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Asymptotic Normality of Coefficients of Some Polynomials Related to
Dowling Lattices

Lily Li Liua, Yun Yanga, Wen Zhanga

aSchool of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China

Abstract. Recently, we introduced two sequences of polynomials (Bn(x, y, z)) and (Fn(x, y, z)), which
unify many familiar polynomials related to Dowling lattices, such as the Bell polynomials, the Dowling
polynomials, the ordered Bell polynomials, the r-Bell polynomials and the r-Dowling polynomials. In this
paper, we show the asymptotic normality of coefficients of Bn(x, y, z) and Fn(x, y, z). As applications, we
obtain the asymptotic normality of coefficients of some polynomials related to Dowling lattices in a unified
approach.

1. Introduction

Let a(n, k) be a double-indexed sequence of nonnegative numbers and let

p(n, k) =
a(n, k)∑n
j=0 a(n, j)

(1)

denote the normalized probabilities. Following Bender [2], we say that the sequence a(n, k) is asymptotically
normal by a central limit theorem, if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣
∑

k≤µn+xσn

p(n, k) −
1
√

2π

∫ x

−∞

e−t2/2dt

∣∣∣∣∣∣∣∣ = 0, (2)

where µn and σ2
n are the mean and the variance of (1) respectively. We say a(n, k) is asymptotically normal by

a local limit theorem on R, if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣σnp(n, bµn + xσnc) −
1
√

2π
e−x2/2

∣∣∣∣∣∣ = 0. (3)

In this case,

a(n, k) ∼
e−x2/2 ∑n

j=0 a(n, j)

σn
√

2π
, as n→∞,
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where k = µn + xσn and x = O(1). Clearly, the validity of (2) implies that of (3).

Let
{

n
k

}
be the Stirling number of the second kind, which counts the number of distinct partitions of an

n-set. The Bell polynomials [1]

Bn(x) =

n∑
k=0

{
n
k

}
xk, (4)

defined as the associated generating function, have only real zeros [22]. Using this fact, Harper [16] showed

that
{

n
k

}
is approximately normally distributed. The number k!

{
n
k

}
, which is closely related to the Stirling

number of the second kind, counts the number of distinct ordered partitions of an n-set. The ordered Bell
polynomials

Fn(x) =

n∑
k=0

k!
{

n
k

}
xk (5)

also have only real zeros [4, 22].
In 1973, Dowling [15] introduced a class of geometric lattices over a finite group G of order m ≥ 1, called

Dowling lattices. Let Qn(G) be Dowling lattices of rank n associated to G. When m = 1, that is, G is the
trivial group, Qn(G) is isomorphic to the lattice Πn+1 of partitions of an (n + 1)-set. So Dowling lattices can
be viewed as a group-theoretic analog of partition lattices. We denote the Whitney numbers of the second
kind by Wm(n, k). The Dowling polynomials Dn,m(x) are defined by

Dn,m(x) =

n∑
k=0

Wm(n, k)xk, (6)

generalized the Bell polynomials Bn(x), i.e., Bn(x) = Dn,1(x) (see [4]). Benoumhani [4] also introduced two
generalized Dowling polynomials

Fn,m,1(x) =

n∑
k=0

k!Wm(n, k)xk, Fn,m,2(x) =

n∑
k=0

k!Wm(n, k)mkxk, (7)

which generalized Fn(x), i.e., Fn(x) = Fn,1,1(x) = Fn,1,2(x). There has been an amount of results concerned
with the Dowling polynomials (see [3–5, 12, 13, 22] for instance). For example, Benoumhani [3–5] gave
the recurrence relations, the exponential generating functions and the reality of zeros of these Dowling
polynomials.

Based on the r-Stirling numbers given by Broder [10], Mezö defined the r-Bell polynomials by

Bn,r(x) =

n∑
k=0

{
n + r
k + r

}
r
xk, (8)

where
{

n
k

}
r

is the r-Stirling numbers, enumerating the number of partitions of the set [n] having k non-

empty disjoint subsets, such that the numbers 1, 2, . . . , r are in distinct subsets [10]. In particular, when
r = 0, we have Bn,0(x) = Bn(x). The strong x-log-convexity of the r-Bell polynomials has been obtained by
Liu and Li [20].

