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Abstract. The paper is devoted to prove a few fixed point theorems for operators acting in WC–Banach
algebras and satisfying some conditions expressed in terms of a generalized Lipschitz continuity and
measures of weak noncompactness. Moreover, the assumptions imposed on the mentioned operators are
formulated with help of weak topology and weak sequential continuity. Our fixed point results will be
illustrated by proving the existence of solutions of an infinite system of nonlinear integral equations.

1. Introduction

The principal aim of the paper is to present a few results on the existence of fixed points of operators
dealing on Banach algebras. More precisely, we will work with operators having the form Tx = AxBx + Cx,
where A, B, C are defined on subsets of a given Banach algebra and satisfy some conditions expressed in
terms of a generalized Lipschitz continuity or the contractivity with respect to the De Blasi measure of weak
noncompactness. But the main assumption exploited in our considerations is imposed on a Banach space
X. Namely, it is required that X is the so-called WC–Banach algebra i.e., X is a Banach algebra in which
the product of two weakly compact subsets of X is weakly compact. This concept was introduced quite
recently in [6] and it turned out to be very fruitful in investigations of some problems of operator theory
under weak topology features [14].

In the present paper we will also use conditions describing some other properties of operators acting
in Banach spaces. Those conditions are denoted by (H1) and (H2) and they allows us to distinguish some
classes of operators which transform each weakly convergent sequence in a Banach space X into a sequence
containing a subsequence being strongly or weakly convergent in X, respectively.
The mentioned conditions (H1) and (H2) were used earlier by other authors but they play a specially
important role in our considerations conducted in this paper.

The investigations of the paper will be illustrated by some examples showing the applicability and the
usefulness of our results. Moreover, we provide an example indicating that our results are applicable in
the theory of nonlinear integral equations.

Finally, let us mention that results obtained in the paper generalize a few ones contained in the papers
[2, 6, 12, 15], for example.
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2. Preliminaries and auxiliary facts

In this section we establish the notation used in the paper and we provide a few auxiliary facts which
will be needed in our considerations. Moreover, we give here definitions of basic concepts applied in our
study and we also indicated some essential properties of the concepts appearing in our reasonings.

Throughout the paper we denote by R the set of real numbers. The symbol N stands for the set of
natural numbers (positive integers). By the symbol X we will denote a Banach space endowed with the
norm || · ||X and with zero element θ. In general, we write || · || in place of || · ||X. For r > 0 the symbol Br
denotes the closed ball centered at θ and with radius r and D(A) denotes the domain of an operator A. By
the symbolMX we will denote the collection of all nonempty bounded subsets of X whileNW stands for its
subfamily consisting of all relatively weakly compact sets. Moreover, for an arbitrary subset M of the space

X the symbol M
W

will stand for the weak closure of M and the symbol convM denotes the convex hull of M.
We will also write ConvM to denote closed convex hull of M. Apart from this we use the standard notation
M1 + M2, λM(λ ∈ R) for algebraic operations on sets.
We use the standard notation→ to denote the strong convergence and ⇀ to denote the weak convergence
in X.
Further, let us recall the concept of the De Blasi measure of weak noncompactness [9] being the function
ω : MX → R+ = [0,∞), defined in the following way

ω(M) = inf{r > 0 : there exists W ∈NW such that M ⊂W + Br}.

For our purpose we recall some basic properties of the measure of weak noncompactness [4, 9].

Lemma 2.1. The De Blasi measure of weak noncompactness ω satisfies the following conditions:

(i) M1 ⊂M2 ⇒ ω(M1) ≤ ω(M2).
(ii) ω(M) = 0⇔M ∈NW .

(iii) ω
(
M

W
)

= ω(M).

(iv) ω(convM) = ω(M).
(v) ω(M1 + M2) ≤ ω(M1) + ω(M2).

(vi) ω(λM) = |λ|ω(M) for λ ∈ R.
(vii) ω(M1 ∪M2) = max{ω(M1), ω(M2)}.

(viii) If (Mn) is a decreasing sequence of nonempty, bounded and weakly closed subsets of X such that lim
n→∞

ω(Mn) = 0,

then the set M∞ =
∞⋂

n=1
Mn is nonempty and weakly compact.

It may be shown that ω(B1) = 1 provided the space X is nonreflexive [9]. Obviously ω(B1) = 0 in the case
where X is a reflexive Banach space.

Now, we recall the definitions of some classes of operators acting in a Banach space X.

