⊆ (LX)E, it follows that

Tk(U) ≤ [[hṽ
∨
U] ≤

∨
V∈2(U)

[hṽ
∨
V]]

So we now naturally generalize the notion of compactness degree to the fuzzy soft universe by using the
underlying lattice implication in the following way.

Definition 3.2. Let τ : K→ L(LX)E
be a map and 1 ∈ (LX)E. Define such a map comτ : K→ L(LX)E

as follows.

comτ(k, 1) =
∧

U⊆(LX)E

[τk(U) ≤ [[1ṽ
∨
U] ≤

∨
V∈2(U)

[1ṽ
∨
V]]]

=
∧

U⊆(LX)E

(τk(U) 7→ ([1ṽ
∨
U] 7→

∨
V∈2(U)

[1ṽ
∨
V]))

=
∧

U⊆(LX)E

(
∧
h∈U

τk(h) 7→ (
∧
x∈X

∧
e∈E

(1′e(x) ∨
∨
h∈U

he(x)) 7→
∨
V∈2(U)

∧
x∈X

∧
e∈E

(1′e(x) ∨
∨
h∈V

he(x))))

If (X, τ) is an L-fuzzy (E,K)-soft topological space, then the value comτ(k, 1) is called the compactness
degree of 1 with respect to the parameter k. So 1 is said to be compact L-fuzzy soft set with respect to k if
comτ(k, 1) = 1L. In this manner, the compactness degree of 1 in the whole space (X, τ) is computed by the
value comτ(1) =

∧
k∈K comτ(k, 1). So the L-fuzzy soft set 1 is said to be compact in the fuzzy soft space (X, τ)

if comτ(1) = 1L. Hence if comτ(̃1) = 1L, then the whole space (X, τ) is said to be compact.

According to the properties of implication operation 7→, the following lemma can be proved.

Lemma 3.3. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, 1 ∈ (LX)E and k ∈ K. Then comτ(k, 1) ≥ a if and
only if for eachU ∈ (LX)E,

τk(U) ∧ [ 1ṽ
∨
U] ∧ a ≤

∨
V∈2U

[ 1ṽ
∨
V]

Theorem 3.4. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, k ∈ K and 1 ∈ (LX)E. Then we can characterize
the parameterized compactness degree by the following equality.

comτ(k, 1) =
∨
{a ∈ L | τk(U) ∧ [ 1ṽ

∨
U] ∧ a ≤

∨
V∈2U

[ 1ṽ
∨
V],∀ U ⊆ (LX)E

}.

Proof. The claim of the theorem is proved via Lemma 3.3.

The following result shows that the union of two compact L-fuzzy soft sets is compact, too.

Theorem 3.5. Let (X, τ) be an L-fuzzy (E,K)-soft topological space and 1, h ∈ (LX)E. Then the following inequality
is satisfied for each k ∈ K,

comτ(k, 1 t h) ≥ comτ(k, 1) ∧ comτ(k, h).

Proof. Let 1, h ∈ (LX)E and k ∈ K be given, then the following is true.

comτ(k, 1 t h) =
∨
{a ∈ L | τk(U) ∧ [(1 t h)ṽ

∨
U] ∧ a ≤

∨
V∈2U

[(1 t h)ṽ
∨
V],∀U ⊆ (LX)E

}

=
∨
{a ∈ L | τk(U) ∧ [1ṽ

∨
U] ∧ [hṽ

∨
U] ∧ a ≤

∨
V∈2U

[1ṽ
∨
V] ∧ [hṽ

∨
V],∀U ⊆ (LX)E

}
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≥

∨
{a ∈ L | τk(U) ∧ [1ṽ

∨
U] ∧ a ≤

∨
V∈2U

[1ṽ
∨
V],∀U ⊆ (LX)E

}

∧

∨
{a ∈ L | τk(U) ∧ [hṽ

∨
U] ∧ a ≤

∨
V∈2U

[hṽ
∨
V],∀U ⊆ (LX)E

}

= comτ(k, 1) ∧ comτ(k, h).