Choen and Jung [12] defined the r-Dowling polynomials by

Dn,m,r(x) =

n∑
k=0

Wm,r(n, k)xk, (9)
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where Wm,r(n, k) is the r-Whitney numbers of the second kind.
Recently, the first author and Ma [21] introduced two polynomials sequences (Bn(x, y, z)) and (Fn(x, y, z)),

whose generating functions are∑
n≥0

Bn(x, y, z)
tn

n!
= exp

(
zt +

x
y

(eyt
− 1)

)
(10)

and ∑
n≥0

Fn(x, y, z)
tn

n!
=

ezt

1 − x
y (eyt − 1)

(11)

respectively. These two polynomials sequences unify many polynomials related to Dowling lattices, such
as

(1) the Bell polynomials Bn(x) = Bn(x, 1, 0);

(2) the Dowling polynomials Dn,m(x) = Bn(x,m, 1);

(3) the r-Bell polynomials Bn,r(x) = Bn(x, 1, r);

(4) the r-Dowling polynomials Dn,m,r(x) = Bn(x,m, r);

(5) the ordered Bell polynomials Fn(x) = Fn(x, 1, 0);

(6) the generalized Dowling polynomials Fn,m,1(x) = Fn(mx,m, 1);

(7) the generalized Dowling polynomials Fn,m,2(x) = Fn(x,m, 1).

Let

Bn(x, y, z) =

n∑
k=0

Sy,z(n, k)xk (12)

and

Fn(x, y, z) =

n∑
k=0

Fy,z(n, k)xk. (13)

Denote by Bn(y, z) =
∑n

k=0 Sy,z(n, k) and Fn(y, z) =
∑n

k=0 Fy,z(n, k). In this paper, we first present the asymptotic
formulas of Bn(y, z) and Fn(y, z). Then we give the asymptotic normality of Sy,z(n, k) and Fy,z(n, k). More
precisely, we have the following.

Theorem 1.1. For nonnegative integer n and nonnegative numbers y, z, we have

Bn(y, z) ∼
n!

Rn
1

√
2π(n + yR2

1eyR1 )
exp

(
zR1 +

eyR1 − 1
y

)
(14)

and

Fn(y, z) ∼
yn!ezR2

Rn
2

√
2π(n(y + 1 − eyR2 )2 + y2(y + 1)R2

2eyR2 )
, (15)

where R1 is the unique positive solution of R(z + eyR) = n and R2 is the solution of zR +
yReyR

y+1−eyR = n satisfying
0 < R2 < 1.

Theorem 1.2. (1) The coefficients Sy,z(n, k) are asymptotically normal for y, z ≥ 0.

(2) The coefficients Fy,z(n, k) are asymptotically normal for y ≥ z ≥ 0.
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2. Proof of Theorems 1.1 and 1.2

In this section, we present the proof of Theorems 1.1 and 1.2 respectively.

Proof. [Proof of Theorem 1.1] We first prove the asymptotic formula of Bn(y, z). By (10), we have the
exponential generating function of Bn(y, z) is

n∑
k=0

Bn(y, z)
tn

n!
= exp

(
zt +

eyt
− 1
y

)
. (16)

Following Moser and Wyman [23], the sequence Bn(y, z) can be expressed as follows by Cauchy’s formula.

Bn(y, z) =
n!

2πi

∮
|t|=R

exp
(
zt + eyt

−1
y

)
tn+1 dt. (17)

Set t = Reiθ. Then

Bn(y, z) =
n!

2πRn

∫ π

−π
exp

(
zReiθ +

eyReiθ
− 1

y
− inθ

)
dθ.

We decompose this last integral into three parts(∫
−ε

−π
+

∫ ε

−ε
+

∫ π

ε

)
exp (F(θ)) dθ,

with

F(θ) = zReiθ +
eyReiθ

− 1
y

− inθ, and ε = n−1/4.

Next we prove that the integrals
∫
−ε

−π
and

∫ π
ε

are negligible, and then the greatest contribution comes from
the medium part

∫ ε
−ε

. Since

F′(θ) = iReiθ(z + eyReiθ
) − in

and

F′′(θ) = −Reiθ(z + eyReiθ
+ yReiθeyReiθ

),

we have

F(0) = zR +
eyR
− 1

y
,

F′(0) = iR(z + eyR) − in,
F′′(0) = −R(z + eyR + yReyR).

