Automorphisms and Isomorphisms of Enhanced Hypercubes

Lu Lu ${ }^{\text {a }}$, Qiongxiang Huang ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics and Statistics, Central South University, Changsha 410083, China
${ }^{b}$ College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

Abstract

Let \mathbb{Z}_{2}^{n} be the elementary abelian 2-group, which can be viewed as the vector space of dimension n over F_{2}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{Z}_{2}^{n} and $\epsilon_{k}=e_{k}+\cdots+e_{n}$ for some $1 \leq k \leq n-1$. Denote by $\Gamma_{n, k}$ the Cayley graph over \mathbb{Z}_{2}^{n} with generating set $S_{k}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{k}\right\}$, that is, $\Gamma_{n, k}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{k}\right)$. In this paper, we characterize the automorphism group of $\Gamma_{n, k}$ for $1 \leq k \leq n-1$ and determine all Cayley graphs over \mathbb{Z}_{2}^{n} isomorphic to $\Gamma_{n, k}$. Furthermore, we prove that for any Cayley graph $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$, if Γ and $\Gamma_{n, k}$ share the same spectrum, then $\Gamma \cong \Gamma_{n, k}$. Note that $\Gamma_{n, 1}$ is known as the so called n-dimensional folded hypercube $F Q_{n}$, and $\Gamma_{n, k}$ is known as the n-dimensional enhanced hypercube $Q_{n, k}$.

1. Introduction

It is known that an interconnection network is conveniently represented by an undirected graph. For instance, the vertices of the graph represent the nodes of the network and the edges represent the links of the network. The n-dimensional hypercube Q_{n} is the graph whose vertices are the n-bit binary strings $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in\{0,1\}$ for $1 \leq i \leq n$, and whose edges are pairs of vertices differing in exactly one position. As a topology for an interconnection network of a multiprocessor system, the hypercube is a widely used and well-known model, since it possesses many attractive properties such as regularity, symmetry, logarithmic diameter, high connectivity, recursive construction, ease of bisection, and relatively low link complexity [10, 13, 16]. There are many invariants of Q_{n}, for instance, generalized hypercube, folded hypercube, twisted hypercube, argument hypercube and enhanced hypercube. In this paper, we focus on the folded hypercube and the enhance hypercube. As a variant of the hypercube, the n-dimensional folded hypercube $F Q_{n}$, proposed first by El-Amawy and Latifi [2], is obtained from the hypercube Q_{n} by making each vertex u adjacent to its complementary vertex, denoted by \bar{u} and obtained from u by subtracting each bit from 1 . Some properties of the folded hypercube $F Q_{n}$ are discussed in [11,16-18]. Another variant of hypercube, the so called enhanced hypercube $Q_{n, k}$, proposed first by Tzeng and Wei [15], is obtained from Q_{n} by adding the edges $\{x, y\}$ if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(x_{1}, \ldots, x_{k-1}, \overline{x_{k}}, \ldots, \overline{x_{n}}\right)$ where $\overline{x_{j}}=x_{j}+1$. It is clear that the folded hypercube $F Q_{n}$ is the special case of the enhanced hypercube $Q_{n, k}$ for $k=1$, that is, $F Q_{n}=Q_{n, 1}$.

Let \mathbb{Z}_{2}^{n} be the elementary abelian 2-group. It can be viewed as the n-dimensional vector space over the filed F_{2} and $\left\{e_{1}, \ldots, e_{n}\right\}$ forms the orthonormal basis of \mathbb{Z}_{2}^{n}, where e_{i} is the vector whose i-th entry is 1 and other entries are 0 s. From the definition of the enhanced hypercube $Q_{n, k}$, each vertex of $Q_{n, k}$ is a vector in

[^0]\mathbb{Z}_{2}^{n}. Moreover, two vertices v and v^{\prime} are adjacent if one of the followings holds:
(1) v and v^{\prime} are distinct in exactly one position, which means $v^{\prime}-v=e_{i}$ for some $1 \leq i \leq n$.
(2) the first $k-1$ entries of v and v^{\prime} are the same but the rest $n-k+1$ entries of them are all distinct, which means that $v^{\prime}-v=e_{k}+\cdots+e_{n}$.

Recall that the Cayley graph over a group G with the generating set $S \subset G$, denoted by $\operatorname{Cay}(G, S)$, is the graph with vertex set G and two vertices x and y are adjacent if $y x^{-1} \in S$. Therefore, the n-dimensional enhanced hypercube $Q_{n, k}$ is just the Cayley graph $\Gamma_{n, k}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{k}\right)$, where $S_{k}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{k}\right\}$ and $\epsilon_{k}=$ $e_{k}+\cdots+e_{n}$. Particularly, the n-dimensional folded hypercube $F Q_{n}$ is the Cayley graph $\Gamma_{n, 1}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{1}\right)$, where $S_{1}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{1}\right\}$ and $\epsilon_{1}=e_{1}+\cdots+e_{n}$.

An isomorphism α from a graph Γ to Γ^{\prime} is a bijection from $V(\Gamma)$ to $V\left(\Gamma^{\prime}\right)$ such that $u \sim v$ in Γ if and only if $\alpha(u) \sim \alpha(v)$ in Γ^{\prime}. If Γ and Γ^{\prime} are the same, then α is called an automorphism of Γ. The set of all automorphisms of Γ forms the automorphism group of Γ, denoted by $\operatorname{Aut}(\Gamma)$ [4]. There exists strong connection between the automorphism of a graph and the structure of the graph. For example, a graph with high symmetry always has a large automorphism group and a graph with little symmetry always has a small automorphism group. Therefore, we would like to investigate the automorphism group of the hypercube $Q_{n, k}$. For a Cayley graph $\Gamma=\operatorname{Cay}(G, S)$, let $A u t_{e}(\Gamma)=\{\alpha \in A u t(\Gamma) \mid \alpha(e)=e\}$ and $A u t_{S}(G)=\{\beta \in A u t(G) \mid \beta(S)=S\}$, where the subscript e denotes the identity element of G. If G is abelian, we write $A u t_{0}(\Gamma)$ for $A u t_{e}(\Gamma)$ since the identity element of abelian groups is always denoted by 0 . It is clear that $A u t_{S}(G) \leq A u t_{e}(\Gamma)$. If $A u t_{S}(G)=A u t_{e}(\Gamma)$ then Γ is called normal. In this paper, we characterize the automorphism group of $\Gamma_{n, k}$. Moreover, we determine all Cayley graphs over \mathbb{Z}_{2}^{n} isomorphic to $\Gamma_{n, k}$. Furthermore, we give the spectrum of $\Gamma_{n, k}$ and show that $\Gamma_{n, k}$ is determined by its spectrum among the Cayley graphs over \mathbb{Z}_{2}^{n}, that is, for any Cayley graph $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$, if Γ and $\Gamma_{n, k}$ share the same spectrum, then $\Gamma \cong \Gamma_{n, k}$.