The following result gives that the intersection of a compact L-fuzzy soft set and a closed L-fuzzy soft
set, is compact.

Theorem 3.6. Let (X, τ) be an L-fuzzy (E,K)-soft topological space and 1, h ∈ (LX)E. Then the following inequality
is valid for each k ∈ K,

comτ(k, 1 u h) ≥ comτ(k, 1) ∧ τ∗k(h).

Proof. Let 1, h ∈ (LX)E and k ∈ K be given, then we have

comtau(k, 1 u h) =
∨
{a ∈ L | τk(U) ∧ [(1 u h)ṽ

∨
U] ∧ a ≤

∨
V∈2U

[(1 u h)ṽ
∨
V],∀U ⊆ (LX)E

}

=
∨
{a ∈ L | τk(U) ∧ [1ṽh′ t

∨
U] ∧ a ≤

∨
V∈2U

[1ṽh′ t
∨
V],∀U ⊆ (LX)E

}

≥ {a ∧ τ∗k(h) | τk(U) ∧ [1ṽ
∨
U] ∧ q ≤

∨
V∈2(U)

[1ṽ
∨
V]}

≥ comτ(k, 1) ∧ τ∗k(h)

as desired.

Corollary 3.7. Let (X, τ) be an L-fuzzy (E,K)-soft topological space. Then for each 1 ∈ (LX)E the relation between
the k-parameterized degree of compactness of 1 and the degree of closedness is as follows:

comτ(k, 1) ≥ comτ(k, 1̃) ∧ τ∗k(1).

Theorem 3.8. Let τ1, τ2 : K → L(LX)E be two maps which satisfy τ2
≤ τ1. Then comτ1 (k, 1) ≤ comτ2 (k, 1) for every

1 ∈ (LX)E and k ∈ K.

Proof. It is straightforward and therefore omitted.

Corollary 3.9. Let τ1 and τ2 be two L-fuzzy (E,K)-soft topologies on X which satisfy τ2
≤ τ1,i.e., τ2

k( f ) ≤ τ1
k( f ) for

any k ∈ K and f ∈ (LX)E. Then comτ1 (k, 1) ≤ comτ2 (k, 1) for each k ∈ K and 1 ∈ (LX)E.

Corollary 3.10. Let (X, τ) be an L-fuzzy (E,K)-soft topological space andB be a base or subbase of τ.Then comτ(k, 1) ≤
comB(k, 1) for any 1 ∈ (LX)E and k ∈ K.

The following result shows that the compactness of an L-fuzzy soft set is preserved under continuous
L-fuzzy soft mapping.

Theorem 3.11. Let ϕψ,η : (X1, τ1) → (X2, τ2) be a continuous L-fuzzy soft mapping between L-fuzzy (E1,K1)-soft
and L-fuzzy (E2,K2)-soft topological spaces. Then for each k ∈ K1 and 1 ∈ (LX1 )E1 , we have

comτ1 (k, 1) ≤ comτ2 (η(k), ϕψ(1)).
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Proof. Let k ∈ K1 and 1 be a fuzzy soft set on X1 with the parameter set E1. Then one gets
comτ2 (η(k), ϕψ(1)) =

∨
{a ∈ L | τ2

η(k)(U) ∧ [ϕψ(1)ṽ
∨
U] ∧ a ≤

∨
V∈2U

[ϕψ(1)ṽ
∨
V],∀U ⊆ (LX2 )E2 }

≥

∨
{a | (τ1)k(ϕ−1

ψ (U)) ∧ [1ṽ
∨

ϕ−1
ψ (U)] ∧ a ≤

∨
V∈2U

[1ṽ
∨

ϕ−1
ψ (V)],∀U ⊆ (LX2 )E2 }

≥

∨
{a ∈ L | τ1

k(P) ∧ [1ṽ
∨
P] ∧ a ≤

∨
R∈2P

[1ṽ
∨
R],∀P ∈ (LX1 )E1 }

= comτ1 (k, 1).
Hence the proof is completed as desired.

