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Abstract. Let R be an associate ring with unity 1 and involution. In this paper, we investigate sev-
eral properties and characterizations of idempotents generated by weighted Moore-penrose inverses and
weighted pseudo core inverses in R. Moreover, several new characterizations about weighted EP elements
and existence criteria of weighted pseudo core inverses are also given.

1. Introduction

It is well known that idempotents are a class of important elements and has a close relationship with
generalized inverses. Many researchers have considered questions concerning the idempotents in various
fields, such as in complex matrices, Banach algebras, rings, etc (see [3], [4], [6], [7], [9], [10]). Therein,
characterizations of idempotents generated by Moore-Penrose inverses and weighted Moore-Penrose in-
verses of elements over various sets attract wide interest from many scholars. For example, Hartwig and
Spindelböck [3] investigated the characterization of A†A = BB†, where A,B are two n × n complex matri-
ces. Then, Patrı́cio and Araújo [10] further considered the case of aa† = bb† for a, b ∈ R† by units in rings
with involution. Shortly after, Mosić and Djordjević [9] derived the characterization of aa†e, f = bb†e, f , when

a, b ∈ R†e, f . Recently, Zhu and Peng [14] gave several characterizations of a(1,4)a = bb(1,3) for a ∈ R(1,4) and

b ∈ R(1,3). In this paper, we mainly consider properties and characterizations of idempotents generated by
weighted Moore-Penrose generalized inverses and weighted pseudo core inverses, respectively.

The paper is organized as follows. In Section 2, we consider how to characterize idempotents generated
by weighted Moore-Penrose inverses. We present some characterizations of a(1,4 f )a = bb(1,3e) in Theorem 2.4.
Moreover, some new characterizations of weighted EP element are given in Theorem 2.8.

In Section 3, we consider the idempotent generated by weighted pseudo core inverses. Some character-
izations of aa(1,3e) = bb(1,3e) are given by units. The existence criteria of weighted pseudo core inverses and
some characterizations of aae,D© = bbe,D© will be presented.

Throughout this paper, let R be a unital ∗-ring, that is, a ring with unity 1 and an involution x 7→ x∗

satisfying (a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗ for all a, b ∈ R. An element a ∈ R is Hermitian if a∗ = a. In
what follows, we assume that all e, f ∈ R are invertible Hermitian elements.
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Definition 1.1. [5] An element a ∈ R is called weighted Moore-Penrose invertible with weights e, f if there exists
some x ∈ R such that

(1) axa = a, (2) xax = x, (3e) (eax)∗ = eax, (4 f ) ( f xa)∗ = f xa.

Such an element x is called a weighted Moore-penrose inverse of a with weights e and f . It is unique if it exists and
denoted by a†e, f . The set of all weighted Moore-Penrose invertible elements with weights e, f in R is denoted by R†e, f .

Definition 1.2. [13] Let a ∈ R. An element a is pseudo e-core invertible if there exists some x ∈ R and some positive
integer n such that

(5) xan+1 = an, (6) ax2 = x, (3e) (eax)∗ = eax.

Such an element x is called a pseudo e-core inverse of a. It is unique if it exists and denoted by ae,D©. The smallest
positive integer n is called the pseudo e-core index of a and denoted by EI(a). The set of all pseudo e-core invertible
elements in R is denoted by Re,D©. In particular, if EI(a) = 1, then a is e-core invertible and the e-core inverse of a is
denoted by ae, #©.

If δ ⊆ {1, 2, 3e, 4 f , 5, 6} and x ∈ R satisfies the equation (i) for all i ∈ δ, then x is called a δ-inverse of a.
The set of all δ-inverse elements of a is denoted by a{δ}. The sets of all {1, 3e}-invertible, {1, 4 f }-invertible
elements in R are denoted by R(1,3e), R(1,4 f ), respectively.

An element a ∈ R is Drazin invertible, if there exists an x ∈ R and some nonnegative n satisfying the
equations xax = x, xan+1 = an and xa = ax. Then such an x is called a Drazin inverse of a. It is unique if
it exists and is denoted by aD. The smallest nonnegative integer n is called the Drazin index of a, and is
denoted by ind(a). The set of all Drazin invertible elements in R is denoted by RD. In particular, if ind(a) = 1,
a is called group invertible. The group inverse of a is unique if it exists and is denoted by a#. The set of all
group invertible elements in R is denoted by R#. It is known that a ∈ R# if and only if a ∈ a2R ∩ Ra2.