2. Basic properties

In this part, we present some properties of Cayley graphs which will be used latter. At first, we introduce the automorphism group of \mathbb{Z}_{2}^{n}.

Lemma 2.1 ([1]). The automorphism group of \mathbb{Z}_{2}^{n} is isomorphic to $G L\left(n, F_{2}\right)$ where $G L\left(n, F_{2}\right)$ is the set of invertible matrices of order n over F_{2}. Furthermore, we have

$$
\left|\operatorname{Aut}\left(\mathbb{Z}_{2}^{n}\right)\right|=\left|G L\left(n, F_{2}\right)\right|=\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)
$$

In fact, each element v of \mathbb{Z}_{2}^{n} is a $(0,1)$-vector. For any $\sigma \in A u t\left(\mathbb{Z}_{2}^{n}\right)$, there exists $M_{\sigma} \in G L\left(n, F_{2}\right)$ corresponding to σ such that $\sigma(v)=M_{\sigma} v$. By simple observations, one can obtain the following well-known result.

Lemma 2.2. For any two non-zero vectors $x, y \in \mathbb{Z}_{2}^{n}$, there exists $A \in G L\left(n, F_{2}\right)$ such that $A x=y$ and thus $G L\left(n, F_{2}\right)$ acting on \mathbb{Z}_{2}^{n} has two orbits: $\{0\}$ and $\left(\mathbb{Z}_{2}^{n} \backslash\{0\}\right)$.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph over G with generating set S satisfying $S=S^{-1}$ and $\langle S\rangle=G$. The right regular representation of the group G is defined as $R(G)=\left\{r_{g}: x \mapsto x g(\forall x \in G) \mid g \in G\right\}$. Clearly, $R(G) \leq A u t(\Gamma)$ acts transitively on Γ. Recall that $A u t_{e}(\Gamma)=\{\alpha \in A u t(\Gamma) \mid \alpha(e)=e\}$. The following result follows.

Lemma 2.3 ([6]). The automorphism group $A u t(\Gamma)$ of a normal Cayley graph Γ is given by $A u t(\Gamma)=R(G) \rtimes A u t_{e}(\Gamma)$.
Now we present a sufficiency for a Cayley graph over an abelian group to be normal. Many mathematicians have noticed this result, see, for example, [19]. We still give a proof here for the convenience of the reader.

Lemma 2.4. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph on the abelian group G. If $N(s) \cap N(t)=\{0, s+t\}$ for any distinct $s, t \in S$ then Γ is normal, that is, $A u t_{0}(\Gamma)=A u t_{S}(G)$.

Proof. It is clear that $A u t_{S}(G) \leq A u t_{0}(\Gamma)$ and it remains to show that $A u t_{0}(\Gamma) \leq A u t_{S}(G)$. For any $\sigma \in A u t_{0}(\Gamma)$, we have $\sigma(S)=S$ and thus it only needs to show that $\sigma \in \operatorname{Aut}(G)$. Clearly, σ is a bijection from G to itself, and thus it needs to show that $\sigma(x+y)=\sigma(x)+\sigma(y)$ for any $x, y \in G$.

For any distinct $s, t \in S$, since $N(s) \cap N(t)=\{0, s+t\}$, we have $N(\sigma(s)) \cap N(\sigma(t))=\{0, \sigma(s+t)\}$. Note that $\sigma(s), \sigma(t) \in S$. We also have $N(\sigma(s)) \cap N(\sigma(t))=\{0, \sigma(s)+\sigma(t)\}$. It leads to that $\sigma(s+t)=\sigma(s)+\sigma(t)$. In addition, we show that $\sigma(2 s)=\sigma(s)+\sigma(s)$. Since $s \sim 2 s$, we have $\sigma(s) \sim \sigma(2 s)$. It means that $\sigma(2 s)=\sigma(s)+\sigma\left(s^{\prime}\right)$. If $s^{\prime} \neq s$ then it is proved that $\sigma(s)+\sigma\left(s^{\prime}\right)=\sigma\left(s+s^{\prime}\right)$ and thus $\sigma(2 s)=\sigma(s)+\sigma\left(s^{\prime}\right)=\sigma\left(s+s^{\prime}\right)$. It leads to $2 s=s+s^{\prime}$ and thus $s=s^{\prime}$, a contradiction. Hence, we have $\sigma(s+t)=\sigma(s)+\sigma(t)$ for any $s, t \in S$, where s and t may be equal.

In general, for $s_{1}, \ldots, s_{k} \in S$, we will show that $\sigma\left(s_{1}+\cdots+s_{k}\right)=\sigma\left(s_{1}\right)+\cdots+\sigma\left(s_{k}\right)$ for any $\sigma \in A u t_{0}(\Gamma)$. Note that $r_{u} \in A u t(\Gamma)$ for any $u \in G$. Thus $r_{-\sigma(u)} \sigma r_{u} \in A u t(\Gamma)$. Note that $r_{-\sigma(u)} \sigma r_{u}(0)=r_{-\sigma(u)} \sigma(u)=0$. We have $r_{-\sigma(u)} \sigma r_{u} \in A u t_{0}(\Gamma)$. Since $r_{-\sigma\left(s_{k}\right)} \sigma r_{s_{k}} \in A u t_{0}(\Gamma)$, by inductive assumption, we have

$$
\begin{aligned}
& r_{-\sigma\left(s_{k}\right)} \sigma r_{s_{k}}\left(s_{1}+\cdots+s_{k-1}\right) \\
= & r_{-\sigma\left(s_{k}\right)} \sigma r_{s_{k}}\left(s_{1}\right)+\cdots+r_{-\sigma\left(s_{k}\right)} \sigma r_{s_{k}}\left(s_{k-1}\right) \\
= & r_{-\sigma\left(s_{k}\right)} \sigma\left(s_{1}+s_{k}\right)+\cdots+r_{-\sigma\left(s_{k} k\right.} \sigma\left(s_{k-1}+s_{k}\right) \\
= & r_{-\left(\sigma s_{k}\right)}\left(\sigma\left(s_{1}\right)+\sigma\left(s_{k}\right)\right)+\cdots+r_{-\sigma\left(s_{k}\right)}\left(\sigma\left(s_{k-1}\right)+\sigma\left(s_{k-1}\right)\right) \\
= & \sigma\left(s_{1}\right)+\cdots+\sigma\left(s_{k-1}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \sigma\left(s_{1}+\cdots+s_{k}\right) \\
= & \left.\left(r_{\sigma\left(s_{k}\right)}\left(r_{-\sigma\left(s_{k}\right)}\right) \sigma r_{s_{k}}\right) r_{-s_{k}}\right)\left(s_{1}+\cdots+s_{k}\right) \\
= & r_{\sigma\left(s_{k}\right)}\left(r_{-\sigma\left(s_{k} k\right.} \sigma r_{s_{k}}\right)\left(s_{1}+\cdots+s_{k-1}\right) \\
= & r_{\sigma\left(s_{k}\right)}\left(\sigma\left(s_{1}\right)+\cdots+\sigma\left(s_{k-1}\right)\right) \\
= & \sigma\left(s_{1}\right)+\cdots+\sigma\left(s_{k-1}\right)+\sigma\left(s_{k}\right) .
\end{aligned}
$$