4. Some Further Characterizations

In this section we give some equivalent conditions in order to characterize the parameterized degree of
fuzzy compactness of an L-fuzzy soft set in terms of different coverings. Let us first propose the following
coverings.

Definition 4.1. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, α ∈ L \ {0L} and f ∈ (LX)E. Then the
subfamilyU ⊆ (LX)E is said to be

(1) an ”α-shading of f ” if for any x ∈ X and e ∈ E, it follows that f ′e (x) ∨
∨
1∈U

1e(x) � α.

(2) a ”strong α-shading of f ” if [ f ṽ
∨
U] � α.

(3) an ”α-remote family of f ” if for any x ∈ X and e ∈ E, it follows that fe(x) ∧
∨
h∈U

he(x) � α.

(4) a ”strong α-remote family of f ” if
∨
e∈E

∨
x∈X

( fe(x) ∧
∨
h∈U

he(x)) � α.

(5) a ”Qα-cover of f ” if for any x ∈ X and e ∈ E with fe(x) � α′, it follows that
∨
1∈U

1e(x) ≥ α.

(6) a ”Θα-cover of f ” if for any x ∈ X and e ∈ E, it follows that α ∈ Θ( f ′e (x) ∨
∨
1∈U

1e(x)).

(7) a ”strong Θα-cover of f ” if α ∈ Θ([ f ṽ
∨
U]).

It is noted that if for α ∈ c(L),U is a Qα-cover of f iff α ≤ [ f ṽ
∨
U]. It is obvious that a strong Θα-cover of f

is a Θα-cover of f .

Let τ : K → L(LX)E
be an L-fuzzy (E,K)-soft topology on X and a ∈ L, define τa

k = { f ∈ (LX)E
| τk( f ) ≥ a}.

Then the family T = {τa
k}k∈K constitutes an (E,K)-soft L-topology on X.

Theorem 4.2. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, f ∈ (LX)E and α ∈ L \ {0L}. Then the following
statements are equivalent:

(1) comτ(k, f ) ≥ α.

(2) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every Qβ-coverU ⊆ τβk of f has a finite subfamilyV which is a Qγ-cover
of f .
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Proof. (1)⇒ (2): Suppose that comτ(k, 1) ≥ a. Then by Lemma 3.3,
τk(U) ∧ [1ṽ ∨ U] ∧ a ≤

∨
V∈2(U)

[1ṽ ∨ V] is satisfied for any U ⊆ (LX)E. ∀b ≤ a,∀r ∈ Θ(b), if U ⊆ τb
k is a

Qb-cover of 1 with respect to k, then b ≤ τk(U) and b ≤ [1ṽ ∨ U]. Hence b ≤ τk(U) ∧ [1ṽ ∨ U] ∧ a. So we
have that r ∈ Θ(b) ⊆ Θ(

∨
V∈2(U)

[1ṽ ∨ V]). ThereforeU has a finite subfamilyV which is a Qr-cover of 1.

(2) ⇒ (1): Suppose ∀b ≤ a,∀r ∈ Θ(b), each Qb-cover U ⊆ τb
k of 1 has a finite subfamily V which is a

Qr-cover of 1.∀U ⊆ (LX)E,∀r ∈ c(L), if r ∈ Θ(τk(U)∧[1ṽ∨U]∧a), then there exists b ∈ Θ(τk(U)∧[1ṽ∨U]∧a)
such that r ∈ Θ(b).We have that b ≤ a, b ≤ τk(U) and b ≤ [1ṽ ∨U], this means thatU ⊆ τb

k is a Qb-cover of 1.
By the hypothesis,U has a finite subfamilyV such that a Qr-cover of 1.This implies that r ≤

∨
V∈2(U) [1ṽ∨V].

Therefore, comτ(k, 1) ≥ a.

We may also obtain some other characterizations of the parameterized degree of fuzzy compactness as
follows.