Following [8], an element a ∈ R is weighted EP with respect to (e, f ) if a ∈ R#
∩ R†e, f and a# = a†e, f . We use

the symbol [a, b] = ab − ba to denote the commutator of a and b, and R−1 to denote the set of all invertible
elements in R.

2. Idempotents generated by weighted Moore-Penrose inverses

In [13], one can know that if a ∈ R(1,3e), then its {1, 3e}-inverses are not unique. However the product of a
and its difference {1, 3e}-inverses is equal. A similar fact is true for {1, 4 f }-inverses. In this section, we give
several equivalent characterizations of a(1,4 f )a = bb(1,3e). Before we state results, some auxiliary lemmas will
be given, which play an important role in the sequel.

Lemma 2.1. Let a, b ∈ R. Then the following conditions hold:
(i) If a ∈ R(1,4 f ), then f−1a∗R = a(1,4 f )aR and a∗R = (a(1,4 f )a)∗R.
(ii) If b ∈ R(1,3e), then ebR = (bb(1,3e))∗R and bR = bb(1,3e)R.

Proof. (i) From a ∈ R(1,4 f ), it follows that f−1a∗R = a(1,4 f )aR. Indeed, f−1a∗R = a(1,4 f )a f−1a∗R ⊆ a(1,4 f )aR =
f−1a∗(a(1,4 f ))∗ f R ⊆ f−1a∗R. a∗R = (a(1,4 f )a)∗R is clear.

(ii) If b ∈ R(1,3e), then bR = bb(1,3e)R by b = bb(1,3e)b. Also as ebR = (bb(1,3e))∗ebR ⊆ (bb(1,3e))∗R = ebb(1,3e)e−1R ⊆
ebR, then we obtain ebR = (bb(1,3e))∗R.

Lemma 2.2. Let a ∈ R(1,4 f ) and b ∈ R(1,3e). Then the following conditions hold:
(i) If f−1a∗R = bR, then a(1,4 f )a = bb(1,3e)a(1,4 f )a and bb(1,3e) = a(1,4 f )abb(1,3e).
(ii) If ebR = a∗R, then bb(1,3e) = bb(1,3e)a(1,4 f )a and a(1,4 f )a = a(1,4 f )abb(1,3e).

Proof. (i) As f−1a∗R = bR, then a(1,4 f )aR = bb(1,3e)R by Lemma 2.1. This implies that bb(1,3e) = a(1,4 f )ax and
a(1,4 f )a = bb(1,3e)y for some x, y ∈ R. Left-multiplying bb(1,3e) = a(1,4 f )ax by a(1,4 f )a, and left-multiplying
a(1,4 f )a = bb(1,3e)y by bb(1,3e) give a(1,4 f )abb(1,3e) = bb(1,3e) and a(1,4 f )a = bb(1,3e)a(1,4 f )a, respectively.

(ii) From ebR = a∗R = (bb(1,3e))∗R = (a(1,4 f )a)∗R, we get Rbb(1,3e) = Ra(1,4 f )a. The rest can be proved in a
similar way of (i).



Y. Song, H. Zhu / Filomat 34:9 (2020), 2907–2914 2909

Lemma 2.3. Let a ∈ R(1,4 f ) and b ∈ R(1,3e). Then the following conditions hold:
(i) If a(1,4 f )a = bb(1,3e)a(1,4 f )a and Ra f−1eb = Rb, then f−1a∗R = bR.
(ii) If bb(1,3e) = a(1,4 f )abb(1,3e) and abR = aR, then f−1a∗R = bR.
(iii) If bb(1,3e) = bb(1,3e)a(1,4 f )a and a f−1ebR = aR, then ebR = a∗R.
(iv) If a(1,4 f )a = a(1,4 f )abb(1,3e) and Rab = Rb, then ebR = a∗R.