Since $\langle S\rangle=G$, for any $x, y \in G$, we have $x=s_{1}+\cdots+s_{a}$ and $y=s_{1}^{\prime}+\cdots+s_{b}^{\prime}$ where $s_{i}, s_{j}^{\prime} \in S$. Therefore, we have

$$
\begin{aligned}
& \sigma(x+y)=\sigma\left(s_{1}+\cdots+s_{a}+s_{1}^{\prime}+\cdots+s_{b}^{\prime}\right) \\
= & \sigma\left(s_{1}\right)+\cdots+\sigma\left(s_{a}\right)+\sigma\left(s_{1}^{\prime}\right)+\cdots+\sigma\left(s_{b}^{\prime}\right) \\
= & \sigma\left(s_{1}+\cdots+s_{a}\right)+\sigma\left(s_{1}^{\prime}+\cdots+s_{b}^{\prime}\right)=\sigma(x)+\sigma(y) .
\end{aligned}
$$

It completes the proof.
Let X_{1} and X_{2} be two graphs with $V\left(X_{1}\right)=\left\{u_{1}, \ldots, u_{m}\right\}$ and $V\left(X_{2}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. The Cartesian product $X_{1} \square X_{2}$ is the graph with vertex set $V\left(X_{1}\right) \times V\left(X_{2}\right)$ and two vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{i}^{\prime}, v_{j}^{\prime}\right)$ are connected if $u_{i} \sim u_{i}^{\prime}$ in X_{1} and $v_{j}=v_{j}^{\prime}$, or $u_{i}=u_{i}^{\prime}$ and $v_{j} \sim v_{j}^{\prime}$ in X_{2}.
Lemma 2.5. Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph over the group G. If $S=T_{1} \cup T_{2}$ such that $G=\left\langle T_{1}\right\rangle \cdot\left\langle T_{2}\right\rangle$ the internal direct product of $\left\langle T_{1}\right\rangle$ and $\left\langle T_{2}\right\rangle$, then $\Gamma \cong \Gamma_{1} \square \Gamma_{2}$ where $\Gamma_{1}=\operatorname{Cay}\left(\left\langle T_{1}\right\rangle, T_{1}\right)$ and $\Gamma_{2}=\operatorname{Cay}\left(\left\langle T_{2}\right\rangle, T_{2}\right)$.
Proof. Since $G=\left\langle T_{1}\right\rangle \cdot\left\langle T_{2}\right\rangle$ is the internal direct product of $\left\langle T_{1}\right\rangle$ and $\left\langle T_{2}\right\rangle$, each element $v \in G$ can be uniquely written as $v=v_{1} v_{2}$ for $v_{1} \in\left\langle T_{1}\right\rangle$ and $v_{2} \in\left\langle T_{2}\right\rangle$. Moreover, it is well known that $G \cong\left\langle T_{1}\right\rangle \times\left\langle T_{2}\right\rangle$ the external direct product of $\left\langle T_{1}\right\rangle$ and $\left\langle T_{2}\right\rangle$ [7]. In fact, let $\phi: G \rightarrow\left\langle T_{1}\right\rangle \times\left\langle T_{2}\right\rangle$ be the map defined by $\phi(v)=\phi\left(v_{1} v_{2}\right)=\left(v_{1}, v_{2}\right)$, then ϕ is the isomorphism from G to $\left\langle T_{1}\right\rangle \times\left\langle T_{2}\right\rangle$. Therefore, the map ϕ gives a bijection from $V(\Gamma)$ to $V\left(\Gamma_{1} \square \Gamma_{2}\right)$. Next, we show that ϕ is also a graph isomorphism from Γ to $\Gamma_{1} \square \Gamma_{2}$.

Since $S=T_{1} \cup T_{2}$, for each $s \in S$, we have $s \in T_{1}$ or $s \in T_{2}$. If $s \in T_{1}$ then $\phi(s)=\left(s, e_{2}\right)$, where e_{2} is the identity element of $\left\langle T_{2}\right\rangle$. If $s \in T_{2}$ then $\phi(s)=\left(e_{1}, s\right)$, where e_{1} is the identity element of $\left\langle T_{1}\right\rangle$. Let $v=v_{1} v_{2}$ and $v^{\prime}=v_{1}^{\prime} v_{2}^{\prime}$ be two vertices of $V(\Gamma)$. It is seen that $v \sim v^{\prime}$ in Γ if and only if $v^{\prime} v^{-1}=s \in S$ if and only if $\phi\left(v^{\prime} v^{-1}\right)=\left(v_{1}^{\prime} v_{1}^{-1}, v_{2}^{\prime} v_{2}^{\prime-1}\right)=\phi(s)=\left(s, e_{2}\right)$ when $s \in T_{1}$, or $\phi\left(v^{\prime} v^{-1}\right)=\phi(s)=\left(v_{1}^{\prime} v_{1}^{-1}, v_{2}^{\prime} v_{2}^{\prime-1}\right)=\left(e_{1}, s\right)$ when $s \in T_{2}$ if and only if $v_{1}^{\prime} v_{1}^{-1}=s \in T_{1}$ and $v_{2}^{\prime} v_{2}^{\prime-1}=e_{2}$, or $v_{1}^{\prime} v_{1}^{-1}=e_{1}$ and $v_{2}^{\prime} v_{2}^{\prime-1}=s \in T_{2}$ if and only if $v_{1} \sim v_{1}^{\prime}$ in Γ_{1} and $v_{2}=v_{2}^{\prime}$, or $v_{1}=v_{1}^{\prime}$ and $v_{2} \sim v_{2}^{\prime}$ in Γ_{2} if and only if $\phi(v)=\left(v_{1}, v_{2}\right) \sim\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\phi\left(v^{\prime}\right)$ in $\Gamma_{1} \square \Gamma_{2}$. It leads to that $\Gamma \cong \Gamma_{1} \square \Gamma_{2}$.

This completes the proof.