Expanding the integral
∫ π
ε

in a Taylor series about θ = 0, we obtain∣∣∣∣∣∫ π

ε
exp(F(θ))dθ

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ π

ε
exp

(
F(0) + F′(0)θ + F′′(0)

θ2

2
+ o(θ2)

)
dθ

∣∣∣∣∣∣
= exp(F(0))

∣∣∣∣∣∣
∫ π

ε
exp

(
iθ(R(z + eyR) − n)

)
exp

(
F′′(0)

θ2

2
+ o(θ2)

)
dθ

∣∣∣∣∣∣
≤ exp

(
zR +

eyR
− 1

y

) ∫ π

ε
exp

(
−
θ2R

2
(z + eyR + yReyR) + o(θ2)

)
dθ.
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Note that F′(0) = 0 is equivalent to z+ eyR = n
R . Let f (R) = z+ eyR and 1(R) = n

R . Clearly, f (R) is increasing
and 1(R) is decreasing in the interval (0,∞) respectively. It is easy to calculate that f (0) = z, f (R)→ +∞, as
R → +∞, and 1(R) → +∞ as R → 0, 1(R) → 0 as R → +∞. Thus there exists a point R1 ∈ (0,∞) such that
f (R1) = 1(R1). Hence the equation F′(0) = 0 has an unique (positive) solution R1, i.e.,

R1(z + eyR1 ) = n.

The integral in the last expression is∫ π

ε
exp

(
−
θ2

2
(n + yR2

1eyR1 ) + o(θ2)
)

dθ ≤
∫ π

ε
exp

(
−
ε2

2

)
dθ ≤ πe−

√
n

2 → 0, as n→∞.

The same calculation are valid for
∫
−ε

−π
. So

Bn(y, z) ∼
n!

2πRn
1

exp
(
zR1 +

eyR1 − 1
y

) ∫ ε

−ε
exp

(
−
θ2

2
(n + yR2

1eyR1 ) + o(θ2)
)

dθ. (18)

Putting

ψ =
√

n + yR2
1eyR1θ

in (18) and observing that for n large enough, we integrate on the real axis

Bn(y, z) ∼
n!

2πRn
1

√
n + yR2

1eyR1

exp
(
zR1 +

eyR1 − 1
y

) ∫ +∞

−∞

exp
(
−
ψ2

2

)
dψ

=
n!

Rn
1

√
2π(n + yR2

1eyR1 )
exp

(
zR1 +

eyR1 − 1
y

)
.

Then we prove the asymptotic formula of Fn(y, z). By (11), the sequence Fn(y, z) can be expressed by

Fn(y, z) =
n!

2πi

∮
|t|=R

yezt

tn+1(y + 1 − eyt)
dt. (19)

Also set t = Reiθ, we have

Fn(y, z) =
yn!

2πRn

∫ π

−π

exp(zReiθ
− inθ)

y + 1 − exp(yReiθ)
dθ.

We decompose this last integral into three parts

(
∫
−ε

−π
+

∫ ε

−ε
+

∫ π

ε
) exp(F(θ))dθ, (20)

in this case

F(θ) = ln
exp(zReiθ

− inθ)
y + 1 − exp(yReiθ)

= zReiθ
− inθ − ln(y + 1 − exp(yReiθ)), and ε = n−

1
4 .

Since

F′(θ) = izReiθ
− in +

iyReiθ exp(yReiθ)
y + 1 − exp(yReiθ)
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and

F′′(θ) = −zReiθ
−

yReiθ exp(yReiθ)(1 + yReiθ)
y + 1 − exp(yReiθ)

−
y2R2e2iθ exp(2yReiθ)
(y + 1 − exp(yReiθ))2

,

we have

F(0) = zR − ln(y + 1 − eyR),

F′(0) = izR − in +
iyReyR

y + 1 − eyR ,

F′′(0) = −

(
zR +

yReyR

y + 1 − eyR

)
−

y2(y + 1)R2eyR

(y + 1 − eyR)2
.