Remark 4.3. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, f ∈ (LX)E and α ∈ L \ {0L}. Then the
following statements are equivalent each other.

(1) comτ(k, f ) ≥ α.

(2) For each β ∈ p(L), β � α, every strong β-shadingU of f with
∧
h∈U

τk(h) � β has a finite subcollectionV

which is a strong β-shading of f .

(3) For each β ∈ p(L), β � α, every strong β-shadingU of f with
∧
h∈U

τk(h) � β has a finite subcollectionV

and γ ∈ Ω∗(β) whereV is a γ-shading of f .

(4) For each β ∈ p(L), β � α, every strong β-shadingU of f with
∧
h∈U

τk(h) � β has a finite subcollectionV

and γ ∈ Ω∗(β) whereV is a strong γ-shading of f .

(5) For each β ∈ c(L), β � α′, every strong β-remote family P of f with
∨
h∈P

τ∗k(h) � β′ has a finite subcollec-

tion R which is a strong β-remote family of f .

(6) For each β ∈ c(L), β � α′, every strong β-remote family P of f with
∨
h∈P

τ∗k(h) � β′ has a finite subcollec-

tion R and γ ∈ Θ∗(β) where R is a γ-remote family of f .

(7) For each β ∈ c(L), β � α′, every strong β-remote family P of f with
∨
h∈P

τ∗k(h) � β′ there is a finite

subcollection R of P and γ ∈ Θ∗(β) where R is a strong γ-remote family of f .

(8) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every Qβ-cover U ⊆ τβk of f has a finite subfamily V which is a
strong Θβ-cover of f .

(9) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every Qβ-cover U ⊆ τβk of f has a finite subfamily V which is a
Θγ-cover of f .

(10) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every strong Θβ-coverU ⊆ τβk of f has a finite subfamilyV which is
a Qγ-cover of f .

(11) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every strong Θβ-coverU ⊆ τβk of f has a finite subfamilyV which is
a strong Θγ-cover of f .
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(12) For each β ≤ α, γ ∈ Θ(β), β, γ , 0, every strong Θβ-coverU ⊆ τβk of f has a finite subfamilyV which is
a Θγ-cover of f .

Theorem 4.4. Let (X, τ) be an L-fuzzy (E,K)-soft topological space, f ∈ (LX)E and α ∈ L \ {0L}. If Θ(γ ∧ δ) =
Θ(γ) ∩Θ(δ), for each γ, δ ∈ L, then the following statements are equivalent.

(1) comτ(k, f ) ≥ α.

(2) For each β ∈ Θ(α), β , 0, every strong Θβ-coverU of f with β ∈ Θ(τk(U)) has a finite subcollectionV which
is a Qβ-cover of f .

(3) For each β ∈ Θ(α), β , 0, every strong Θβ-coverU of f with β ∈ Θ(τk(U)) has a finite subcollectionV which
is a strong Θβ-cover of f .

(4) For each β ∈ Θ(α), β , 0, every strong Θβ-coverU of f with β ∈ Θ(τk(U)) has a finite subcollectionV which
is a Θβ-cover of f .

Proof. (1)⇒ (3): Let comτ(k, f ) ≥ α be satisfied for some k ∈ K, β ∈ Θ(α) andU ⊆ (LX)E be a strong Θβ-cover
of f with β ∈ Θ(τk(U)). By the hypothesis, β ∈ Θ(τk(U)) ∩Θ([ f ṽ

∨
U]) ∩Θ(α) = Θ(τk(U) ∧ [ f ṽ

∨
U] ∧ α).

