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Available at: http://www.pmf.ni.ac.rs/filomat

Stability and Convergence Analysis for a New Class of GNOYIP

Involving XOR-Operation in Ordered Positive Hilbert Spaces

Iqbal Ahmada, Abdullaha, Khaled Mohamed Khedherb, Syed Shakaib Irfana

aCollege of Engineering, Qassim University, Buraidah 51452, Al-Qassim, Kingdom of Saudi Arabia.
bCollege of Engineering, King Khalid University, 61421, Abha, Kingdom of Saudi Arabia

and Department of Civil Engineering, ISET, Nabeul, DGET, Tunisia.

Abstract. In the setting of real ordered positive Hilbert spaces, a new class of general nonlinear ordered
Yosida inclusion problem involving ⊕ operation has been considered and solved by employing a perturbed
two step-iterative algorithm. The stability and convergence analysis of solution of new class of Yosida
inclusion problem involving ⊕ operation has been substantiated by applying a new resolvent operator and
Yosida approximation operator method with XOR-operation technique. The iterative algorithm and results
demonstrated in this article have witnessed, a significant improvement for many previously known results
of this domain. Further, we give a numerical example in support of our main result by using MATLAB
programming.

1. Introduction

A useful and important generalization of variational inequalities is a mixed type variational inequalities
involving nonlinear term. Due to the presence of the nonlinear term, the projection method cannot be
used to study the existence and algorithm of solutions for the mixed type variational inequalities. In
1994, Hassouni and Moudafi [16] used the resolvent operator technique form maximal monotone mapping
to study a class of mixed type variational inequalities with single-valued mappings which were called
variational inclusions and developed a perturbed algorithm for finding approximate solutions of the mixed
variational inequalities. It has been proved that the theory of variational inequalities (inclusions) is quite
application oriented and thus generalized in several different directions. This theory is used to solve
efficiently many problems related to economics, optimization, transportation, elasticity, basic and applied
sciences, etc., see [1–5, 7, 9, 11–13, 15, 24–31] and references therein.

Focussing on the work done related to ordered set-valued mapping, it is worth to mention that work
done by Li [20] and Li et al. [19, 23] is quite interesting and applicable in pure and applied sciences.
In 2009, Li [17] introduced and studied a new class of general nonlinear ordered variational inequalities
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(ordered equations), and established an existence theorem in real ordered Banach spaces by using the
B-restricted-accretive mappings.

By using different kind of mappings such as RME set-valued mapping, weak-ANODD mapping, ordered
(α, λ)-NODM set-valued mapping, (γG, λ)-weak-GRD set-valued mapping and ordered (αA, λ)-ANODM
set-valued mappings with strong comparison mapping and their respective resolvent operators, Li et al.
[18–23] studied different classes of nonlinear inclusion problems and obtained their solutions in real ordered
Hilbert spaces. Very recently, Ahmad et al. [6, 8] considered some classes of ordered variational inclusions
involving XOR-operator in different settings.

It is well known that the monotone operators on Hilbert spaces can be regularized into single-valued
Lipschitzian monotone operators through a process known as Yosida approximation, see [3–5, 9, 12]. An
existence of this process in Banach spaces satisfying some assumptions can be found in [3, 5, 10–13, 29–31].

Yosida inclusions are similar to variational inclusions involving Yosida approximation operator. Moti-
vated and inspired by on going research in this direction, we introduce a new class of general nonlinear
ordered Yosida inclusion problem involving XOR-operation in real ordered positive Hilbert spaces. Using
the concept of XOR-operation, we propose a perturbed two-step iterative algorithm which is more general
than the previous iterative algorithms considered by Li et al. [18, 21, 23]. Furthermore, we prove the
existence of solution of general nonlinear ordered Yosida inclusion problem involving XOR-operation and
analyze the convergence criteria of the iterative sequences of the proposed algorithm. Finally, we discuss
stability analysis. We also construct a numerical example and a convergence graph by using MATLAB
programming.

2. Preliminaries

Throughout this paper, we suppose thatHp is a real ordered positive Hilbert space endowed with a norm
‖ · ‖ and an inner product 〈·, ·〉, d is the metric induced by the norm ‖ · ‖ and 2Hp is the family of all nonempty
subsets ofHp.

For the presentation of the results, let us demonstrate some known definitions and results.

Definition 2.1 ([14, 32]). A nonempty subset C ofHp is called

(i) a normal cone if there exists a constant N > 0 such that for 0 ≤ a ≤ b, we have ||a|| ≤ N||b||, for any a, b ∈ Hp;
(ii) for any a, b ∈ Hp, a ≤ b if and only if b − a ∈ C;

(iii) a and b are said to be comparative to each other if and only if, we have either a ≤ b or b ≤ a and is denoted by
a ∝ b.

Definition 2.2 ([32]). For arbitrary elements a, b ∈ Hp, lub{a, b} and 1lb{a, b} mean least upper bound and greatest
upper bound of the set {a, b}. Suppose lub{a, b} and 1lb{a, b} exist, some binary operations are defined as follows:

(i) a ∨ b = lub{a, b};
(ii) a ∧ b = 1lb{a, b};

(iii) a ⊕ b = (a − b) ∨ (b − a);
(iv) a � b = (a − b) ∧ (b − a).

The operations ⊕, � ∨ and ∧ are called XOR, XNOR, OR and AND operations, respectively.

Lemma 2.3 ([14]). For any natural number n, a ∝ bn and bn → b∗ as n→∞, then a ∝ b∗.

Proposition 2.4 ([18, 20, 22, 23]). Let � be an XNOR-operation and ⊕ be an XOR-operation. Then the following
relations hold:

(i) a � a = 0, a � b = b � a = −(a ⊕ b) = −(b ⊕ a);
(ii) if a ∝ 0, then −a ⊕ 0 ≤ a ≤ a ⊕ 0;
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(iii) (λa) ⊕ (λb) = |λ|(a ⊕ b);
(iv) 0 ≤ a ⊕ b, if a ∝ b;
(v) if a ∝ b, then a ⊕ b = 0 if and only if a = b;

(vi) (a + b) � (u + v) ≥ (a � u) + (b � v);
(vii) if a, b and w are comparative to each other, then (a ⊕ b) ≤ a ⊕ w + w ⊕ b;

(viii) if a ∝ b, then ((a ⊕ 0) ⊕ (b ⊕ 0)) ≤ (a ⊕ b) ⊕ 0 = a ⊕ b;
(ix) (ma) ⊕ (na) = |m − n|a = (m ⊕ n)a, for all a, b,u, v,w ∈ Hp and n,m, λ ∈ R.