3. Automorphism group of the enhanced hypercube $Q_{n, k}$

In this part, we first give the automorphism group of the folded hypercube $Q_{n, 1}$ and determine the Caylay graphs over \mathbb{Z}_{2}^{n} isomorphic to $Q_{n, 1}$. Next, we extend such results to the enhanced hypercube $Q_{n, k}$ for any $2 \leq k \leq n-1$. Keep in mind that that $Q_{n, k}$ is just the Cayley graph $\Gamma_{n, k}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{k}\right)$ with $S_{k}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{k}\right\}$ and $\epsilon_{k}=e_{k}+\cdots+e_{n}$.
Lemma 3.1. Let $\Gamma_{n, 1}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{1}\right)$ be the n-dimensional folded hypercube with $n \geq 4$. Then $\Gamma_{n, 1}$ is normal and Aut $\left(\Gamma_{n, 1}\right) \cong \mathcal{S}_{n+1}$, where \mathcal{S}_{n+1} is the symmetric group of degree $n+1$.
Proof. Denote by $v_{i}=e_{i}$ for $1 \leq i \leq n$ and $v_{n+1}=\epsilon_{1}$. Clearly, $\left\{0, v_{i}+v_{j}\right\} \subseteq N\left(v_{i}\right) \cap N\left(v_{j}\right)$. Now assume that x is a vertex of $N\left(v_{i}\right) \cap N\left(v_{j}\right)$. We have $x=v_{i}+v_{s}=v_{j}+v_{t}$ for some $v_{s}, v_{t} \in S$ and thus $v_{i}+v_{s}-v_{j}-v_{t}=0$, that is v_{i}, v_{j}, v_{s} and v_{t} are linear dependent. If v_{i}, v_{j}, v_{s} and v_{t} are distinct then $\left\{v_{i}, v_{j}, v_{s}, v_{t}\right\}$ must be linear independent since any n elements of S_{1} form a basis of \mathbb{Z}_{2}^{n} and $n \geq 4$. Therefore, we have $v_{i}=v_{s}$ and $v_{j}=v_{t}$, or $v_{i}=v_{t}$ and $v_{j}=v_{s}$. If the former occurs then $x=0$; if the latter occurs then $x=v_{i}+v_{j}$. Thus, we have $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\left\{0, v_{i}+v_{j}\right\}$. Since \mathbb{Z}_{2}^{n} is abelian, Lemma 2.4 implies that $A u t_{0}\left(\Gamma_{n, 1}\right)=A u t_{s_{1}}\left(\mathbb{Z}_{2}^{n}\right)$.

In what follows, we show that $A u t_{S_{1}}\left(\mathbb{Z}_{2}^{n}\right) \cong \mathcal{S}_{n+1}$. From Lemma 2.1, we have $A u t\left(\mathbb{Z}_{2}^{n}\right)=G L\left(n, F_{2}\right)$ and thus $A u t_{S_{1}}\left(\mathbb{Z}_{2}^{n}\right)=\left\{A \in G L\left(n, F_{2}\right) \mid A S_{1}=S_{1}\right\}$. Since $A S_{1}=S_{1}$ for any $A \in A u t_{S_{1}}\left(\mathbb{Z}_{2}^{n}\right)$, we have $A\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)=$ $\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}, v_{i_{n+1}}\right)$, which implies that $A=\left[v_{i_{1}}, \ldots, v_{i_{n}}\right]$. Define the map $\sigma: A u t_{s_{1}}\left(\mathbb{Z}_{2}^{n}\right) \rightarrow \mathcal{S}_{n+1}$ by setting $\sigma_{A}=\left(1, i_{1}\right)\left(2, i_{2}\right) \ldots\left(n+1, i_{n+1}\right)$. In fact, σ is well defined since $i_{1}, i_{2}, \ldots, i_{n+1}$ is a reset of $1,2, \ldots, n, n+1$. It is clear that $\sigma_{A}=\sigma_{B}$ if and only if $\left(v_{\sigma_{A}(1)}, \ldots, v_{\sigma_{A}(n)}\right)=\left(v_{\sigma_{B}(1)}, \ldots, v_{\sigma_{B}(n)}\right)$ if and only if $A=B$. Besides, for each $\theta \in \mathcal{S}_{n+1}$, we construct $A=\left[v_{\theta(1)}, \ldots, v_{\theta(n)}\right]$ and thus $A\left(v_{1}, \ldots, v_{n+1}\right)=\left(v_{\theta(1)}, \ldots, v_{\theta(n+1)}\right)$ which gives $\sigma_{A}=\theta$. Therefore, σ is a bijection. Furthermore, since $v_{\sigma_{A B}(i)}=(A B) v_{i}=A\left(B v_{i}\right)=A v_{\sigma_{B}(i)}=v_{\sigma_{A} \sigma_{B}(i)}$ for any $1 \leq i \leq n+1$, we have $\sigma_{A B}=\sigma_{A} \sigma_{B}$. It leads to that σ is an isomorphism and thus $A u t_{s_{1}}\left(\mathbb{Z}_{2}^{n}\right) \cong \mathcal{S}_{n+1}$.

Combining Lemmas 2.3 and 3.1, we get the automorphism group of the folded hypercube $\Gamma_{n, 1}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{1}\right)$, where $S_{1}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{1}\right\}$ and $\epsilon_{1}=e_{1}+\cdots+e_{n}$.

Theorem 3.2. The automorphism group of the folded hypercube $\Gamma_{n, 1}$ is given by

$$
\operatorname{Aut}\left(\Gamma_{n, 1}\right)= \begin{cases}\mathcal{S}_{4} & \text { if } n=2 \\ \left(\mathcal{S}_{4} \times \mathcal{S}_{4}\right) \rtimes \mathcal{S}_{2} & \text { if } n=3 \\ \mathbb{Z}_{2}^{n} \rtimes \mathcal{S}_{n+1} & \text { if } n \geq 4\end{cases}
$$

Proof. It is easy to see that $\Gamma_{2,1} \cong K_{4}$ and $\Gamma_{3,1} \cong K_{4,4}$. Therefore, we have $\operatorname{Aut}\left(\Gamma_{2,1}\right)=\operatorname{Aut}\left(K_{4}\right)=\mathcal{S}_{4}$ and $\operatorname{Aut}\left(\Gamma_{3,1}\right)=\operatorname{Aut}\left(K_{4,4}\right)=\left(\mathcal{S}_{4} \times \mathcal{S}_{4}\right) \rtimes \mathcal{S}_{2}$. For $n \geq 4$, by Lemmas 2.3 and 3.1, we have $\operatorname{Aut}\left(\Gamma_{n, 1}\right)=\mathbb{Z}_{2}^{n} \rtimes \mathcal{S}_{n+1}$.

A Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is called perfect if $T=\left\{t_{1}, t_{2}, \ldots, t_{n}, t\right\}$ such that $\left\{t_{1}, \ldots, t_{n}\right\}$ is a basis of \mathbb{Z}_{2}^{n} and $t=t_{1}+\cdots+t_{n}$. Clearly, $\Gamma_{n, 1}$ is perfect.