Proof. (i) As a ∈ R(1,4 f ), then by Lemma 2.1, f−1a∗R = a(1,4 f )aR. From f−1a∗R = a(1,4 f )aR, Ra f−1eb = Rb and
a(1,4 f )a = bb(1,3e)a(1,4 f )a, we have b∗e f−1a∗R = b∗R and

f−1a∗R = a(1,4 f )aR

= bb(1,3e)a(1,4 f )aR
= bb(1,3e) f−1a∗R
= e−1(b(1,3e))∗b∗e f−1a∗R
= e−1(b(1,3e))∗b∗R
= bb(1,3e)R
= bR.

(ii) If bb(1,3e) = a(1,4 f )abb(1,3e) and abR = bR, then bR = bb(1,3e)R = a(1,4 f )abb(1,3e)R = a(1,4 f )abR = a(1,4 f )aR =
f−1a∗R by Lemma 2.1.

(iii) and (iv) can be proved by a similar way of (i) and (ii).

Next, we give some characterizations of idempotents generated by {1, 3e}-inverses and {1, 4 f }-inverses.

Theorem 2.4. Let a ∈ R(1,4 f ) and b ∈ R(1,3e). Then the following conditions are equivalent:
(i) a(1,4 f )a = bb(1,3e).
(ii) a∗R = ebR, f−1a∗R = bR.
(iii) [a(1,4 f )a, bb(1,3e)] = 0, a∗R = ebR.
(iv) [a(1,4 f )a, bb(1,3e)] = 0, f−1a∗R = bR.
(v) [a(1,4 f )a, bb(1,3e)] = 0, abR = aR and Ra f−1eb = Rb.
(vi) [a(1,4 f )a, bb(1,3e)] = 0, Rab = Rb and a f−1ebR = aR.

Proof. (i)⇒ (ii), (i)⇒(iii), (i)⇒(iv) are obvious by Lemma 2.1. (ii)⇒ (i), (iii)⇒ (i) and (iv)⇒ (i) are clear by
Lemma 2.2. Next, it is sufficient to prove that any one of conditions (i)-(iv) is equivalent to (v) and (vi).

(iv)⇒ (v) From [a(1,4 f )a, bb(1,3e)] = 0 and f−1a∗R = bR, we obtain a(1,4 f )a = bb(1,3e) by Lemma 2.2. Notice
that a(1,4 f )a = bb(1,3e) implies a = abb(1,3e). Then aR = abb(1,3e)R = abR. Hence, we have Rb = Rbb(1,3e)b =
Re−1(bb(1,3e))∗eb = R(a(1,4 f )a)∗eb = R f a(1,4 f )a f−1eb ⊆ Ra f−1eb by Lemma 2.1. Thus, Ra f−1eb = Rb.

(v)⇒ (vi) From the condition (v), we have f−1a∗R = bR by (i) and (ii) of Lemma 2.3. It implies
a(1,4 f )a = bb(1,3e) by Lemma 2.2. Then it is easy to get Rab = Rb. Also, aR = aa(1,4 f )aR ⊆ a f−1(a(1,4 f )a)∗R =
a f−1(bb(1,3e))∗R ⊆ a f−1ebR by Lemma 2.1. Thus, a f−1ebR = aR.

(vi)⇒ (iii) It can be proved by (iii) and (iv) of Lemma 2.3.

Applying Theorem 2.4, we get the following results.

Corollary 2.5. Let a, b ∈ R†e, f . Then the following conditions are equivalent:
(i) a†e, f a = bb†e, f .
(ii) a∗R = ebR, f−1a∗R = bR.
(iii) [a†e, f a, bb†e, f ] = 0, a∗R = ebR.
(iv) [a†e, f a, bb†e, f ] = 0, f−1a∗R = bR.
(v) [a†e, f a, bb†e, f ] = 0, abR = aR and Ra f−1eb = Rb.
(vi) [a†e, f a, bb†e, f ] = 0, Rab = Rb and a f−1ebR = aR.
In particular, if one of the above conditions holds, then we have
(vii) (ab) ∈ R†e, f and (ab)†e, f = b†e, f a

†

e, f .
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Proof. As a†e, f ∈ a{1, 4 f } and b†e, f ∈ b{1, 3e}, then equivalences of (i)− (vi) can be deduced by Theorem 2.4.
Next, it suffices to show (i)⇒ (vii). One can check that b†e, f a

†

e, f satisfies the four equations of the weighted
Moore-Penrose inverse of ab. Indeed, from a†e, f a = bb†e, f , we have
(1) abb†e, f a

†

e, f ab = aa†e, f abb†e, f b = ab,
(2) b†e, f a

†

e, f abb†e, f a
†

e, f = b†e, f bb†e, f a
†

e, f aa†e, f = b†e, f a
†

e, f ,
(3) eabb†e, f a

†

e, f = eaa†e, f aa†e, f = eaa†e, f ,
(4) f b†e, f a

†

e, f ab = f b†e, f bb†e, f b = f b†e, f b.
Thus, (ab)†e, f = b†e, f a

†

e, f .