Proposition 2.5 ([14]). Let C be a normal cone inHp with normal constant N, then for each a, b ∈ Hp, the following
relations hold:

(i) ‖0 ⊕ 0‖ = ‖0‖ = 0;
(ii) ‖a ∨ b‖ ≤ ‖a‖ ∨ ‖b‖ ≤ ‖a‖ + ‖b‖;

(iii) ‖a ⊕ b‖ ≤ ‖a − b‖ ≤ N‖a ⊕ b‖;
(iv) if a ∝ b, then ‖a ⊕ b‖ = ‖a − b‖.

Definition 2.6 ([17, 20, 22]). Let A : Hp →Hp be a single-valued mapping. Then

(i) A is said to be strongly comparison mapping, if A is a comparison mapping and A(a) ∝ A(b) if and only if
a ∝ b, for all a, b ∈ Hp;

(ii) A is said to be γ-ordered non-extended mapping, if there exists γ > 0 such that

γ(a ⊕ b) ≤ A(a) ⊕ A(b), for all a, b ∈ Hp.

Definition 2.7 ([17, 20]). A mapping A : Hp →Hp is said to be β-ordered compression mapping, if A is a comparison
mapping and

A(a) ⊕ A(b) ≤ β(a ⊕ b), f or 0 < β < 1.

Definition 2.8 ([23]). A mapping F : Hp ×Hp →Hp is said to be (κ, ν)-ordered Lipschitz continuous, if a ∝ b and
u ∝ v, then N(a,u) ∝ N(b, v) and there exist constants κ, ν > 0 such that

F(a,u) ⊕ F(b, v) ≤ κ(a ⊕ b) + ν(u ⊕ v), f or all a, b,u, v ∈ Hp.

Definition 2.9 ([18, 19, 22, 23]). Let M : Hp → 2Hp be a set-valued mapping. Then

(i) M is said to be a comparison mapping, if for any va ∈ M(a), a ∝ va, and if a ∝ b, then for any va ∈ M(a) and
vb ∈M(b), va ∝ vb, ∀ a, b ∈ Hp;

(ii) a comparison mapping M is said to be α-non-ordinary difference mapping, if for each a, b ∈ Hp, va ∈M(a) and
vb ∈M(b) such that

(va ⊕ vb) ⊕ α(a ⊕ b) = 0;

(iii) a comparison mapping M is said to be λ-XOR-weak-ordered strongly compression mapping, if a ∝ b, then there
exists a constant λ > 0 such that

λ(va ⊕ vb) ≥ a ⊕ b,∀a, b ∈ Hp, va ∈M(a), vb ∈M(b),

holds.

Now, we introduce a new resolvent operator associated with XOR-weak-NODSM mapping as well as
Yosida approximation operator based on the new resolvent operator.

Definition 2.10. A comparison set-valued mapping M : Hp → 2Hp is said to be (α, λ)-XOR-weak-NODSM set-
valued mapping, if M is a α-non-ordinary difference mapping and λ-XOR-weak-ordered strongly monotone mapping
and [I ⊕ λM](Hp) = Hp for λ > 0, where I is identity mapping onHp.
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Definition 2.11. Let M be a (α, λ)-XOR-weak-NODSM set-valued mapping. The resolvent operator RM
λ : Hp →Hp

associated with M is defined by

RM
λ (a) = [I ⊕ λM]−1(a), ∀a ∈ Hp, (1)

where λ > 0 is a constant.

Now, we define the Yosida approximation operator based on the resolvent operator defined by (1).

Definition 2.12. The Yosida approximation operator of M is defined by

JM
λ (a) =

1
λ

[
I ⊕ RM

λ

]
(a), ∀a ∈ Hp, (2)

where λ > 0 is a constant.

Definition 2.13 ([30]). Let T : Hp →Hp be a single-valued mapping, a0 ∈ Hp and let

an+1 = S(T, an)

defines an iterative sequence which yields a sequence of points {an} inHp. Suppose that F(T) = {a ∈ Hp : Ta = a} , ∅
and {an} converges to a fixed point a∗ of T. Let {un} ⊂ Hp and

ϑn = ‖un+1 − S(T, an)‖.

If lim
n→∞

ϑn = 0, which implies that un → a∗, then the iterative sequence {an} is said to be T-stable or stable with respect
to T.

3. Some Basic Properties

In this section, we prove some basic properties of resolvent operator and Yosida approximation operator
defined by (1) and (2), respectively.

Lemma 3.1. Let M : Hp → 2Hp be a α-non-ordinary difference comparison mapping with α > 1
λ . Then, the resolvent

operator RM
λ : Hp →Hp is a single-valued, for all λ > 0.

Proof. For any given u ∈ Hp and a constant λ > 0, let a, b ∈ [I ⊕ λM]−1(u). Then

va =
1
λ

(a ⊕ u) ∈M(a)

vb =
1
λ

(b ⊕ u) ∈M(b).

Since M is α-non-ordinary difference comparison mapping, we have

(va ⊕ vb) ⊕ α(a ⊕ a) = 0[( 1
λ

(a ⊕ u)
)
⊕

( 1
λ

(b ⊕ u)
)]
⊕ α(a ⊕ b) = 0[ 1

λ
(a ⊕ b)

]
⊕ [α(a ⊕ b)] = 0( 1

λ
⊕ α

)
(a ⊕ b) = 0

(a ⊕ b) = 0.