From Lemma 3.3, we get β ∈ Θ([ f ṽ
∨
V]), for some finite subcollection V of U. This means that V is a

finite subcollection ofU which is a strong Θβ-cover of f .
(3)⇒ (1): Letβ ∈ c(L) withβC(τk(U)∧[ f ṽ

∨
U]∧α), for some subcollection ofU of (LX)E.Hence we obtain

that βCα, βCτk(U) and βC([ f ṽ
∨
U]). These results imply that β ∈ Θ(α) andU is a strong θβ-cover of f with

β ∈ Θ(τk(U)). From the hypothesis of (3), there exists a finite subcollectionV ofUwhich is a strong Θβ-cover
of f .That is, β ≤

∨
V∈2(U) [ f ṽ

∨
V] is satisfied. In conclude, we have τk(U)∧[ f ṽ

∨
U]∧α ≤

∨
V∈2(U) [ f ṽ

∨
V].

From Lemma 3.3, comτ(k, f ) ≥ α is obtained as desired.
The other implications are proved similarly.

5. Tychonoff Theorem

In this section we enlarge the Tychonoff theorem for the parameterized degree of fuzzy compactness.
Throughout this section we assume that L is completely distributive.

The following lemma shows that the parameterized degree of compactness of an L-fuzzy soft set can be
characterized by any subbase of the topology.

Lemma 5.1. Let (X, τ) be an L-fuzzy (E,K)-soft topological space and S be a subbase of τ. Then

comτ(k, 1) =
∨
{a ∈ L | Sk(U) ∧ [1ṽ ∨ U] ∧ a ≤

∨
V∈2(U)

[1ṽ ∨ V]}.

Proof. The claim is proved by using Corollary 3.10 and Theorem 4.2.

The following result shows that the product of compact L-fuzzy soft sets is also compact.

Theorem 5.2. Let {(Xi, τi)}i∈I be a family of L-fuzzy (Ei,Ki)-soft topological spaces and (X, τ) be the product L-fuzzy
(E,K)-soft topological space. Then the relation between the parameterized degree of compactness of 1 = Π1i ∈ (LX)E

in the product space and the compactness degree of the productions is as follows:

comτ(k, 1) ≥
∧
i∈I

comτi (ki, 1i).
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Proof. LetS denote the subbase of the product topology τ. In order to prove that comτ(k, 1) ≥
∧
i∈I

comτi (ki, 1i),

let
∧
i∈I

comτi (ki, 1i) = a. Then for any i ∈ I, comτi (ki, 1i) ≥ a. From Lemma 5.1, it is sufficient to show that for

anyU ⊆ (LX)E, Sk(U) ∧ [1ṽ ∨ U] ∧ a ≤
∨
V∈2(U)

[1ṽ ∨ V].

∀U ⊆ (LX)E,∀b ∈ Θ(Sk(U) ∧ [1ṽ ∨ U] ∧ a), we have that b ∈ Θ(Sk(U)), b ∈ Θ([1ṽ ∨ U]) and b ∈
Θ(a). For each f ∈ U, there exists i ∈ I and fi ∈ (LXi )Ei such that b ∈ Θ(τi

k( fi)) by b ∈ Θ(Sk(U)) =

Θ(
∧
f∈U

∨
i∈I

∨
(pq)−1

i ( fi)= f

τi
k( fi)). Let for j ∈ J ⊆ I,

U j = { f j ∈ (LX j )E j | (pq)−1
j ( f j) = f , f ∈ U} and B j = {(pq)−1

j ( f j) | f j ∈ (LX j )E j , (pq)−1
j ( f j) = f , f ∈ U}.

We have thatU = ∪ j∈JB j and ∀ j ∈ J ⊆ I, τ j
k(U) ∧ [1 jṽ ∨ U j] ∧ a ≤

∨
V j∈2

(U j )

[1 jṽ ∨ V j].

Besides for any k ∈ K and e ∈ E, we have
b ∈ Θ(1′e(x) ∨

∨
f∈U

fe(x)) = Θ(
∨
i∈I

(1i)′ei
(xi) ∨

∨
j∈J

∨
f∈B j

fe(x)) by b ∈ Θ([1ṽ ∨ U]).

(1) If b ∈ Θ(
∨

i∈I(1i)′ei
(xi)) for any x = (xi) ∈ X, then clearly b ≤

∨
V∈2(U)

[1ṽ ∨ V].