Theorem 3.3. Let $\Gamma_{n, 1}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{1}\right)$ be the Cayley graph with generating set $S_{1}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{1}\right\}$ where $\epsilon_{1}=$ $e_{1}+\cdots+e_{n}$. Then the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is isomorphic to $\Gamma_{n, 1}$, if and only if $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is perfect.

Proof. If $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is perfect, then $T=\left\{t_{1}, \ldots, t_{n}, t\right\}$ where t_{1}, \ldots, t_{n} is a basis of \mathbb{Z}_{2}^{n} and $t=t_{1}+\cdots+t_{n}$. Now we define $\varphi(x)=A x$ for any $x \in V\left(\Gamma_{n, 1}\right)$ where $A=\left[t_{1}, \ldots, t_{n}\right]$. It is clear that $A S_{1}=T$. Since $\left\{t_{1}, \ldots, t_{n}\right\}$ is a basis of \mathbb{Z}_{2}^{n}, we have $A \in G L\left(n, F_{2}\right)$. Therefore, φ is a bijection between $V\left(\Gamma_{n, 1}\right)$ and $V\left(\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)\right)$. Moreover, $\varphi(x) \sim \varphi(y)$ in $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ if and only if $\varphi(y)-\varphi(x)=A(y-x) \in T$ if and only if $(y-x) \in A^{-1} T=S_{1}$ if and only if $x \sim y$ in Γ_{1}. It leads to that $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right) \cong \Gamma_{n, 1}$.

Conversely, assume that $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is a Cayley graph isomorphic to $\Gamma_{n, 1}$. Let φ be the isomorphism from $\Gamma_{n, 1}$ to $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ with $\varphi(0)=0$. We have $T=\varphi\left(S_{1}\right)=\left\{\varphi\left(e_{1}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{n}\right), \varphi\left(\epsilon_{1}\right)\right\}$. Since $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is also connected, we have $\mathbb{Z}_{2}^{n}=\langle T\rangle$. Therefore, there is a basis of \mathbb{Z}_{2}^{n} contained in T. Without loss of generality, we may assume that $\varphi\left(e_{1}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{n}\right)$ is a basis. Thus, we have

$$
\varphi\left(\epsilon_{1}\right)=\varphi\left(e_{i_{1}}\right)+\varphi\left(e_{i_{2}}\right)+\cdots+\varphi\left(e_{i_{s}}\right)
$$

where $i_{1}, i_{2}, \ldots, i_{s}$ are distinct. Now, it only needs to show that $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}=\{1,2, \ldots, n\}$, i.e., $s=n$. Note that $\left\{0, \varphi\left(e_{i_{1}}\right), \varphi\left(e_{i_{1}}\right)+\varphi\left(e_{i_{2}}\right), \ldots, \varphi\left(e_{i_{1}}\right)+\cdots+\varphi\left(e_{i_{s-1}}\right), \varphi\left(\epsilon_{1}\right)\right\}$ forms a cycle of length $s+1$ in Cay $\left(\mathbb{Z}_{2}^{n}, T\right)$. It follows that $\left\{0, e_{i_{1}}, \varphi^{-1}\left(\varphi\left(e_{i_{1}}\right)+\varphi\left(e_{i_{2}}\right)\right), \ldots, \varphi^{-1}\left(\varphi\left(e_{1}\right)+\cdots+\varphi\left(e_{i_{s-1}}\right)\right), \epsilon_{1}\right\}$ is a cycle in $\Gamma_{n, 1}$. Therefore, for $2 \leq k \leq s-1$, we have

$$
\varphi^{-1}\left(\varphi\left(e_{i_{1}}\right)+\cdots+\varphi\left(e_{i_{k}}\right)\right)=\varphi^{-1}\left(\varphi\left(e_{i_{1}}\right)+\cdots+\varphi\left(e_{i_{k-1}}\right)\right)+v_{k}
$$

and $\epsilon_{1}=\varphi^{-1}\left(\varphi\left(e_{i_{1}}\right)+\cdots+\varphi\left(e_{i_{s-1}}\right)\right)+v_{s}$, where $v_{2}, \ldots, v_{s} \in\left\{e_{1}, e_{2}, \ldots, e_{n}, \epsilon_{1}\right\}$. Thus, we have

$$
\epsilon_{1}=v_{1}+v_{2}+\cdots+v_{s}
$$

where $v_{1}=e_{i_{1}}$ and $v_{2}, \ldots, v_{s} \in\left\{e_{1}, \ldots, e_{n}, \epsilon_{1}\right\}$. Note that $v_{1}, v_{2}, \ldots, v_{s}$ may be not distinct, and $2 v_{j}=0$ for any $1 \leq j \leq s$. Each term appears even times vanishes and we have

$$
\epsilon_{1}=v_{1}^{\prime}+v_{2}^{\prime}+\cdots+v_{l}^{\prime}
$$

where $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t}^{\prime}\right\} \subseteq\left\{e_{1}, \ldots, e_{n}, \epsilon_{1}\right\}$ and $l \leq s$. If there is one of $v_{1}^{\prime}, \ldots, v_{l}^{\prime}$ equal to ϵ_{1}, say $v_{l}^{\prime}=\epsilon_{1}$, then $v_{1}^{\prime}+v_{2}^{\prime}+\cdots+v_{l-1}^{\prime}=0$. It is a contradiction because $v_{1}^{\prime}, \ldots, v_{l-1}^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$, which is linear independent. Therefore, we have $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{l}^{\prime}\right\} \subseteq\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. It follows that there are l positions of ϵ_{1} is 1 , and thus $l=s=n$.

The proof is completed.
Recall that, if $\Gamma=\Gamma_{1} \square \Gamma_{2}$, then Γ_{1} and Γ_{2} are called factors of Γ. Two graphs Γ_{1} and Γ_{2} are called relatively prime if there is no non-trivial graph that is a factor of both of them.

Lemma 3.4 ($[12$, Corollary 6.12$]$). If $\Gamma=\Gamma_{1} \square \Gamma_{2}$ where Γ_{1}, Γ_{2} are two connected relative prime graphs, then $\operatorname{Aut}(\Gamma)=\operatorname{Aut}\left(\Gamma_{1}\right) \times \operatorname{Aut}\left(\Gamma_{2}\right)$.