Therefore x = y, i.e., the resolvent operator RM
λ = [I ⊕ λM]−1 is single-valued, for α > 1

λ .
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Lemma 3.2. The Yosida approximation operator JM
λ (a) = 1

λ

[
I ⊕ RM

λ

]
(a) is a single-valued, for all λ > 0, where

M : Hp → 2Hp is a α-non-ordinary difference comparison mapping and RM
λ is the resolvent operator is defined by (1).

Proof. For any given u ∈ Hp and λ > 0, let a, b ∈ JM
λ (u). Then

a ∈ JM
λ (u) =

1
λ

[
I ⊕ RM

λ

]
(u).

Then

λa ∈

(
u ⊕ RM

λ (u)
)

u ⊕ λa ∈ RM
λ (u) = [I ⊕ λM]−1(u).

Thus,

u ∈ [I ⊕ λM](u ⊕ λa)
u ∈ (u ⊕ λa) ⊕ λM(u ⊕ λa)
a ∈ M(u ⊕ λa). (3)

Suppose that u ⊕ λa = z1 =⇒ a = 1
λ (z1 ⊕ u) = vz1 . Thus,

vz1 =
1
λ

(u ⊕ z1) ∈M(z1). (4)

Similarly, let b ∈ JM
λ (u) and consequently b ∈ M(u ⊕ λb). Continuing the above arguments and taking

u ⊕ λb = vz2 , we have

vz2 =
1
λ

(u ⊕ z2) ∈M(z2). (5)

Combining (4) and (5), we have

vz1 ⊕ vz2 =
[ 1
λ

(u ⊕ z1)
]
⊕

[ 1
λ

(u ⊕ z2)
]

=
1
λ

(z1 ⊕ z2).

Since M is α-non-ordinary difference mapping, we have(
vz1 ⊕ vz2

)
⊕ α(z1 ⊕ z2) = 0[ 1

λ
(z1 ⊕ z2)

]
⊕ α(z1 ⊕ z2) = 0( 1

λ
⊕ α

)
(z1 ⊕ z2) = 0.

Thus,

z1 ⊕ z2 = 0 =⇒ z1 = z2

=⇒ λa = λb
=⇒ (u ⊕ λx) = (u ⊕ λy)
=⇒ u ⊕ u ⊕ λa = u ⊕ u ⊕ λb
=⇒ 0 ⊕ λa = 0 ⊕ λb
=⇒ (0 ⊕ λ)a = (0 ⊕ λ)b
=⇒ a = b.

Therefore, the Yosida approximation operator JM
λ of M is single-valued for α > 1

λ .
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Lemma 3.3. Let M : Hp → 2Hp be a (α, λ)-XOR-weak-NODSM set-valued mapping with respect to RM
λ . Then, the

resolvent operator RM
λ : Hp →Hp is a comparison mapping.

Proof. Let M be a (α, λ)-XOR-weak-NODSM set-valued mapping with respect to RM
λ . That is, M is α-non-

ordinary difference and λ-XOR-weak-ordered strongly different comparison mapping with respect to RM
λ ,

so that a ∝ RM
λ (a). For any a, b ∈ Hp, let a ∝ b and

va =
1
λ

(
a ⊕ RM

λ (a)
)
∈

(
RM
λ (a)

)
(6)

and

vb =
1
λ

(
b ⊕ RM

λ (b)
)
∈

(
RM
λ (b)

)
. (7)

Since M is λ-XOR-weak-ordered strongly compression mapping, using (6) and (7), we have

a ⊕ b ≤ λ(va ⊕ vb) =
(
a ⊕ RM

λ (a)
)
⊕

(
b ⊕ RM

λ (b)
)

a ⊕ b ≤ (a ⊕ b) ⊕
(
RM
λ (a) ⊕ RM

λ (b)
)

0 ≤ RM
λ (a) ⊕ RM

λ (b) =
[
RM
λ (a) − RM

λ (b)
]
∨

[
RM
λ (b) − RM

λ (a)
]

0 ≤ RM
λ (a) − RM

λ (b) or 0 ≤ RM
λ (y) − RM

λ (x).

Thus, we have

RM
λ (a) ≤ RM

λ (b) or RM
λ (b) ≤ RM

λ (a),

which implies that

RM
λ (a) ∝ RM

λ (b).

Therefore, the resolvent operator RM
λ is a comparison mapping.

Lemma 3.4. Let M : Hp → 2Hp be a (α, λ)-XOR-weak-NODSM mapping with respect to RM
λ and the resolvent

operator RM
λ be a comparison mapping. Then, the Yosida approximation operator JM

λ is also a comparison mapping.

Proof. For any a, b ∈ Hp, let a ∝ b, then obviously I(a) ∝ I(b). As RM
λ is a comparison mapping, we have

RM
λ (a) ∝ RM

λ (b). Thus, we have(
I(a) ⊕ RM

λ (a)
)
∝

(
I(b) ⊕ RM

λ (b)
)

1
λ

(
I(a) ⊕ RM

λ (a)
)
∝

1
λ

(
I(b) ⊕ RM

λ (b)
)
,

wich implies that
JM
λ (a) ∝ JM

λ (b),

i.e. a ∝ b implies that JM
λ (a) ∝ JM

λ (b). Therefore, the Yosida approximation operator JM
λ is a comparison

mapping.

Lemma 3.5. Let M : Hp → 2Hp be a (α, λ)-XOR-weak-NODSM mapping with respect to RM
λ , for αλ > µ and

µ ≥ 1. Then the resolvent operator RM
λ satisfying the following condition:

RM
λ (a) ⊕ RM

λ (b) ≤
µ

(αλ ⊕ µ)
(a ⊕ b), ∀a, b ∈ Hp, (8)

i.e., the resolvent operator RM
λ is λ

(αλ⊕µ) -ordered Lipschitz type continuous mapping.
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Proof. Let a, b ∈ Hp,ua = RM
λ (a),ub = RM

λ (b), and let

va =
1
λ

(a ⊕ ua) ∈M(ua) and vb =
1
λ

(b ⊕ ub) ∈M(ub).