Definition 2.2. An operator A : D(A)→ X (D(A) ⊂ X) is said to be ω-contraction (or ω-contractive) if it maps
bounded sets into bounded sets and there exists a constant k ∈ [0, 1) such that ω(AS) ≤ kω(S) for any set
S ⊂ D(A) and such that S ∈MX.
An operator A : D(A)→ X is calledω-condensing if it maps bounded sets into bounded sets andω(AS) < ω(S)
for all sets S ⊂ D(A) such that S ∈MX and ω(S) > 0.

Let us notice that every ω-contractive operator is ω-condensing.

In what follows we will always assume that A : D(A) ⊂ X→ X is a given operator.
The basic concept concerning operators involved in our considerations are described in the below given
definition.
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Definition 2.3. We will say that the operator A satisfies the condition (H1) if for any sequence (xn) ⊂ D(A)
which is weakly convergent in X, the sequence (Axn) has a strongly convergent subsequence in X.
We say that the operator A satisfies the condition (H2) if for each weakly convergent sequence (xn) ⊂ D(A)
the sequence (Axn) contains a weakly convergent subsequence in X.

Let us mention that the conditions (H1) and (H2) were considered in [1, 12, 14, 15]. We refer to monograph
[14] and to review article [8] for some properties of operators satisfying the conditions (H1) and (H2).
Below we provide a few remarks concerning operators satisfying the conditions (H1) and (H2) (cf. [8,14]).

At first, let us assume that the operator A : D(A) ⊂ X → X satisfies the condition (H1). Then, the image
AY of any relatively weakly compact subset Y of D(A) is relatively compact.
Indeed, let us take a sequence (yn) ⊂ AY. Then, there exists a sequence (xn) ⊂ Y such that yn = Axn for
n = 1, 2, .... Since the set Y is relatively weakly compact, the sequence (xn) contains a subsequence (xkn ) being
weakly convergent (to an element x). Next, consider the sequence (Axkn ). In view of the condition (H1) we
infer that there exists a subsequence (ypn ) of the sequence (Axkn ) (in other words, there exists a subsequence
(ypn ) of the sequence (yn) which is strongly convergent in the space X). This proves our claim.

Next, let us observe that if the operator A : D(A) ⊂ X → X satisfies the condition (H2) then the image
of an arbitrary weakly compact set (relatively weakly compact) is also weakly compact (relatively weakly
compact).
Obviously, the proof of this assertion can be conducted similarly as above.
It is easily seen that any operator A satisfying the condition (H1) satisfies also the condition (H2). Apart
from this, if X is a reflexive Banach space and the operator A : D(A) ⊂ X→ X is bounded (i.e., A transforms
any bounded subset of D(A) into a bounded one) then the operator A satisfies the condition (H2).

Now, we recall other definitions which will be used in our study. These definitions are related to the
Lipschitz continuity.

Definition 2.4. An operator A : D(A) ⊂ X→ X is said to be nonexpansive if

||Ax − Ay|| ≤ ||x − y||

for all x, y ∈ D(A).

Definition 2.5. An operator A : D(A) ⊂ X → X is called D-Lipschitzian if there exists a continuous and
nondecreasing function φ : R+ → R+, φ(0) = 0, and such that

||Ax − Ay|| ≤ φ(||x − y||)

for x, y ∈ D(A).

Obviously every Lipschitzian operator is D-Lipschitzian, but the converse may not be true. Moreover, if
φ(r) < r for r > 0, then the operator A is referred to as a nonlinear contraction with a contraction function φ.
For our further purposes the following lemma will be useful.

Lemma 2.6. Let A : D(A) ⊂ X → X be a D-Lipschitzian operator with the D-function φ on a Banach space X.
Moreover, we assume that A satisfies the (H2) condition. Then, for each set S ∈MX such that S ⊂ D(A) the following
inequality

ω(AS) ≤ φ(ω(S))

is satisfied.

For the proof we refer to [1].

The basic concept exploited in our investigations is the concept of WC–Banach algebra. In order to
introduce that concept let us assume that X is a Banach algebra with the operation of the multiplication of
elements x, y ∈ X denoted by xy. We will assume that for arbitrary x, y ∈ X the inequality ||xy|| ≤ ||x|| · ||y|| is
satisfied. Such a Banach algebra is sometimes called the normalized Banach algebra [3].

Definition 2.7. A Banach algebra X will be called the WC–Banach algebra if the product W ·W′ of arbitrary
weakly compact subsets W, W′ of X is weakly compact.
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Below we give a few examples of WC–Banach algebras.