Lemma 3.5. For any $n \geq 2$, the graph $\Gamma_{n, 1}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{1}\right)$ has no factor K_{2}.
Proof. Suppose to the contrary that $\Gamma_{n, 1}=K_{2} \square \Gamma$. Therefore, the vertex set of $\Gamma_{n, 1}$ can be partitioned as $V\left(\Gamma_{n, 1}\right)=V \cup V^{\prime}$, where each of V and V^{\prime} induces a graph isomorphic to Γ. Moreover, each vertex in V (resp. V^{\prime}) has exactly one neighbor in V^{\prime} (resp. V). We will use this fact frequently. Without loss of generality, assume that $0 \in V$. Therefore, all but one neighbors of 0 are in V. Without loss of generality, assume that $e_{1} \in V^{\prime}$ and $e_{2}, \ldots, e_{n}, \epsilon_{1} \in V$.

In what follows, we show that, for any $2 \leq i \leq n-1, e_{i}+e_{i+1}+\cdots+e_{n} \in V^{\prime}$ and $e_{1}+e_{i}+e_{i+1}+\cdots+e_{n} \in V$. Clearly, $e_{1}+e_{2}+\cdots+e_{n}=\epsilon_{1} \in V$. Note that $e_{1} \in V^{\prime}$ and 0 is the only neighbor of e_{1} in V. We have $e_{2}+e_{3}+\cdots+e_{n} \in V^{\prime}$ because $e_{1} \sim e_{2}+e_{3}+\cdots+e_{n}$. Therefore, the statement is true for $i=2$. Now we assume that the statement is true for i. It suffices to show that the statement is also true for the case of $i+1$. Note that $e_{i}+e_{i+1}+\cdots+e_{n} \in V^{\prime}$ and $e_{1}+e_{i}+\cdots+e_{n}$ is the only neighbor of $e_{i}+e_{i+1}+\cdots+e_{n}$ in V. We have $e_{i+1}+\cdots+e_{n} \in V^{\prime}$ because $e_{i}+e_{i+1}+\cdots+e_{n} \sim e_{i+1}+\cdots+e_{n}$.

By the arguments above, we have $e_{n-1}+e_{n} \in V^{\prime}$. However, if $n=2$, then $e_{n-1}+e_{n}=\epsilon_{1} \in V$, a contradiction; if $n \geq 3$, then $e_{n-1}+e_{n} \sim e_{n-1} \in V$ and $e_{n-1}+e_{n} \sim e_{n} \in V$, which contradicts the fact that $e_{n-1}+e_{n}$ has exactly one neighbor in V.

This completes the proof.
Now we are in the position to present one of our main results.
Theorem 3.6. The automorphism group of $\Gamma_{n, k}$ is given by

$$
\operatorname{Aut}\left(\Gamma_{n, k}\right) \cong \begin{cases}\mathcal{S}_{4} & \text { if } n=2 \text { and } k=1 \\ \mathcal{S}_{2} \times \mathcal{S}_{4} & \text { if } n=3 \text { and } k=2 \\ \left(\mathcal{S}_{4} \times \mathcal{S}_{3}\right) \rtimes \mathcal{S}_{2} & \text { if } n=3 \text { and } k=1 \\ \left(\mathbb{Z}_{2}^{k-1} \rtimes \mathcal{S}_{k-1}\right) \times \mathcal{S}_{4} & \text { if } n \geq 4 \text { and } k=n-1 \\ \left(\mathbb{Z}_{2}^{k-1} \rtimes \mathcal{S}_{k-1}\right) \times\left(\left(\mathcal{S}_{4} \times \mathcal{S}_{4}\right) \rtimes \mathcal{S}_{2}\right) & \text { if } n \geq 4 \text { and } k=n-2 \\ \left(\mathbb{Z}_{2}^{k-1} \rtimes \mathcal{S}_{k-1}\right) \times\left(\mathbb{Z}_{2}^{n-k+1} \rtimes \mathcal{S}_{n-k+2}\right) & \text { if } n \geq 4 \text { and } k \leq n-3\end{cases}
$$

Proof. The cases of $n=2, k=1$ and $n=3, k=1$ were considered in Theorem 3.2. If $n=3$ and $k=2$, then $\Gamma_{3,2} \cong$ $K_{2} \square K_{4}$. It is clear that K_{2} is not a factor of K_{4}. Lemma 3.4 implies that $\operatorname{Aut}\left(\Gamma_{3,2}\right) \cong \operatorname{Aut}\left(K_{2}\right) \times \operatorname{Aut}\left(K_{4}\right)=\mathcal{S}_{2} \times \mathcal{S}_{4}$. Now we consider the case of $n \geq 4$. Let $S_{k}^{(1)}=\left\{e_{1}, e_{2}, \ldots, e_{k-1}\right\}$ and $S_{k}^{(2)}=\left\{e_{k}, e_{k+1}, \ldots, e_{n}, \epsilon_{k}\right\}$. It is clear that $S_{k}=$ $S_{k}^{(1)} \cup S_{k}^{(2)}$ and $\mathbb{Z}_{2}^{n}=\left\langle S_{k}^{(1)}\right\rangle \cdot\left\langle S_{k}^{(2)}\right\rangle$. Therefore, Lemma 2.5 indicate that $\Gamma_{n, k}=\operatorname{Cay}\left(\left\langle S_{k}^{(1)}\right\rangle, S_{k}^{(1)}\right) \square \operatorname{Cay}\left(\left\langle S_{k}^{(2)}\right\rangle, S_{k}^{(2)}\right)$. Note that $\operatorname{Cay}\left(\left\langle S_{k}^{(1)}\right\rangle, S_{k}^{(1)}\right) \cong Q_{k-1}$ and $\operatorname{Cay}\left(\left\langle S_{k}^{(1)}\right\rangle, S_{k}^{(1)}\right) \cong \Gamma_{n-k+1,1}$. We have $\Gamma_{n, k} \cong Q_{k-1} \square \Gamma_{n-k+1,1}$. Since Q_{k-1} is the Cartesian product of $k-1 k_{2}$ and Lemma 3.5 implies that K_{2} is not a fact of $\Gamma_{n-k+1,1}$, Lemma 3.4 indicates that $\operatorname{Aut}\left(\Gamma_{n, k}\right) \cong \operatorname{Aut}\left(Q_{k-1}\right) \times \operatorname{Aut}\left(\Gamma_{n-k+1,1}\right)$. Note that $A u t\left(Q_{k-1}\right)=\mathbb{Z}_{2}^{k-1} \rtimes \mathcal{S}_{k-1}$ [9] and $A u t\left(\Gamma_{n-k+1,1}\right)$ is given in Theorem 3.2. The result follows.