As M be an (α, λ)-XOR-weak-NODSM set-valued mapping with respect to RM
λ . It follows that M is also an

α-non-ordinary difference mapping with respect to RM
λ , we have

(va ⊕ vb) ⊕ α(ua ⊕ ub) = 0, (9)

and

va ⊕ vb =
1
λ

[(a ⊕ ua) ⊕ (b ⊕ ub)]

=
1
λ

[(a ⊕ b) ⊕ (ua ⊕ ub)]

≤
µ

λ
[(a ⊕ b) ⊕ (ua ⊕ ub)], for µ ≥ 1.

From (9), we have

α(ua ⊕ ub) = va ⊕ vb

≤
µ

λ
[(a ⊕ b) ⊕ (ua ⊕ ub)][

αλ
µ
⊕ 1

]
(ua ⊕ ub) ≤ (a ⊕ b).

It follows that ua ⊕ ub ≤
(

µ
(αλ⊕µ)

)
(a ⊕ b) and consequently, we have

RM
λ (a) ⊕ RM

λ (b) ≤
µ

(αλ ⊕ µ)
(a ⊕ b), ∀a, b ∈ Hp.

Therefore, the resolvent operator RM
λ is λ

(αλ⊕µ) -ordered Lipschitz type continuous mapping.

Lemma 3.6. Let M be a (α, λ)-XOR-weak-NODSM set-valued mapping with respect to RM
λ , for αλ > µ and µ ≥ 1,

and the resolvent operator RM
λ satisfied the condition (8). Then, the Yosida approximation operator JM

λ satisfying the
following condition:

JM
λ (a) ⊕ JM

λ (b) ≤
α

(αλ ⊕ µ)
(a ⊕ b), ∀a, b ∈ Hp,

i.e. the Yosida approximation operator JM
λ is α

(αλ⊕µ) -ordered Lipchitz type continuous mapping.

Proof. For any a, b ∈ Hp the resolvent operator RM
λ satisfied the condition (8), we have

JM
λ (a) ⊕ JM

λ (b) =
[ 1
λ

[
I ⊕ RM

λ

]
(a)

]
⊕

[ 1
λ

[
I ⊕ RM

λ

]
(b)

]
=

1
λ

[
a ⊕ RM

λ (a)
]
⊕

1
λ

[
b ⊕ RM

λ (b)
]

=
1
λ

[
(a ⊕ b) ⊕

(
RM
λ (a) ⊕ RM

λ (b)
)]

≤
1
λ

[
(a ⊕ b) ⊕

(
µ

(αλ ⊕ µ)

)
(a ⊕ b)

]
=

1
λ

[(
1 ⊕

µ

(αλ ⊕ µ)

)]
(a ⊕ b)

=
α

(αλ ⊕ µ)
(a ⊕ b)



I. Ahmad et al. / Filomat 34:9 (2020), 2877–2895 2884

i.e.,

JM
λ (a) ⊕ JM

λ (b) ≤
α

(αλ ⊕ µ)
(a ⊕ b), ∀a, b ∈ Hp.

Hence, the Yosida approximation operator JM
λ is α

αλ⊕µ -ordered Lipschitz type continuous.

4. Formulation of the problem and existence result

Let Hp be a real ordered positive Hilbert space and C be a normal cone with normal constant N. Let
F : Hp × Hp → Hp and 1 : Hp → Hp be the single-valued comparison mappings. Let M : Hp → 2H be a
(α, λ)-XOR-weak-NODSM set-valued mapping. We consider the problem:

For some ω ≥ 0 and any ξ ∈ R, find a ∈ Hp such that

ω ∈ JM
λ (a) ⊕M(a) − ξF(a, 1(a)). (10)

We call this problem as general nonlinear ordered Yosida inclusion problem involving⊕ operation (in short,
GNOYIP).

Lemma 4.1. Let 1 : Hp → Hp and F : Hp × Hp → Hp be the single-valued mappings such that 1 is comparison
and δ-ordered compression mapping, F is comparison, and (κ, ν)-ordered Lipschitz continuous mapping with respect
to 1, respectively. Let M : Hp → 2Hp be an (α, λ)-XOR-weak-NODSM set-valued mapping. Then the followings are
equivalent:

(i) a ∈ Hp is a solution of GNOYIP (10);
(ii) a ∈ Hp is a fixed point of a mapping Q : Hp → 2Hp defined by

Q(a) = JM
λ (a) ⊕M(a) − ξF(a, 1(a)) − ω + a;

(iii) a ∈ Hp is a solution of the following equation

a = RM
λ

[(
λω + λξF(a, 1(a))

)
⊕ RM

λ (a)
]
. (11)

Proof. (i) =⇒ (ii) Adding a to both sides of (10), we have

0 ∈ JM
λ (a) ⊕M(a) − ξF(a, 1(a)) − ω

=⇒ a ∈ JM
λ (a) ⊕M(a) − ξF(a, 1(a)) − ω + a = Q(a).

Hence, a is a fixed point of Q.

(ii) =⇒ (iii) Let a be a fixed point of Q, then

a ∈ Q(a) = JM
λ (a) ⊕M(a) − ξF(a, 1(a)) − ω + a

=⇒ ω ∈ JM
λ (a) ⊕M(a) − ξF(a, 1(a))

=⇒ ω + ξF(a, 1(a)) ∈ JM
λ (a) ⊕M(a)

=⇒ λω + λξF(a, 1(a)) ∈ a ⊕ RM
λ (a) ⊕ λM(a)

=⇒ (λω + λξF(a, 1(a))) ⊕ RM
λ (a) ∈ a ⊕ λM(a)

=⇒ (λω + λξF(a, 1(a))) ⊕ RM
λ (a) ∈ [I ⊕ λM](a),

which implies that a = RM
λ [(λω + λξF(a, 1(a))) ⊕ RM

λ (a)]. Consequently, x is a solution of the GNOYIP (10).

(iii) =⇒ (i), from (11) we have

a = RM
λ [(λω + λξF(a, 1(a))) ⊕ RM

λ (a)]

a = [I ⊕ λM]−1[(λω + λξF(a, 1(a))) ⊕ RM
λ (a)],
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so

[(λω + λξF(a, 1(a))) ⊕ RM
λ (a)] ∈ (I ⊕ λM)(a),

(λω + λξF(a, 1(a))) ⊕ RM
λ (a) ∈ I(a) ⊕ λM(a),

ω + ξF(a, 1(a)) ∈
1
λ

[I(a) ⊕ RM
λ (a)] ⊕M(a),

which implies

ω ∈ JM
λ (a) ⊕M(a) − ξF(a, 1(a)).