Note that F′(0) = 0 is equivalent to y2+y
y+1−eyR = n

R + y − z. Let f (R) =
y2+y

y+1−eyR and 1(R) = n
R + y − z. Clearly,

f (R) is increasing and 1(R) is decreasing in the interval (0, ln(y+1)
y ) respectively. It is easy to calculate that

f (0) = y + 1, f (R) → +∞, as R → ln(y+1)
y , and 1(R) → +∞ as R → 0, 1( ln(y+1)

y ) =
ny

ln(y+1) + y − z. Thus there

exists a point R2 ∈ (0, ln(y+1)
y ) such that f (R2) = 1(R2). Since ln(y+1)

y < 1, the equation F′(0) = 0 has an unique

solution R2, which is greater than zero and less than one. Now F′′(0) = −n − y2(y+1)R2
2eyR2

(y+1−eyR2 )2 . Then expanding
the integral in a Taylor series about θ = 0, we have∣∣∣∣∣∫ π

ε
exp(F(θ))dθ

∣∣∣∣∣ ≤ ∫ π

ε

∣∣∣∣∣∣exp
(
F(0) +

θ2

2
F′′(0) + o(θ2)

)∣∣∣∣∣∣ dθ
=

ezR2

y + 1 − eyR2

∫ π

ε
exp

(
−
θ2

2

(
n +

y2(y + 1)R2
2eyR2

(y + 1 − eyR2 )2

)
+ o(θ2)

)
dθ.

The integral in the last expression is∫ π

ε
exp

(
−
θ2

2

(
n +

y2(y + 1)R2
2eyR2

(y + 1 − eyR2 )2

)
+ o(θ2)

)
dθ ≤ πe−

√
n

2 → 0, as n→∞.

The same calculation is valid for
∫
−ε

−π
. Finally, we obtain

Fn(y, z) ∼
yn!ezR2

2πRn
2(y + 1 − eyR2 )

∫ ε

−ε
exp

(
−
θ2

2

(
n +

y2(y + 1)R2
2eyR2

(y + 1 − eyR2 )2

))
dθ. (21)

Putting

ψ =

√
n(y + 1 − eyR2 )2 + y2(y + 1)R2

2eyR2

y + 1 − eyR2
θ.

Then

Fn(y, z) ∼
yn!eyR2

Rn
2

√
2π(n(y + 1 − eyR2 )2 + y2(y + 1)R2

2eyR2 )

∫ +∞

−∞

exp
(
−
ψ2

2

)
dψ

=
yn!eyR2

Rn
2

√
2π(n(y + 1 − eyR2 )2 + y2(y + 1)R2

2eyR2 )

This completes our proof.
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A standard approach to demonstrating the asymptotic normality is the following criterion, which was
used by Harper [16] to show the asymptotic normality of the Stirling numbers of the second kind. We refer
the reader to the excellent surveys of the asymptotic normality by [2, 11, 14].

Theorem 2.1 ([26]). Suppose that An(x) =
∑n

k=0 a(n, k)xk have only real zeros and An(x) =
∏n

i=1(x + ri). Let

µn =

n∑
i=1

1
1 + ri

and

σ2
n =

n∑
i=1

ri

(1 + ri)2

Then if σn → +∞, the numbers a(n, k) are asymptotically normal with the mean µn and the variance σ2
n.

Remark 2.2 ([11]). Suppose that An(x) =
∑n

k=0 a(n, k)xk. Then the mean and the variance of a(n, k) are given by the
following expressions

µn =
A′

n(1)
An(1)

=

∑n
k=0 ka(n, k)∑n
k=0 a(n, k)

,

σ2
n =

A′

n(1)
An(1)

+
A′′

n(1)
An(1)

−

(
A′

n(1)
An(1)

)2

=

∑n
k=0 k2a(n, k)∑n

k=0 a(n, k)
− µ2

n.

From the exponential generating functions (10) and (11), it is easy to obtain that the recurrence relations
of Bn(x, y, z) and Fn(x, y, z) are