We know that a is weighted-EP with respect to (e, f ) if and only if aa†e, f = a†e, f a. In Corollary 2.5, taking
b = a, some characterizations of a to be weighted EP with respect to (e, f ) can be obtained.

About idempotent generated by Moore-Penrose inverses, weighted Moore-Penroses and core inverses,
several properties and characterizations were given by units in [9], [10] and [12]. Inspired by this, we extend
the results to the idempotent generated by {1, 4e}-inverses and {1, 3e}-inverses.

Proposition 2.6. Let a ∈ R(1,4e) and b ∈ R(1,3e). Then the following conditions are equivalent:
(i) a(1,4e)a = bb(1,3e).
(ii) a∗R = ebR.
(iii) [a(1,4e)a, bb(1,3e)] = 0, abR = aR and Rab = Rb.
(iv) a(1,4e)a = a(1,4e)abb(1,3e), u = a(1,4e)a + 1 − bb(1,3e)

∈ R−1.
(v) [a(1,4e)a, bb(1,3e)] = 0, u = a(1,4e)a + 1 − bb(1,3e)

∈ R−1 and v = bb(1,3e) + 1 − a(1,4e)a ∈ R−1 .

Proof. The proof of (i)-(iii) can be derived by Theorem 2.4. (i)⇒(iv) and (i)⇒(v) are clear. Next, it suffices to
prove that (iv)⇒(i) and (v)⇒(i).

(iv)⇒(i) It follows from a(1,4e)a = a(1,4e)abb(1,3e) that a(1,4e)a = bb(1,3e)a(1,4e)a. Thus, from ubb(1,3e) = a(1,4e)a =
ua(1,4e)a, we obtain a(1,4e)a = bb(1,3e) by u ∈ R−1.

(v)⇒(i) It follows from [a(1,4e)a, bb(1,3e)] = 0 that ubb(1,3e) = a(1,4e)abb(1,3e) = ubb(1,3e)a(1,4e)a and va(1,4e)a =
bb(1,3e)a(1,4e)a = va(1,4e)abb(1,3e). Hence, by invertibility of u and v, we get a(1,4e)a = bb(1,3e).

It is natural to ask whether we can extend the condition a(1,4e)a = bb(1,3e) in Proposition 2.6 to the case of
a(1,4 f )a = bb(1,3e). The following example shows the impossibility.

Example 2.7. Let R = M2×2(Z3) be the ring of all 2 by 2 matrices over Z3 and let the involution be
transpose. Take E =

[
2 0
0 2
]
,F =

[
−1 1
1 0
]
∈ R. Then E and F are invertible and Hermitian matrices.

Take A =
[

1 −1
1 −1

]
,B =

[
1 1
−1 −1

]
∈ R. Then we get A(1,4 f ) =

[
0 1
1 2
]

and B(1,3e) =
[

1 0
1 1
]
. It is easy to get

A(1,4 f )A = A(1,4 f )ABB(1,3e) and A(1,4 f )A + I − BB(1,3e)
∈ R−1. But A(1,4 f )A , BB(1,3e).

In 2004, Patrı́cio and Puystens [11, Corollary 3] gave some characterizations about EP elements and
proved that a ∈ R is EP if and only if a ∈ R#, aR = a∗R if and only if a ∈ R†, aR = a∗R. In 2008, Mosić
et al. [8, Theorem 2.4] extended the results to the case of weighted EP elements. Next, we give more
characterizations of weighted EP elements in rings.