Example 2.8. Let K be a Hausdorff compact space. For a given Banach algebra E denote by C(K,E) the
Banach algebra of all continuous functions acting from K into E and equipped with the supremum norm.
It may be shown that C(K,E) forms the WC–Banach algebra, provided E is a WC–Banach algebra. Indeed,
utilizing the Dobrakov theorem [10] characterizing the weak convergence in the Banach space C(K,E) we
can show (cf. [6], for example) that C(K,E) is the WC–Banach algebra.

Example 2.9. Now, let us consider the classical Banach sequence space c0 consisting of all real (or complex)
sequence converging to zero and equipped with the standard supremum (maximum) norm.
Let us define the product of two sequences x = (xn), y = (yn) ∈ c0 in the classical way:

x · y = (xn) · (yn) = (xnyn).

Observe that for x, y ∈ c0 we have:

||x · y|| = sup{|xnyn| : n ∈ N} = sup{|xn| · |yn| : n ∈ N}
≤ sup{||x|||yn| : n ∈ N} = ||x|| sup{|yn| : n ∈ N}
= ||x|| · ||y||.

Thus c0 is a Banach algebra (normalized).

We show that c0 is the WC–Banach algebra. To this end let us recall [11] that in the Banach space c0 the
sequence (xk) = ((xn

k )), where xk = (xn
k ) ∈ c0 for any k = 1, 2, ..., is convergent to an element x = (xk) ∈ c0 if

and only if the sequence (xk) is bounded and lim
n→∞

xn
k = xk for any k = 1, 2, .... In other words, the sequence

(xk) = ((xn
k )) is weakly convergent to x = (xk) ∈ c0 if only if the sequence (xk) is bounded in c0 and is

coordinatewise convergent to x = (xk).
Further, let us assume that W and W′ are weakly compact subsets of the space c0. Consider the product

W ·W′. Let us take an arbitrary sequence (zk) ⊂ W ·W′, zk = (zn
k ) for any k = 1, 2, .... This means that there

exist two sequences (xk) ⊂ W, (yk) ⊂ W′ such that zk = xkyk for any k = 1, 2, .... Since the sets W and W′ are
weakly compact, without loss of generality we can assume that xk ⇀ x and yk ⇀ y as k→∞, where x ∈W
and y ∈ W′. If we denote xk = (xn

k ), yk = (yn
k ) for each k = 1, 2, ..., and x = (xk), y = (yk), then in view of the

above quoted characterization of the weak convergence in c0 we deduce that lim
n→∞

xn
k = xk for any k = 1, 2, ....

This implies that lim
n→∞

zn
k = lim

n→∞
xn

k · yn
k = xkyk for k = 1, 2, .... Obviously, the sequence (zk) = (xk) · (yk) is

bounded in c0.
Thus we showed that the sequence (zk) is weakly convergent to the element z = x · y ∈ W ·W′. This allows
us to infer that the set W ·W′ is weakly compact in the space c0.

3. Fixed point theorems in WC–Banach algebras

In this section we are going to present the main results of our paper. Those results are connected with new
fixed point theorems for operators acting in WC–Banach algebras.
At the beginning we gather some theorems which will be needed in our investigations.

Theorem 3.1 [16]. Let S be a nonempty, closed and convex subset of a Banach space X and let A : S → S be a
continuous operator satisfying the condition (H1). If AS is relatively weakly compact then A has at least one fixed
point in S.

The next result, coming from [2], presents a generalization of that containing in Theorem 3.1.

Theorem 3.2. Let S be a nonempty, bounded, closed and convex subset of a Banach space X. Assume that A : S→ S
is a continuous map which satisfies the condition (H1). If A is ω-condensing then it has at least one fixed point in S.
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Lemma 3.3 [6]. Let M and M′ be bounded subsets of a WC–Banach algebra X. Then, the following inequality is
satisfied

ω(M ·M′) ≤ ||M′||ω(M) + ||M||ω(M′) + ω(M)ω(M′),

where the symbol ||N|| denotes the norm of a bounded set N i.e., ||N|| = sup{||x|| : x ∈ N}.

Our first result is contained in the below formulated lemma.

Lemma 3.4. Let X be a Banach algebra and let S be a nonempty subset of X. Further, assume that A,C : X→ X and
B : S→ X are operators satisfying the following conditions:

(i) A and C are D-Lipschitzian with D-functions φA and φC, respectively.
(ii) A is a regular operator on X i.e., A maps X into the set of invertible elements of X.