A Cayley graph Cay $\left(\mathbb{Z}_{2}^{n}, T\right)$ is called k-perfect if $T=\left\{t_{1}, t_{2}, \ldots, t_{n}, t\right\}$ such that t_{1}, \ldots, t_{n} is a basis of \mathbb{Z}_{2}^{n} and t is a sum of $n-k+1$ elements of $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, i.e., $t=t_{i_{1}}+\cdots+t_{i_{n-k+1}}$. Particularly, when $k=1$, the concept of 1-perfect is coincident with the concept of perfect. It is clear that $\Gamma_{n, k}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{k}\right)$ is k-perfect, where $S_{k}=\left\{e_{1}, \ldots, e_{n}, \epsilon_{k}\right\}$ and $\epsilon_{k}=e_{k}+e_{k+1}+\cdots+e_{n}$.
Theorem 3.7. The Cayley graph $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is isomorphic to $\Gamma_{n, k}$ if and only if Γ is k-perfect.
Proof. From Lemma 2.5, we have $\Gamma_{n, k}=Q_{k-1} \square \Gamma_{n-k+1,1}$. Note that Q_{k-1} is a $k-1$ Cartesian products of K_{2} and Lemma 3.5 indicate that $\Gamma_{n-k-1,1}$ has no factor K_{2}. It implies that $\Gamma_{n, k} \neq \Gamma_{n, l}$ if $k \neq l$.

Assume $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right) \cong \Gamma_{n, k}$. By the connectivity of $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right), T$ contains a basis, and the other element in T is a sum of l distinct elements in the basis. Then, $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right) \cong \Gamma_{n, l}$, and hence $\Gamma_{n, l} \cong \Gamma_{n, k}$. It follows that $l=k$, that is, $\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ is k-perfect.

We know that up to isomorphism there is only one n-regular connected Cayley graph over \mathbb{Z}_{2}^{n}. Theorem 3.7 implies the following result.

Corollary 3.8. Up to isomorphism, $\Gamma_{n, 1}, \Gamma_{n, 2}, \ldots, \Gamma_{n, n-1}$ are the only $(n+1)$-regular connected Cayley graphs over \mathbb{Z}_{2}^{n}.

4. The G-DS property of $Q_{n, k}$

For a graph Γ with vertex set $V(\Gamma)=\left\{v_{1}, \ldots, v_{n}\right\}$, its adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ is the $n \times n$ matrix with $a_{i j}=1$ if $v_{i} \sim v_{j}$ in Γ and $a_{i j}=0$ otherwise. The eigenvalues of A are called the eigenvalues of Γ and the set of such eigenvalues together with their multiplicities forms the spectrum of Γ, denoted by $\operatorname{Spec}(\Gamma)$. A graph Γ is called determined by its spectrum (DS for short) if, for any graph $\Gamma^{\prime}, \operatorname{Spec}\left(\Gamma^{\prime}\right)=\operatorname{Spec}(\Gamma)$ implies that $\Gamma^{\prime} \cong \Gamma$. The question 'which graphs are DS ?' goes back for about half a century, and originates from chemistry. In 1956, Günthard and Primas [8] raised the question in a paper that relates the theory of graph spectra to Hückel's theory from chemistry. For more details about this problem, we would like to refer the reader to [5].

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph over G. To investigate whether the Cayley graph Γ is DS, it should be first discussed whether it is determined by its spectrum among the Cayley graphs over G. This thought leads to the concept of 'G-DS'. A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is called G-spectrum determined (G-DS for short) if, for any $\Gamma^{\prime}=\operatorname{Cay}(G, T), \operatorname{Spec}\left(\Gamma^{\prime}\right)=\operatorname{Spec}(\Gamma)$ implies that $\Gamma^{\prime} \cong \Gamma$. Clearly, if a Cayley graph is DS then it must be G-DS, but the converse is not true. In this part, we discuss the G-DS property of $Q_{n, k}$. Note that the spectra of Cayley graphs over abelian groups are given by Babai.

Lemma 4.1 ([3]). Let G be an abelian group of order n and S a subset of G such that $1 \notin S$ and $S^{-1}=S$. If $\chi_{1}, \ldots, \chi_{n}$ are all irreducible characters of G, then the eigenvalues of the Cayley graph Cay (G, S) are $\lambda_{i}=\sum_{s \in S} \chi_{i}(s)$ for $1 \leq i \leq n$.

According to Lemma 4.1, to get the eigenvalues of $Q_{n, k}=\Gamma_{n, k}$, we should know the irreducible characters of \mathbb{Z}_{2}^{n}.
Lemma 4.2 ([14]). The irreducible characters of \mathbb{Z}_{2}^{n} are $\chi_{i_{1}, \ldots, i_{n}}$ for $i_{j} \in\{0,1\}$ and $1 \leq j \leq n$, where $\chi_{i_{1}, \ldots, i_{n}}(v)=$ $(-1)^{a_{1} i_{1}+\cdots+a_{n} i_{n}}$ for $v=\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathbb{Z}_{2}^{n}$.

Now we are ready to give the eigenvalues of $\Gamma_{n, k}$.

Lemma 4.3. The eigenvalues of $\Gamma_{n, k}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, S_{k}\right)$ consist of $\lambda_{t, o}$ and $\lambda_{t, e}$ for $0 \leq t \leq n$ with multiplicities $\eta_{t, 0}$ and $\eta_{t, e}$, respectively, where

$$
\left\{\begin{array} { l }
{ \lambda _ { t , o } = n - 2 t - 1 } \\
{ \lambda _ { t , e } = n - 2 t + 1 }
\end{array} \quad \text { and } \left\{\begin{array}{l}
\eta_{t, o}=\sum_{s=0}^{t}\binom{k-1}{t-2 s-1}\binom{n-k+1}{2 s+1} \\
\eta_{t, e}=\sum_{s=0}^{t}\binom{k-2 s}{t-2 s}\binom{n-k+1}{2 s}
\end{array} .\right.\right.
$$

Proof. From Lemmas 4.1 and 4.2, the eigenvalues of $\Gamma_{n, k}$ are given by

$$
\lambda_{i_{1}, \ldots, i_{n}}=\sum_{v \in S_{k}} \chi_{i_{1}, \ldots, i_{n}}(v)=\sum_{j=1}^{n} \chi_{i_{1}, \ldots, i_{n}}\left(e_{j}\right)+\chi_{i_{1}, \ldots, i_{n}}\left(\epsilon_{k}\right)
$$