Bn(x, y, z) = (x + z)Bn−1(x, y, z) + xyB′n−1(x, y, z) (22)

and

Fn(x, y, z) = (x + z)Fn−1(x, y, z) + x(x + y)F′n−1(x, y, z) (23)

respectively. So the coefficients Sy,z(n, k) and Fy,z(n, k) satisfy

Sy,z(n, k) = Sy,z(n − 1, k − 1) + (z + yk)Sy,z(n − 1, k) (24)

and

Fy,z(n, k) = kFy,z(n − 1, k − 1) + (z + yk)Fy,z(n − 1, k) (25)

respectively.
Let f and 1 be two real polynomials with only real zeros and with positive leading coefficients. Denote

their zeros by r1( f ) ≥ r2( f ) ≥ · · · ≥ rn( f ) and r1(1) ≥ r2(1) ≥ · · · ≥ rm(1) respectively. For convenience, we
set that ri( f ) = +∞ for i < 1 and ri( f ) = −∞ for i > n. We say that f (x) interlaces 1(x), denoted by f � 1, if
n ≤ m ≤ n + 1 and ri(1) ≥ ri( f ) ≥ ri+1(1) for all i. Obviously, if f has only real zeros then f ′ � f . Wang and
Yeh [25] gave the following criteria for the reality of zeros of polynomials.

Theorem 2.3 ([25]). Suppose that f , 1 are polynomials with coefficients having the same sign and only have real
zeros. If 1 � f and ad ≥ bc, then the polynomial (ax + b) f (x) + x(cx + d)1(x) also has only real zeros.

Based on Theorem 2.3, we have the reality of zeros of Bn(x, y, z) and Fn(x, y, z) as polynomials of x.

Theorem 2.4. (1) The polynomial Bn(x, y, z) has only real zeros for y ≥ 0.

(2) The polynomial Fn(x, y, z) has only real zeros for y ≥ z ≥ 0.
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Now we are in the position to prove Theorem 1.2.

Proof. [Proof of Theorem 1.2] It suffices to prove the variances of Sy,z(n, k) and Fy,z(n, k) tending to ∞, as
n→∞ by Theorem 2.4 respectively.

By the recurrence (24), we have

n∑
k=0

kSy,z(n, k) =
Bn+1(y, z) − (z + 1)Bn(y, z)

y

n∑
k=0

k2Sy,z(n, k) =
Bn+2(y, z) − (2 + 2z)Bn+1(y, z) + (z2 + 2z + 1 − y)Bn(y, z)

y2 .

So the mean and the variance of Sy,z(n, k) are

µn =
Bn+1(y, z)
yBn(y, z)

−
z + 1

y

and

σ2
n =

Bn+2(y, z)
y2Bn(y, z)

−

(
Bn+1(y, z)
yBn(y, z)

)2

−
1
y
.

Using the asymptotic formula (14) of Bn(y, z), we have

σ2
n ∼

(n + 2)(n + 1)
R2

1y2

√
1 −

2
n + 2 + yR1eyR −

(n + 1)2

R2
1y2

(
1 −

1
n + 1 + yR1eyR

)
−

1
y

∼
n + 1
R2

1y2
−

1
y
.

Thus σ2
n →∞, as n→∞.

By the recurrence (25), we have

n∑
k=0

kFy,z(n, k) =
Fn+1(y, z) − (1 + z)Fn(y, z)

(y + 1)

n∑
k=0

k2Fy,z(n, k) =
Fn+2(y, z) − (3 + 2z)Fn+1(y, z) − (y − 3z − 1 − z2)Fn(y, z)

(y + 1)2 .

So the mean and the variance are

µn =
Fn+1(y, z)

(y + 1)Fn(y, z)
−

z + 1
y + 1

and

σ2
n =

Fn+2(y, z)
(y + 1)2Fn(y, z)

−
Fn+1(y, z)

(y + 1)2Fn(y, z)
−

(
Fn+1(y, z)

(y + 1)Fn(y, z)

)2

+
z − y

(y + 1)2 .
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Using the asymptotic formula (15) of Fn(y, z), we have

σ2
n ∼

(n + 1)(n + 2)
(y + 1)2R2

2

√
1 −

2(y + 1 − eyR2 )2

(n + 2)(y + 1 − eyR2 )2 + y2(y + 1)R2
2eyR2

−
(n + 1)

(y + 1)2R2

√
1 −

(y + 1 − eyR2 )2

(n + 1)(y + 1 − eyR2 )2 + y2(y + 1)R2
2eyR2

−
(n + 1)2

(y + 1)2R2
2

(
1 −

(y + 1 − eyR2 )2

(n + 1)(y + 1 − eyR2 )2 + y2(y + 1)R2
2eyR2

)
+

z − y
(y + 1)2

∼
(1 − R2)(n + 1)

(y + 1)2R2
2

+
z − y

(y + 1)2 .