Theorem 2.8. Let a ∈ R. Then the following conditions are equivalent:
(i) a is weighted EP with respect to (e, e).
(ii) a ∈ R(1,3e), eaR = a∗R.
(iii) a ∈ R(1,4e), eaR = a∗R.
(iv) Ra2 = Ra = Ra∗e.
(v) a2R = aR = e−1a∗R.
(vi) a ∈ R], ak = ak+1a(1,3e) for any positive integer k.
(vii) a ∈ R], ak = a(1,4e)ak+1 for any positive integer k.
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Proof. It suffices to prove that (i)⇒ (ii)⇔ (iv)⇒ (vi)⇒ (i). The proof of (i)⇒ (iii)⇔ (v)⇒ (vii)⇒ (i) can be
proved by a similar way.

(i)⇒(ii) As a is weighted EP with respect to (e, e), we obtain a ∈ R(1,3e) and a†e,ea = aa†e,e. This implies
e−1a∗R = a†e,eaR = aa†e,eR = aR by Lemma 2.1. Hence, eaR = a∗R.

(ii)⇔(iv) Notice that a ∈ R(1,3e) is equivalent to a∗R = a∗eaR by [13, Lemma 3.15]. Suppose a ∈ R(1,3e).
Then a∗R = a∗eaR. Also as eaR = a∗R, it is easy to get a∗R = (a∗)2R. Hence, applying involution, we get
Ra2 = Ra = Ra∗e. Conversely, it is need to prove that a ∈ R(1,3e). From Ra2 = Ra = Ra∗e, it is clear to get
a∗R = (a∗)2R = a∗eaR. Thus a ∈ R(1,3e).

(ii)⇒(vi) As a ∈ R(1,3e), eaR = a∗R. Then a∗R = eaR = (aa(1,3e))∗R by Lemma 2.1. By involution, Ra = Raa(1,3e)

implies a = zaa(1,3e) for some z ∈ R. Then right-multiplying by aa(1,3e) gives a2a(1,3e) = a. Therefore,
ak = akaa(1,3e) for any positive integer k and a ∈ a2R ∩ Ra2, i.e. a ∈ R#.

(vi)⇒ (i) As a ∈ R# and ak = akaa(1,3e) for any positive integer k. Then multiplying this expression on the
left-hand side by a(a#)(k+1), we get aa# = aa(1,3e). This implies a ∈ R(1,4e) and a#a = a(1,4e)a = aa(1,3e). Then a is
weighted EP with respect to (e, e).

As a special case, set e = 1, the weighted EP element with respect to (e, e) is EP. Thus, some characteri-
zations for EP elements can be obtained.

Corollary 2.9. Let a, b ∈ R. Then the following conditions are equivalent:
(i) a is EP.
(ii) a ∈ R(1,3), aR = a∗R.
(iii) a ∈ R(1,4), aR = a∗R.
(iv) a ∈ R#, ak = ak+1a(1,3) for any positive integer k.
(v) a ∈ R#, ak = a(1,4)ak+1 for any positive integer k.

Corollary 2.10. Let a ∈ R†e, f ∩ R†f ,e. Then the following results hold:

(i) If a†f ,ea = aa†e, f , then a is weighted EP with respect to (e, e).

(ii) If aa†f ,e = a†e, f a, then a is weighted EP with respect to ( f , f ).

In [8, Theorem 2.5], Mosić et al. derived the relationship between weighted EP with respect to (e, e) and
weighted EP with respect to (e, f ). From Corollary 2.10, we give another characterization of weighted EP
elements.

Proposition 2.11. Let a ∈ R. Then the following conditions are equivalent:
(i) a is weighted EP with respect to (e, f ) (aa†e, f = a†e, f a).

(ii) a is weighted EP with respect to ( f , e) (aa†f ,e = a†f ,ea).
(iii) a is weighted EP with respect to (e, e) and weighted EP with respect to ( f , f ).
(iv) a†f ,ea = aa†e, f and aa†f ,e = a†e, f a.

Proof. The proof of (i)-(iii) were given in [8, Theorem 2.5]. For completeness, we shall give a brief proof.
(i)⇔ (ii) is clear. In this case, we can get a] = a†e, f = a†f ,e. Then (i)⇒ (iv) can be proved.

(i)⇔(iii) Suppose aa†e, f = a†e, f a. Then eaa†e, f = ea†e, f a. As eaa†e, f is Hermitian, then ea†e, f a is Hermitian. Hence,
a is weighted EP with respect to (e, e). Similarly, a is weighted EP with respect to ( f , f ).