Therefore, a ∈ Hp is a solution of problem GNOYIP (10).

Now, we prove the existence of solution for GNOYIP (10).

Theorem 4.2. Let 1 : Hp → Hp and F : Hp ×Hp → Hp be the single-valued mappings such that 1 is comparison
and δ-ordered compression mapping, F is comparison, and (κ, ν)-ordered Lipschitz continuous mapping with respect
to 1, respectively.

Let M : Hp → 2Hp be an (α, λ)-XOR-weak-NODSM set-valued mapping. In addition, if F, 1,M and RM
λ are

compared to each other, the following conditions are satisfied:


N(λ|ξ|κ + νδ) <

[
αλ⊕µ

Nµ ⊕
µ

αλ⊕µ

]
,

(αλ ∨ µ) > 1, µ ≥ 1 and αλ > µ,
(12)

then, GNOYIP (10) admits a unique solution a∗ ∈ Hp, which is a fixed point of the resolvent operator
RM
λ

[(
λω + λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]
.

Proof. Using Proposition 2.4, Lemma 3.5 and Lemma 3.6, we have

0 ≤ RM
λ

[(
λω + λξF(., 1(.))

)
⊕ RM

λ (.)
]

(a1) ⊕ RM
λ

[ (
λω + λξF(., 1(.))

)
⊕RM

λ (.)
]
(a2)

≤
µ

αλ ⊕ µ

[(
λω + λξF(a1, 1(a1)) ⊕ RM

λ (a1)
)
⊕

(
λω + λξF(a2, 1(a2))

⊕RM
λ (a2)

)]
≤

µ

αλ ⊕ µ

[(
λξF(a1, 1(a1)) ⊕ λξF(a2, 1(a2))

)
⊕

(
RM
λ (a1) ⊕ RM

λ (a2)
)]

≤
µ

αλ ⊕ µ

[
λ|ξ|

(
F(a1, 1(a1)) ⊕ F(a2, 1(a2))

)
⊕

(
µ

αλ ⊕ µ

)
(a1 ⊕ a2)

]
≤

µ

αλ ⊕ µ

[(
λ|ξ|

(
κ(a1 ⊕ a2) + ν

(
1(a1) ⊕ 1(a2)

)))
⊕

(
µ

αλ ⊕ µ
(a1 ⊕ a2)

)]
≤

µ

αλ ⊕ µ

[(
λ|ξ|κ + νδ

)
⊕

µ

αλ ⊕ µ

]
(a1 ⊕ a2),

which implies that

0 ≤ RM
λ

[(
λω + λξF(., 1(.))

)
⊕ RM

λ (.)
]

(a1) ⊕ RM
λ

[ (
λω + λξF(., 1(.))

)
⊕RM

λ (.)
]
(a2)

≤ ψ(a1 ⊕ a2),
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where

ψ =
µ

αλ ⊕ µ

((
λ|ξ|κ + νδ

)
⊕

µ

αλ ⊕ µ

)
.

Using the definition of normal cone and Proposition 2.5, we conclude that∥∥∥∥RM
λ

[(
λω + λξF(., 1(.))

)
⊕ RM

λ (.)
]

(a1)

⊕ RM
λ

[ (
λω + λξF(., 1(.))

)
⊕ RM

λ (.)
]
(a2)

∥∥∥∥ ≤ |ψ|N‖(a1 ⊕ a2)‖. (13)

Using the condition (12), we can see that |ψ| < 1
N . It follows from (13) that the resolvent operator

RM
λ

[(
λω + λξF(., 1(.))

)
⊕ RM

λ (.)
]

is contraction operator. Hence, there exists a unique a∗ ∈ Hp such that

a∗ = RM
λ

[(
λω + λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]
.

From Lemma 4.1, a∗ is a unique solution of GNOYIP (10).

5. Convergence Analysis and Stability

In this section, we suggest the following iterative algorithm based on Lemma 4.1 for finding the approximate
solution of GNOYIP (10). We also discuss the convergence and stability analysis of the proposed algorithm.

Algorithm 5.1. Let 1 : Hp → Hp and F : Hp × Hp → Hp be the single-valued mappings. Let M : Hp → 2Hp be
a set-valued mapping. Given any initial point a0 ∈ Hp, assume that a1 ∝ a0. We define the sequence {an} and let
an+1 ∝ an such that

an+1 = (1 − αn)an + αnRM
λ

[(
λω − λξF(bn, 1(bn))

)
⊕ RM

λ (bn)
]

+ αnen

bn = (1 − βn)an + βnRM
λ

[(
λω − λξF(an, 1(an))

)
⊕ RM

λ (an)
]

+ βndn.

 (14)

Let {un} be any sequence inHp and define the sequence {νn} by

νn =
∥∥∥∥un+1 −

[
(1 − αn)an + αnRM

λ

[(
λω − λξF(tn, 1(tn))

)
⊕ RM

λ (tn)
]

+ αnen

]∥∥∥∥
tn = (1 − βn)un + βnRM

λ

[(
λω − λξF(un, 1(un))

)
⊕ RM

λ (un)
]

+ βndn.

 (15)

where 0 ≤ αn, βn ≤ 1,
∞∑

n=0
αn = ∞,∀ n ≥ 0.Here {en} and {dn} are two sequences inHp introduced to take into account

the possible inexact computation provided that en ⊕ 0 = en and dn ⊕ 0 = dn, ∀n ≥ 0.

Remark 5.2. If βn = 0,∀ n ≥ 0, then Algorithm 5.1 becomes Mann type iterative algorithm. Also, we remark that
for suitable choices of operators involved in Algorithm 5.1, we can easily obtain many more algorithms studied by
several authors for solving ordered variational inclusion problems, see e.g. [18–20, 22, 23].