(2) Suppose b < Θ(
∨

i∈I(1i)′ei
(xi)) for some x = (xi) ∈ X, then b < Θ((1i)′ei

(xi)) for any i ∈ I. Now we prove

that there exists j0 ∈ J such that b ∈ ((1 j0 )′e j0
(y j0 )) ∨

∨
U j0 (1 j0 )) for some 1 j0 ∈ X j0 , if j ∈ J there exists 1 j ∈ X j

such that b < Θ((1 j)′e j
(y j) ∨

∨
h∈U j

he j (y j)). Let z = (zi) such that zi = yi when i ∈ J, zi = xi otherwise. By the
equality 1′e(z) =

∨
i∈J(1i)′ei

(yi)∨
∨

i<J(1i)′ei
(xi),we obtain b < Θ(1′e(z)). In addition for any j ∈ J, by the following

fact
b < Θ(

∨
h∈U j

he j (y j)) = Θ(
∨
h∈U j

(pq)−1
j (h)e(z)) = Θ(

∨
f∈B j

fe(z)), we have b < ∪ j∈JΘ(
∨
h∈B j

he(z)) = Θ(
∨
j∈J

∨
f∈B j

fe(z)).

This implies b < Θ(1′e(z) ∨
∨
f∈U

fe(z)). This yields a contradiction. Thus we obtain the proof that there exists

j0 ∈ J such that b ∈ Θ((1 j0 )′e j0
(x j0 ) ∨

∨
U j0 (1 j0 )) for any 1 j0 ∈ (LX j0 )E j0 . This shows that b ≤ [1 j0ṽ

∨
U j0 ]. Thus

b ≤ τ j0
k (U j0 ) ∧ [1 j0ṽ

∨
U j0 ] ∧ a. We have

b ≤
∨

W j0∈2
(U j0

)

[1 j0ṽ
∨
W j0 ] =

∨
W j0∈2

(U j0
)

∧
y j0∈X j0

∧
e j0∈E j0

(1′j0 ∨
∨
W j0 )e j0

(y j0 )

=
∨

W j0∈2
(U j0

)

∧
y∈X

∧
e∈E

((pq)−1
j0 (1′j0 ) ∨

∨
h∈W j0

(pq)−1
j0 (h))e(y)

≤

∨
W j0∈2

(U j0
)

∧
y∈X

∧
e∈E

(1′ ∨
∨

h∈W j0

(pq)−1
j0 (h))e(y)

≤

∨
V j0∈2

(B j0
)

∧
y∈X

∧
e∈E

(1′ ∨
∨
V j0 )e(y)

≤

∨
V∈2(U)

[1ṽ
∨
V].

Thus we obtain the desired result.

Corollary 5.3. Let (X, τ) be the product L-fuzzy (E,K)-soft topological space of the family {(Xi, τi)}i∈I of L-fuzzy
(Ei,Ki)-soft topological spaces, then the parameterized degree of compactness of the product space is as follows

comτ(k, 1̃X) =
∧

i∈I comτi (ki, 1̃Xi ),
where X = ΠXi,K = ΠKi,E = ΠEi and k = (ki).



V. Çetkin / Filomat 34:9 (2020), 2927–2938 2937

Hence we may conclude that the whole product space is compact if and only if the production spaces
are all compact.

6. Conclusion

To the best of our knowledge, the tool of fuzzy soft set theory is a new efficacious technique to dispose
uncertainties and it focuses on the parametrization. From this point of view to describe the compactness
degree in the parameterized fuzzy universe seems meaningful to us since the compactness is sort of a
topological generalization of finiteness. Also we thought that it could be interesting to carry out such
an important notion to the parameterized fuzzy case. As a result, in the present paper we pictured the
compactness degree of an L-fuzzy soft set in a fuzzy soft topological space as an extension of the existed
ones in the literature. For further research, we aim to present parameterized degree of fuzzy countably
compactness and Lindelöf property with their applications.
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