Conversely, suppose that a is weighted EP with respect to (e, e) and weighted EP with respect to ( f , f ).
Then we get a# = a†e,e = a†f , f . Set b = a†f , f aa†e,e. It can be verified that b is the weighted Moore-Penrose inverse
with respect to (e, f ) of a. Also as b = a†f , f aa†e,e implies b = a#. Hence, a is weighted EP with respect to (e, f ).

(iv)⇒(iii) It can be obtained by Corollary 2.10.
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3. Idempotents generated by weighted pseudo core inverses

Recently, Xu et al. [12] considered aa #© = bb #© when a, b ∈ R #©. Inspired by this, we consider the
characterization of aae,D© = bbe,D© for a, b ∈ Re,D©. Moreover, some existence criteria of pseudo e-core inverse of
an element in R will be given. Firstly, we give some facts about pseudo e-core inverses. It is known from
[13, Theorem 3.9] that a is pseudo e-core invertible with EI(a) = m if and only if a ∈ RD with ind(a) = m and
am is {1,3e}-invertible. In this case, ae,D© = aDam(am)(1,3e). Then aae,D© = aaDam(am)(1,3e) = am(am)(1,3e). To consider
the idempotents generated by pseudo e-core inverses, it is sufficient to consider idempotents generated by
{1,3e}-inverses.

Proposition 3.1. Let a, b ∈ R(1,3e). Then the following conditions are equivalent:
(i) aa(1,3e) = bb(1,3e).
(ii) aR = bR.
(iii) aa(1,3e) = aa(1,3e)bb(1,3e) and u = aa(1,3e) + 1 − bb(1,3e)

∈ R−1.
(iv) [aa(1,3e), bb(1,3e)] = 0, u = aa(1,3e) + 1 − bb(1,3e)

∈ R−1 and v = bb(1,3e) + 1 − aa(1,3e)
∈ R−1.

Proof. (i)⇔ (ii)⇒ (iii) is trivial.
(iii)⇒ (i) From aa(1,3e) = aa(1,3e)bb(1,3e), we get aa(1,3e) = aa(1,3e)bb(1,3e) = bb(1,3e)aa(1,3e) and bb(1,3e)u =

bb(1,3e)aa(1,3e) = bb(1,3e)aa(1,3e)u. As u ∈ R−1, we get bb(1,3e) = bb(1,3e)aa(1,3e) = aa(1,3e).
(i)⇒ (iv) is clear.
(iv)⇒ (i) As [aa(1,3e), bb(1,3e)] = 0, then bb(1,3e)u = bb(1,3e)aa(1,3e) = bb(1,3e)aa(1,3e)u and aa(1,3e)v = aa(1,3e)bb(1,3e) =

aa(1,3e)bb(1,3e)v. Hence, aa(1,3e) = bb(1,3e), since u, v ∈ R−1.

From the above results, we give the following corollary.

Corollary 3.2. Let a, b ∈ Re,D©. Then the following conditions are equivalent:
(i) aae,D© = bbe,D©.
(ii) amR = bmR for m = max{EI(a),EI(b)}.
(iii) aae,D© = aae,D©bbe,D© and u = aae,D© + 1 − bbe,D©

∈ R−1.
(iv) [aae,D©, bbe,D©] = 0, u = aae,D© + 1 − bbe,D©

∈ R−1 and v = bbe,D© + 1 − aae,D©
∈ R−1.

Next, the existence criterion of pseudo e-core inverse of an element in R will be given. Herein, we
present some auxiliary lemmas.

Lemma 3.3. [13, Theorem 3.17] Let a, e ∈ R. Then a ∈ Re,D© if and only if an
∈ R((an)∗)2ean

∩Ra2n for some positive
integer n. In this case, ae,D© = a2n−1x∗e, where x ∈ R satisfies an = x((an)∗)2ean.

Lemma 3.4. [Jacobson’s Lemma] Let a, b ∈ R. Then 1+ ab is invertible if and only if 1+ba is invertible. Moreover,
(1 + ba)−1 = 1 − b(1 + ab)−1a.