Theorem 5.3. Let 1,F and M be the same as in Theorem 4.2 such that all the conditions of Theorem 4.2 are satisfied.
In addition, assume that the following conditions are satisfied:

λ|ξ|κ + νδ <
[
αλ⊕µ
µ ⊕

µ
αλ⊕µ

]
,

αλ ∨ µ > 1, µ ≥ 1 and αλ > µ.
(16)

If limn→∞ ‖en ∨ (−en)‖ = limn→∞ ‖dn ∨ (−dn)‖ = 0, then
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(I) The sequence {an} generated by Algorithm 5.1 converges strongly to the unique solution a∗ of GNOYIP (10).
(II) Moreover, if 0 < κ < αn, then limn→∞ un = a∗ if and only if limn→∞ νn = 0, where νn is defined in (15) i.e., the

sequence {an} generated by (14) is stable with respect to RM
λ .

Proof. (I). Let us suppose that a∗ be an unique solution of GNOYIP (10). Then, we have

a∗ = (1 − αn)a∗ + αnRM
λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]

= (1 − βn)a∗ + βnRM
λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]
.

Using Algorithm 5.1, Proposition 2.4 and Lemma 3.5, it follows that

a∗ ≤ an+1 ⊕ a∗

=
[
(1 − αn)an + αnRM

λ

[(
λω − λξF(bn, 1(bn))

)
⊕ RM

λ (bn)
]

+ αnen

]
⊕(1 − αn)a∗ + αnRM

λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]

≤ (1 − αn)(an ⊕ a∗) + αn

[
RM
λ

((
λω − λξF(bn, 1(bn))

)
⊕ RM

λ (bn)
)

⊕RM
λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
] ]

+ αn(en ⊕ 0)

≤ (1 − αn)(an ⊕ a∗) + αnψ(bn ⊕ a∗) + αn(en ⊕ 0), (17)

where

ψ =
µ

αλ ⊕ µ

[(
λ|ξ|κ + νδ

)
⊕

(
µ

αλ ⊕ µ

)]
.

Using the same argument as for (17), we calculate

0 ≤ bn ⊕ a∗

=
[
(1 − βn)an + βnRM

λ

[(
λω − λξF(an, 1(an))

)
⊕ RM

λ (an)
]

+ βndn

]
⊕

[
(1 − βn)a∗ + βnRM

λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]]

≤ (1 − βn)(an ⊕ a∗) + βnψ(an ⊕ a∗) + βn(dn ⊕ 0)
≤ (1 − βn(1 − ψ))(an ⊕ a∗) + βn(dn ⊕ 0)
≤ (an ⊕ a∗) + βn(dn ⊕ 0) since (1 − βn(1 − ψ)) ≤ 1. (18)

Using (18), (17) become as

a∗ ≤ an+1 ⊕ a∗

≤ (1 − αn)(an ⊕ a∗) + αnψ
[
(an ⊕ a∗) + βn(dn ⊕ 0)

]
+ αn(en ⊕ 0)

≤ (1 − αn)(an ⊕ a∗) + anψ(an ⊕ a∗) + αnψβn(dn ⊕ 0) + αn(en ⊕ 0)
= (1 − αn(1 − ψ))(an ⊕ a∗) + αn

[
ψβn(dn ⊕ o) + (en ⊕ 0)

]
.

Using definition of normal cone and Proposition 2.5, we have

‖an+1 − a∗‖ ≤ (1 −Nαn(1 − ψ))‖an − a∗‖

+Nαn(1 − ψ)
[
ψβn‖(dn) ∨ (−dn)‖ + ‖(en) ∨ (−en)‖

(1 − ψ)

]
. (19)

On setting ηn =
ψβn‖(en)∨(−en)‖+‖(dn)∨(−dn)‖

(1−ψ) , χn = ‖an − a∗‖, Gn = Nαn(1 − ψ), (19) can written as

χn+1 ≤ (1 − Gn)χn + Gnηn.

From Lemma 3.6 and using the hypothesis limn→∞ ‖en ∨ (−en)‖ = limn→∞ ‖dn ∨ (−dn)‖ = 0, we can deduce
that χn → 0 as n→∞, and so {an} converges strongly to a unique solution a∗ of GNOYIP (10).
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Proof of (II). Let S(a∗) = RM
λ

[(
λω − λξF(a∗, 1(a∗))

)
⊕ RM

λ (a∗)
]
. Using Algorithm 5.1, Proposition 2.4 and Propo-

sition 3.5, we obtain

0 ≤ un+1 ⊕ a∗

≤ un+1 ⊕ ((1 − αn)a∗ + αnS(a∗))
≤ un+1 ⊕ ((1 − αn)un + αnS(tn)) + αnen

+ ((1 − αn)un + αnS(tn) + αnen) ⊕ ((1 − αn)a∗ + αnS(a∗))
≤ un+1 ⊕ ((1 − αn)un + αnS(tn) + αnen)

+(1 − αn)(un ⊕ a∗) + αn (S(tn) ⊕ S(a∗)) + αn(en ⊕ 0)
≤ un+1 ⊕ ((1 − αn)un + αnS(tn) + αnen)

+(1 − αn)(un ⊕ a∗) + αnψ(tn ⊕ a∗) + αn(en ⊕ 0), (20)

where

ψ =
µ

αλ ⊕ µ

[(
λ|ξ|κ + νδ

)
⊕

(
µ

αλ ⊕ µ

)]
.

From (20), we have

0 ≤ tn ⊕ a∗

=
[
(1 − βn)un + βnS(un) + βndn

]
⊕

[
(1 − βn)a∗ + βnS(a∗)

]
≤ (1 − βn)(un ⊕ a∗) + βn(S(un) ⊕ S(a∗)) + βn(dn ⊕ 0)
≤ (1 − βn)(un ⊕ a∗) + βnψ(un ⊕ a∗) + βn(dn ⊕ 0)
≤ (1 − βn(1 − ψ))(un ⊕ a∗) + βn(dn ⊕ 0)
≤ (un ⊕ a∗) + βn(dn ⊕ 0), since 1 − βn(1 − ψ) ≤ 1. (21)

Using (21), (20) becomes as

0 ≤ un+1 ⊕ a∗

≤ [un+1 ⊕ ((1 − αn)un + αnS(tn) + αnen)]
+

[
(1 − αn(1 − ψ))(un ⊕ a∗) + αn

[
ψβn(dn ⊕ 0) + (en ⊕ 0)

]]
.