Thus σ2
n →∞, as n→∞. This completes the proof of Theorem 1.2.

3. Applications

In this section, we give the asymptotic formulas and the asymptotic normality of polynomials related
to Dowling lattices from Theorems 1.1 and 1.2.

Corollary 3.1. The following asymptotic formulas hold.

(1) The Bell numbers

Bn =

n∑
k=0

S(n, k) ∼
n! exp

(
eR1 − 1

)
Rn

1

√
2π(n + R1eR1 )

,

where R1 is the unique positive solution of ReR = n;

(2) The Dowling numbers

Wm,n =

n∑
k=0

Wm(n, k) ∼
n! exp

(
R1 + emR1−1

m

)
Rn

1

√
2π(n + mR1emR1 )

,

where R1 is the unique positive solution of R(1 + emR) = n;

(3) The r-Bell numbers

Bn,r =

n∑
k=0

Sr(n, k) ∼
n! exp

(
rR1 + eR1 − 1

)
Rn

1

√
2π(n + R1eR1 )

,

where R1 is the unique positive solution of R(r + eR) = n;

(4) The r-Dowling numbers

Wm,r,n =

n∑
k=0

Wm,r(n, k) ∼
n! exp

(
rR1 + emR1−1

m

)
Rn

1

√
2π(n + mR1emR1 )

,

where R1 is the unique positive solution of R(r + emR) = n;

(5) The ordered Bell numbers

Fn =

n∑
k=0

k!S(n, k) ∼
n!

Rn
2

√
2π(n(2 − eR2 )2 + 2R2

2eR2 )
,

where R2 is the solution of ReR

2−eR = n satisfying 0 < R2 < 1;



L. L. Liu et al. / Filomat 34:9 (2020), 2915–2925 2924

(6) The numbers

Fn,m,1 =

n∑
k=0

mkk!Wm(n, k) ∼
mn!eR2

Rn
2

√
2π(nm(2 − emR2 )2 + 2m4R2

2emR2 )
,

where R2 is the solution of R + mRemR

2−emR = n satisfying 0 < R2 < 1;

(7) The numbers

Fn,m,2 =

n∑
k=0

k!Wm(n, k) ∼
mn!eR2

Rn
2

√
2π(n(m + 1 − emR2 )2 + m2(m + 1)R2

2emR2 )
,

where R2 is the solution of R + mRemR

m+1−emR = n satisfying 0 < R2 < 1.

Corollary 3.2. The sequences (S(n, k)), (Wm(n, k)), (Sr(n, k)), (Wm,r(n, k)) and (k!S(n, k)), (k!Wm(n, k)), (mkk!Wm(n, k))
are asymptotically normal respectively.

4. Remarks

Let a0, a1, . . . , an be a sequence of positive numbers. The sequence is unimodal if there is an index
0 ≤ m ≤ n such that a0 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an (such an index m is called a mode of the
sequence). The sequence is log-concave if ai−1ai+1 ≤ a2

i for i = 1, . . . ,n − 1. Clearly, the log-concavity implies
the unimodality. Unimodal and log-concave sequences occur naturally in combinatorics, analysis, algebra,
geometry, probability and statistics. We refer the reader to Stanley [24], Brenti [7] and Brändén [6] for
surveys and [8, 9, 22, 25] for some recent progress on this subject.

One classical approach to unimodality and log-concavity of a finite sequence is to use Newton’s in-
equality: if the polynomial

∑n
i=0 aixi with positive coefficients has only real zeros, then

a2
i ≥ ai−1ai+1

(
1 +

1
i

) (
1 +

1
n − i

)
for 1 ≤ i ≤ n−1, and the sequence a0, a1, . . . , an is therefore unimodal and log-concave (see Hardy, Littlewood
and Pólya [17, p. 104] for instance). So by Theorem 2.4, we have the sequences (Sy,z(n, k))n

k=0 and (Fy,z(n, k))n
k=0

are unimodal and log-concave respectively. Recently, Gyimesi and Nyul [19] presented a combinatorial
interpretation of r-Whitney numbers with colored set partitions. It is possible to find combinatorial inter-
pretations of (Sy,z(n, k))n

k=0 and (Fy,z(n, k))n
k=0. Furthermore, we probably can present a combinatorial proof

of the unimodality and the log-concavity of these two sequences.
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