Lemma 3.5. [2, Lemma 2.1] Let a ∈ R. If there exists x ∈ R such that xam+1 = am for some positive integer m and
ax2 = x. Then we have the following facts:

(i) akxk = ax for any positive integer k.
(ii) xax = x.
(iii) akxkak = ak for any positive integer k ≥ m.

Theorem 3.6. Let a, e ∈ R. Then the following conditions are equivalent:
(i) a ∈ Re,D©.
(ii) There exist a unique idempotent p ∈ R and a positive integer m such that (ep)∗ = ep, pam = 0 and

u = p + am
∈ R−1.

(iii) There exist a unique idempotent p ∈ R and a positive integer m such that (ep)∗ = ep, pam = 0 and
w = p + am(1 − p) ∈ R−1.

(iv) There exist a unique idempotent p ∈ R and a positive integer m such that (ep)∗ = ep, pam = 0 and
v = p + an

∈ R−1 for any positive integer n ≥ m.
(v) There exist a unique p ∈ R and a positive integer m such that (ep)∗ = ep, pam = 0 and v = p + an

∈ R−1 for
any positive integer n ≥ 2m.

In this case, ae,D© = am−1(am + p)−1(1 − p) and (am + p)−1 = xm + 1 − xmam, where x = ae,D©.
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Proof. (i)⇒ (ii) As a ∈ Re,D© with EI(a) = m and let x ∈ R be a pseudo e-core inverse of a, then we can easily get
axam = am, xkak+m = am and ak+1xk+1 = ax for any positive integer k by Lemma 3.5. Let p = 1−ax. As amxm = ax,
axam = am and (eax)∗ = eax, one can verify that p satisfies p2 = 1 − ax − ax + axax = 1 − ax − ax + axamxm =
1 − ax − ax + amxm = 1 − ax = p, pam = 0 and (ep)∗ = ep. Let t = xm + 1 − xmam. Then t is the inverse of u.
Indeed, we get tu = 1 = ut. Hence, u ∈ R−1.

Next, to prove the uniqueness of p, we define the set ◦a={x ∈ R | xa = 0}. As x is the pseudo e-core inverse
of a with EI(a) = m and p satisfies the condition (ii), then we give the following fact, i.e. ◦(am) = ◦(1 − p).
Indeed, for any x ∈ ◦(am), we have x(1 − p)am = x(1 − p)(am + p) = 0. As u = am + p ∈ R−1, then x(1 − p) = 0
and consequently x ∈ ◦(1 − p). Thus, ◦(am)⊆ ◦(1 − p). For any x ∈ ◦(1 − p), as pam = 0, then we have
xam = x(1 − p)am = 0. Hence, ◦(1 − p) ⊆ ◦(am).

Assume that there is an idempotent q satisfying (eq)∗ = eq, qam2 = 0 and u = q + am2 ∈ R−1 for some
positive integer m2. It suffices to prove p = q. Indeed,
1. We get ◦(am) = ◦(1 − p) and ◦(am2 ) = ◦(1 − q) by the above fact.
2. ◦(am) = ◦(am2 ): From (p + am2 )am2 = a2m2 and p + am2 ∈ R−1, we get Ram2 = Ram2+1. Also as a ∈ Re,D©

with EI(a) = m gives a ∈ RD with ind(a) = m, then m2 ≥ m by [1]. Thus, it is easy to get ◦(am) ⊆ ◦(am2 ) and
amR = am+1R = ... = am

2 R. As amR = am
2 R, then there exists t ∈ R such that am = am2 t. Then for any x ∈ ◦(am2 ),

xam2 = 0 implies xam2 t = 0 = xam, i.e. ◦(am2 ) ⊆ ◦(am). Thus ◦(am) = ◦(am2 ).
3. p = q: step 1 combines with step 2, ◦(1 − p) = ◦(1 − q). As the idempotent p ∈ ◦(1 − p) = ◦(1 − q), then
p = pq. Similarly, q = qp. Also ep = (ep)∗, eq = (eq)∗, then p = pq = e−1p∗ee−1q∗e = e−1(qp)∗e = e−1q∗e = q. Thus,
p = q.