Using the definition of normal cone and Proposition 2.5, we have

‖un+1 − a∗‖ ≤ N ‖un+1 − [(1 − αn)un + αnS(tn) + αnen]‖
+N(1 − αn(1 − ψ))‖un − a∗‖

+αnN(1 − ψ)
[
ψβn‖dn ∨ (−dn)‖ + ‖en ∨ (−en)‖

(1 − ψ)

]
≤ Nνn + N(1 − αn(1 − ψ))‖un − a∗‖

+αnN(1 − ψ)
[
ψβn‖dn ∨ (−dn)‖ + ‖en ∨ (−en)‖

(1 − ψ)

]
. (22)

Since 0 < κ ≤ αn, (22) becomes as

‖un+1 − a∗‖ ≤ (1 −Nαn(1 − ψ))‖un − a∗‖

+αnN(1 − ψ)
[

νn

κ(1 − ψ)
+
ψβn‖dn ∨ (−dn)‖ + ‖en ∨ (−en)‖

(1 − ψ)

]
.

Assume that limn→∞ νn = 0, hence
lim
n→∞

un = a∗,
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where
lim
n→∞
‖dn ∨ (−dn)‖ = lim

n→∞
‖en ∨ (−en)‖ = 0.

Conversely, suppose that limn→∞ un = a∗. From (11) and limn→∞ ‖dn ∨ (−dn)‖ = limn→∞ ‖en ∨ (−en)‖ = 0, we
have

0 ≤ un+1 ⊕ [(1 − αn)un + αnS(tn) + αnen]
≤ (un+1 ⊕ a∗) + [((1 − αn)un + αnS(tn) + αnen) ⊕ a∗]
= (un+1 ⊕ a∗) + [((1 − αn)un + αnS(tn) + αnen)
⊕ ((1 − αn)a∗ + αnS(a∗))]

≤ un+1 ⊕ a∗ + (1 − αn)(un ⊕ a∗) + αn (S(tn) ⊕ S(a∗)) + αn(en ⊕ 0)
≤ un+1 ⊕ a∗ + (1 − αn)(un ⊕ a∗) + anψ(tn ⊕ a∗)

+αn(en ⊕ 0)

≤ un+1 ⊕ a∗ + (1 − αn(1 − ψ))(un ⊕ a∗) + αn

[
ψβn(dn ⊕ 0)

+(en ⊕ 0)
]
. (23)

Applying again the definition of normal cone and Proposition 2.5, it follows that

νn = ‖un+1 − [(1 − αn)un + αnS(tn) + αnen]‖
≤ N ‖un+1 − a∗‖ + N

(
1 − αn(1 − ψ)

)
‖un − a∗‖

+αnN
[
ψβn‖dn ∨ (−dn)‖ + ‖en ∨ (−en)‖

]
,

which implies that
lim
n→∞

νn = 0.

Hence, the iterative sequence {un} generated by (15) is stable with respect to RM
λ . This completes the

proof.

6. Numerical Example

In this section, we provide a numerical example to illustrate Algorithm 5.1 and justify our main result.

Example 6.1. Let Hp = R+
∪ {0} with the usual inner product and norm and let C = {x ∈ Hp : 0 ≤ x ≤ 1} be a

normal cone with normal constant N = 1. Let 1 : Hp →Hp and F : Hp ×Hp →Hp be the mapping defined by

1(a) =
a
3
⊕

1
6

and F(a, 1(a)) = (a + 61(a)).

For each a, b ∈ Hp, a ∝ b. Then, it is easy to check that 1 is 1
2 -ordered compression mapping.

For a, b,u, v ∈ Hp, a ∝ u, b ∝ v, we calculate

F(a, 1(u)) ⊕ F(b, 1(v)) = (a + 61(u)) ⊕ (b + 61(v))
≤ a ⊕ b + 6(1(u) ⊕ 1(v))

= a ⊕ b + 6
((u

3
⊕

1
6

)
⊕

(v
3
⊕

1
6

))
= a ⊕ b + 2(u ⊕ v),

i.e.,
F(a, 1(u)) ⊕ F(b, 1(v)) ≤ (a ⊕ b) + 2(u ⊕ v).
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Hence, F is (1, 2)-ordered Lipschitz continuous mapping with respect to 1. Suppose that M : Hp → CB(Hp) is a
set-valued mapping defined by

M(p) =
{ a

2
⊕ 1

}
, ∀a ∈ Hp.

It can be easily verified that M is a comparison mapping, M is 1
2 -weak non-ordinary difference mapping and 3-XOR-

ordered different comparison mapping. Also, it is clear that for λ = 1
2 , [I ⊕ λM](Hp) = Hp. Hence, M is an(

1
2 , 3

)
-XOR-weak-NODSM set-valued mapping. The resolvent operator and Yosida approximation operator defined

by (1) and (2) associated with M are given by

RM
λ (a) = 2(a ⊕ 3) and JM

λ (a) = 2(a ⊕ 6), ∀a ∈ Hp.

It is easy to examine that the resolvent operator and Yosida approximation operator defined above are comparison and
single-valued mapping. In particular for µ = 1, we obtain

RM
λ (a) ⊕ RM

λ (b) = [2(a ⊕ 3)] ⊕ [2(b ⊕ 3)]
= (2a ⊕ 6) ⊕ (2b ⊕ 6)
= 2(a ⊕ b)

≤
5
2

(a ⊕ b),

i.e.
RM
λ (a) ⊕ RM

λ (b) ≤
5
2

(a ⊕ b), ∀a, b ∈ Hp.