where $\chi_{i_{1}, \ldots, i_{n}}$ is the irreducible characters of \mathbb{Z}_{2}^{n} given in Lemma 4.2. Denote by $\Lambda_{t}=\left\{\chi_{i_{1}, \ldots, i_{n}} \mid i_{1}+\cdots+i_{n}=t\right\}$ for $0 \leq t \leq n$. It is clear that $\eta_{t}=\left|\Lambda_{t}\right|=\binom{n}{t}$. Furthermore, denote by $\Lambda_{t, o}=\left\{\chi_{i_{1}, \ldots, i_{n}} \in \Lambda_{t} \mid i_{1}+\cdots+i_{n} \equiv 1(\right.$ $\bmod 2)\}$ and $\Lambda_{t, e}=\left\{\chi_{i_{1}, \ldots, i_{n}} \in \Lambda_{t} \mid i_{1}+\cdots+i_{n} \equiv 0(\bmod 2)\right\}$. It is clear that $\eta_{t, o}=\left|\Lambda_{t, o}\right|=\sum_{s=0}^{t}\binom{k-1}{t-2 s-1}\binom{n-k+1}{2 s+1}$ and $\eta_{t, e}=\left|\Lambda_{t, o}\right|=\sum_{s=0}^{t}\binom{k-1}{t-2 s}\binom{n-k+1}{2 s}$. Note that $\chi_{i_{1}, \ldots, i_{n}}\left(e_{j}\right)=(-1)^{i_{j}}$ and $\chi_{i_{1}, \ldots, i_{n}}\left(\epsilon_{k}\right)=(-1)^{i_{k}+\cdots+i_{n}}$. It is seen that, for any $\chi_{i_{1}, \ldots, i_{n}} \in \Lambda_{t}$,

$$
\begin{aligned}
& \sum_{j=1}^{n} \chi_{i_{1}, \ldots, i_{n}}\left(e_{j}\right)+\chi_{i_{1}, \ldots, i_{n}}\left(\epsilon_{k}\right) \\
= & \sum_{j=1}^{n}(-1)^{i_{j}}+(-1)^{i_{k}+\ldots+i_{n}} \\
= & \left\{\begin{array}{ll}
n-2 t-1, & \text { if } \chi_{i_{1}, \ldots, i_{n}} \in \Lambda_{t, o} \\
n-2 t+1, & \text { if } \chi_{i_{1}, \ldots, i_{n}} \in \Lambda_{t, e}
\end{array} .\right.
\end{aligned}
$$

It means that all characters in $\Lambda_{t, o}$ lead to the same eigenvalue $\lambda_{t, o}=n-2 t-1$ and all characters in $\Lambda_{t, e}$ lead to the same eigenvalue $\lambda_{t, e}=n-2 t+1$. This completes the proof.
From Lemma 4.3, it is easy to see that $\lambda_{1, e}=n-1$ is an eigenvalue of $\Gamma_{n, k}$ with multiplicity $k-1$. Therefore, the following result follows immediately.

Corollary 4.4. The Cayley graphs $\Gamma_{n, k}$ and $\Gamma_{n, k^{\prime}}$ cannot share the same spectrum if $k \neq k^{\prime}$.
Now we are ready to present the main result of this part.
Theorem 4.5. The enhanced hypercube $\Gamma_{n, k}$ is \mathbb{Z}_{2}^{n}-DS.
Proof. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n}, T\right)$ be the Cayley graph such that $\operatorname{Spec}(\Gamma)=\operatorname{Spec}\left(\Gamma_{n, k}\right)$. It leads to that Γ is also $n+1$-regular because the two graphs share the same largest eigenvalue which is the valency of them. By Corollary 3.8, it is seen that $\Gamma^{\prime} \cong \Gamma_{n, k^{\prime}}$. However, Corollary 4.4 implies that $\operatorname{Spec}\left(\Gamma_{n, k}\right)=\operatorname{Spec}\left(\Gamma_{n, k^{\prime}}\right)$ if and only if $k=k^{\prime}$. It follows the result.

5. Conclusion

The enhanced hypercube $Q_{n, k}$ for $1 \leq k \leq n-1$ is an important network topology for parallel processing computer systems. It is proved that a message routed algorithm can always follow a shortest path in any enhanced hypercube. Besides, though the hardware cost to construct enhanced hypercubes is greater than that of the normal hypercubes, the overhead is negligible when the order is large, and thus is more cost-effective when compared to a normal hypercube [15]. Therefore, the structural properties, such as the connectivity, the diameter and so on, of enhanced hypercubes play a very important role in the interconnection network. It is effective to obtain the structural properties of a graph from its algebraic properties. As an important algebraic property, the automorphism group of a graph not only reveals the symmetry of the graph but also reflects the complexity of the construction of the graph. In this paper, we completely determine the automorphism group of the enhanced hypercube $Q_{n, k}$ by regarding $Q_{n, k}$ as a Cayley graph over \mathbb{Z}_{2}^{n}. Moreover, we prove that all Cayley graphs over \mathbb{Z}_{2}^{n} isomorphic to $Q_{n, k}$ must be the so called k-perfect Cayley graphs. Furthermore, we show that no two distinct enhanced hypercube can share the same spectrum, and $Q_{n, k}$ is determined by its spectrum among all Cayley graphs over \mathbb{Z}_{2}^{n}.

Acknowledgement

The authors are very grateful to the referees for their valuable comments and corrections, especially, for the helpful suggestion to prove Theorem 3.6.

References

[1] J.L. Alperin, R.B. Bell, Group and Representations, Springer, New York, 1995.
[2] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42.
[3] L. Babai, Spectra of Cayley graphs, J. Combin. Theory (Series B) 27 (1979) 182-189.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[5] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) $241-272$.
[6] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[7] P.A. Grillet, Abstract Algebra, Springer, New York, 2007.
[8] Hs.H. Günthard, H. Primas, Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1956) 1645-1653.
[9] F. Harary, The automorphism group of a hypercube, J. Universal Computer Sci. 6 (2000) 136-138.
[10] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes, Morgan Kaufmann, 1992.
[11] S.M. Mirafzal, Some other algebraic properties of folded hypercubes, Ars Combin. 124 (2016) 153-156.
[12] H. Richard, I. Wilfried, K. Sandi, Handbook of Product Graphs (Second Edition), CRC Press, 2016.
[13] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (1988) 867-872.
[14] J.P. Serre, Linear Representation of Finite Groups, Springer-Verlag, New York, 1997. Translate from the second French edition by L. Scott, Granduate Texts in Mathematics, Vol. 42.
[15] N.F. Tzeng, S. Wei, Enhanced hypercubes, IEEE Transactions on Parallel and Distributed systems 3 (1991) 284-294.
[16] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[17] J.M. Xu, M.J. Ma, Cycles in folded hypercubes, Appl. Math. Lett. 19 (2006) 140-145.
[18] J.M. Xu, M.J. Ma, Algebraic properties and panconnectivity of folded hypercubes, Ars Combin. 95 (2010) 179-186.
[19] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319.

[^0]: 2010 Mathematics Subject Classification. Primary 05C25; Secondary 05C60, 05C50
 Keywords. enhanced hypercube; Cayley graphs; automorphism; isomorphism; spectrum
 Received: 04 September 2019; Revised: 21 January 2020; Accepted: 03 May 2020
 Communicated by Paola Bonacini
 Research supported by NSFC Grant No. 11671344.
 Email addresses: lulu549588@hotmail.com (Lu Lu), huangqxmath@163.com (Qiongxiang Huang)