(ii)⇒ (i) Giving p ∈ R such that p2 = p, (ep)∗ = ep and u = am + p ∈ R−1, then we have 1 − p =
(p + am)−1am(1 − p) = am(p + am)−1, pam−1 = pam−1p(p + am)−1 and p = p(p + am)−1 = p(p + am)−1p. Let
x = am−1(p + am)−1(1 − p). Then we can check that x satisfies xa2m = a2m−1, ax2 = x and (eax)∗ = eax. Thus,
a ∈ Re,D©.

(ii)⇔ (iii) We show that under the assumption p2 = p, (ep)∗ = ep and pam = 0,

u = p + am
∈ R−1

⇔ w = p + am(1 − p) ∈ R−1.

Notice that w = p + am(1 − p) = 1 − 1 + p + am(1 − p) = 1 + (am
− 1)(1 − p) ∈ R−1. Then w ∈ R−1 if and only if

u = 1 + (1 − p)(am
− 1) = p + am

∈ R−1 by Lemma 3.4.
(i)⇒ (iv) Let p = 1 − ax. By the proof of (i)⇒ (ii), it suffices to prove v = p + an

∈ R−1 for any positive
integer n ≥ m. We can directly check that (xn + 1− xnan)v = v(xn + 1− xnan) = 1. Thus, (i)⇒ (iv), as required.

(iv)⇒ (v) It is a tautology.
(v)⇒ (i) By (ep)∗ = ep, pam = 0 and v = p + an

∈ R−1, we have vam = am+n and (ev)∗ ∈ R−1. Hence, am =
v−1an−ma2m

∈ Ra2m by v ∈ R−1. As (ev)∗ = (ean)∗ + ep, then (ev)∗am = (ean)∗am. Hence, am = ((ev)∗)−1(an)∗eam =
(an−2m(ev)−1)∗(a2m)∗eam

∈ R(a2m)∗eam by (ev)∗ ∈ R−1. Therefore, we get a ∈ Re,D© by Lemma 3.3.

It is known that a−1(a + b)b−1 = a−1 + b−1 for a, b ∈ R−1, this is known as the absorption law. In general,
the absorption law for Moore-Penrose inverses, Drazin inverses and pseudo e-core inverses dose not hold.
Next, some characterizations of the absorption law for pseudo e-core inverses are presented.

Proposition 3.7. Let a, b ∈ Re,D© and m=max{EI(a),EI(b)}. Then the following conditions are equivalent:
(i) aae,D© = bbe,D©.
(ii) ae,D©(a + b)be,D© = ae,D© + be,D©.
(iii) (1 − aae,D©)bm = 0 and u = 1 − aae,D© + bm

∈ R−1 for some positive integer m.
(iv) (1 − aae,D©)bm = 0 and v = 1 − aae,D© + bmaae,D©

∈ R−1 for some positive integer m.

Proof. (i)⇔ (ii) Suppose aae,D© = bbe,D©. Then ae,D©(a + b)be,D© = ae,D©abe,D© + ae,D©bbe,D© = ae,D©abe,D© + ae,D©. To prove (ii), it
suffices to prove be,D© = ae,D©abe,D©. As aae,D© = bbe,D©, then be,D©R = bmR = amR by Corollary 3.2. From be,D©R = amR,
there exists t ∈ R satisfying be,D© = amt. Premultiply this equality by ae,D©a, then we get ae,D©abe,D© = be,D©. Hence,
ae,D©(a + b)be,D© = ae,D© + be,D©.

Conversely, ae,D©(a + b)be,D© = ae,D© + be,D© implies ae,D©abe,D© + ae,D©bbe,D© = ae,D© + be,D©, then post-multiplying the
above equality by bbe,D© gives be,D© = ae,D©abe,D©. Hence, it implies bmR = be,D©R ⊆ ae,D©R = amR. Similarly,



Y. Song, H. Zhu / Filomat 34:9 (2020), 2907–2914 2914

left-multiplying ae,D©abe,D© + ae,D©bbe,D© = ae,D© + be,D© by ae,D©a gives ae,D© = ae,D©bbe,D©, which implies amR ⊆ bmR by
aae,D© = aae,D©bbe,D© = bbe,D©aae,D©. Thus, amR = bmR. Again applying Corollary 3.2, we get aae,D© = bbe,D©.

(i)⇔ (iii) and (i)⇔ (iv) can be obtained by Theorem 3.6.
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