That is, the resolvent operator JA
λ,M is 5

2 -ordered Lipschitz continuous. Similarly, we can show that the Yosida
approximation operator is 3

2 -Lipschitz continuous.
If we take ω = 0 and ξ = 1, we calculate

RM
λ

[
(λω + λξF(a, 1(a))) ⊕ RM

λ (a)
]

= RM
λ

[
3F(a, 1(a)) ⊕ RM

λ (a)
]

= RM
λ [3((a + (2a ⊕ 1))) ⊕ (2a ⊕ 6)]

= 2[((3(a + (2a ⊕ 1))) ⊕ (2a ⊕ 6)) ⊕ 3]
= 2[((3a + (6a ⊕ 3)) ⊕ (2a ⊕ 6)) ⊕ 3]

clearly, 0 is a fixed point of RM
λ

[
3F(a, 1(a)) ⊕ RM

λ (a)
]
.

Let αn = 2n+1
3n2+1 , βn = n2+1

3n3+n2 , en = 1
n2 and dn = 1

n3 . It is easy to show that the sequences {αn}, {βn}, {en} and {dn}

satisfying the conditions 0 ≤ αn, βn ≤ 1,

∞∑
n=0

αn = ∞, en ⊕ 0 = en, dn ⊕ 0 = dn.

Now, we can estimate the sequences {an} and {bn} by the following schemes:

an+1 =

(
3n2
− 2n

3n2 + 1

)
an +

( 2n + 1
3n2 + 1

)
[((6bn + (6bn ⊕ 6)) ⊕ (4bn ⊕ 12)) ⊕ 6]

+
( 2n + 1

3n4 + n2

)
,

bn =

(
3n3
− 1

3n3 + n2

)
an +

(
n2 + 1

3n3 + n2

)
[((6an + (6an ⊕ 6)) ⊕ (4an ⊕ 12)) ⊕ 6]

+

(
n2 + 1

3n6 + n5

)
.
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It is also verified that condition (16) is satisfied. Thus, all the assumptions of Theorem 5.3 are fulfilled. Hence, the
sequence {an} converges strongly to the unique solution a∗ = 0 of the GNOYIP (10).

All codes are written in MATLAB version 7.13, we have the following different initial values a0 = 5, 10 and 15
which shows that the sequence {an} converge to a∗ = 0.

Table 1: The values of an with initial values a0 = 5, a0 = 10 and a0 = 15
No. of For a0 = 5 For a0 = 10 For a0 = 15

Iteration an an an
n=1 5 10 15
n=2 14.75000000 27.8750000 41
n=3 15.44436811 29.07417582 42.70398351
n=4 9.90015732 18.60808969 27.31602239
n=5 4.57646612 8.59038575 12.60430528
n=6 1.65662274 3.10401002 4.55139771
n=7 0.49425151 0.92293909 1.35162646
n=8 0.126437212 0.23417848 0.34191996
n=9 0.02906340 0.05258300 0.07610260
n=10 0.0066226 0.01116001 0.01569893
n=13 5.37830012 e-08 5.55419636e-08 5.73007407e-08
n=17 1.14435922e-13 1.99016354e-13 1.14430502e-13

n=20 0 0 0

Figure 1: The convergence of an with initial values a0 = 5, a0 = 10 and a0 = 15
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Remark 6.2. We choose the same operators as in Example 6.1 and compare our proposed Algorithm 5.1 with Mann-
type Algorithm which are mentioned in Remark 5.2. On taking β = 0, we can calculate the sequence {an} by the
following Mann-type scheme:

an+1 =

(
3n2
− 2n

3n2 + 1

)
an +

( 2n + 1
3n2 + 1

)
[((6an + (6an ⊕ 6)) ⊕ (4an ⊕ 12)) ⊕ 6]

+
( 2n + 1

3n4 + n2

)
. (24)

The iteration methods will be stopped when the stopping criteria ‖an+1 − an‖ ≤ 10−11 is satisfied. Table 2, Figure 2
and Figure 3 are comparisons of our proposed Algorithm 5.1 with Mann-type Algorithm (24), on taking initial values
a0 = 10 and a0 = 15.

Table 2: The values of an with initial value a0 = 10
Number Proposed Algo Mann-type Algo Proposed Algo Mann-type Algo

of For a0 = 10 For a0 = 10 For a0 = 15 For a0 = 15
Iteration an an an an

n=1 10 10 15 15
n=2 27.875000 41.1950000 41 60.770000
n=3 29.074175 48.177692 42.703983 70.801730
n=4 18.608089 32.583199 27.316022 47.850170
n=5 8.590385 15.635180 12.604305 22.954871
n=6 3.104010 5.939565 4.551397 8.721481
n=7 0.922939 1.996028 1.351626 2.935093
n=8 0.234178 0.733081 0.341919 1.083149
n=9 0.052583 0.397098 0.0761020 0.591064
n=10 0.011160 0.320126 0.015698 0.478654
n=15 1.990163e-13 0.290361 5.7300747e-08 0.450128
n=20 0 0.280616 4.020716e-10 0.305012

n=100 0 0.001664 1.144305e-13 0.001855

n=200 0 1.280347e-13 0 1.302043e-13

The numerical results of Table 2 and graphs of Figure 2 and Figure 3 imply that our proposed Algorithm 5.1 has
a good performance and seems to have a competitive advantage. We can conclude that our algorithm is fast, efficient
and stable, and it takes average of 13–20 iterations to converge.
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Figure 2: The convergence of an with initial value a0 = 10

Figure 3: The convergence of an with initial value a0 = 15
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7. Conclusion

In this article, we study a general nonlinear ordered Yosida inclusion problem involving XOR-operation in
a real ordered Hilbert spaces and prove the existence of solution of the problem. We have also constructed a
perturbed two-step iterative algorithm for this class of general nonlinear ordered Yosida inclusion problem
which is more general than the Mann-type iterative algorithms with errors, and many other iterative
schemes studies by several author’s, see e.g., [6, 8, 18–23]. We prove the convergence analysis of our
proposed algorithm which assumes that the suggested algorithm converges in norm to a unique solution of
our considered problem and also show that the convergence is stable. Finally, we give a numerical example
in support of our main result. Our obtained results extend and generalize most of the results for different
systems existing in the literature.
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