(iii) BS is bounded with the bound equal to a constant L.
(iv) For any r > 0 the inequality LφA(r) + φC(r) < r is satisfied.

Then the operator
(

I−C
A

)−1
B exists on BS.

Proof. Let y be an arbitrarily fixed element of the set S. Define the mapping ϕy : X→ X by putting

ϕy(x) = AxBy + Cx.

Then, in view of assumptions (i) and (iii), for arbitrary x1, x2 ∈ X we get

||ϕy(x1) − ϕy(x2)|| ≤ ||Ax1By − Ax2By|| + ||Cx1 − Cx2||

≤ ||Ax1 − Ax2||||By|| + ||Cx1 − Cx2||

≤ LφA(||x1 − x2||) + φC(||x1 − x2||)
≤ Ψ||x1 − x2||,

where Ψ(r) = LφA(r) + φC(r). It is clear that Ψ is a continuous nondecreasing function from R+ into R+

satisfying Ψ(r) < r (use hypothesis (iv)). This shows that ϕy is a Ψ-nonlinear contraction and therefore by
Boyd-Wong fixed point theorem [7] we deduce that there exists a unique fixed point xy ∈ X of the operator
ϕy i.e., the following equality is satisfied

ϕy(xy) = xy = AxyBy + Cxy.

This implies that the element xy satisfies the equation

(I − C)xy = AxyBy.

Hence, in virtue of assumption (ii) we obtain ( I − C
A

)
xy = By.

Thus, we can define the operator
(

I−C
A

)−1
on the set BS by putting( I − C

A

)−1

By = xy.

This completes the proof. �

In what follows we state and prove our main result.

Theorem 3.5. Let X be a WC–Banach algebra and let S be a nonempty, bounded, closed and convex subset of X.
Further, let A, B and C three operators such that A,C : X→ X and B : S→ X, which satisfy the following conditions:
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(i) The operators A,C satisfy the condition (H2) and are D-Lipschitzian with the D-functions φA and φC, respec-
tively.

(ii) A is a regular operator.
(iii) The operator B is continuous on S, satisfies the condition (H1) and the set BS is relatively weakly compact.
(iv) For each y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(v) For any r > 0 the following inequality is satisfied

LφA(r) + φC(r) < r,

where L = ||BS||.

Under the above assumptions the operator equation x = AxBx + Cx has at least one solution in the set S.

Proof. At the beginning let us notice that according to Lemma 3.4 the operator T =
(

I−C
A

)−1
B : S → X is

well defined.
Next, we show that TS ⊂ S. To this end take x ∈ S. Denote y = Tx. This means that

y =
( I − C

A

)−1

Bx.

Hence we get
I − C

A
y = Bx

or, equivalently

Bx =
y − Cy

Ay
.

Further, we derive that
AyBx = y − Cy

and, consequently
y = AyBx + Cy.

In view of assumption (iv) from the above equality we conclude that y ∈ S. This yields the desired inclusion
TS ⊂ S.

In what follows we prove that the operator T is continuous on the set S. Indeed, taking into account

assumption (iii) we see that it is sufficient to show that the operator
(

I−C
A

)−1
is continuous on the set BS.

Thus, let us assume that (yn) is a sequence contained in the set BS which is convergent to a point y ∈ BS.
Let us denote:

xn =
( I − C

A

)−1

yn,

x =
( I − C

A

)−1

y.

We show that xn → x as n→∞.
To prove the above announced fact let us observe that( I − C

A

)
xn = yn.

Hence, we obtain
(I − C)xn = ynAxn
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and, consequently
xn = ynAxn + Cxn. (3.1)

Similarly we can show that
x = yAx + Cx. (3.2)

Combining (3.1) and (3.2) we get

||xn − x|| ≤ ||ynAxn − yAx|| + ||Cxn − Cx||

≤ ||ynAxn − ynAx|| + ||ynAx − yAx|| + ||Cxn − Cx||

≤ LφA(||xn − x||) + ||Ax|| · ||yn − y|| + φC(||xn − x||). (3.3)

Now, keeping in mind that y ∈ S, in view of assumption (vi) we deduce that x ∈ S. Taking into account
that the set S is bounded and A is D-Lipschitzian we infer that AS is bounded. Thus there exists a constant
P > 0 such that ||Ax|| ≤ P for each x ∈ S.
Next, taking limes superior in (3.3), we obtain

lim sup
n→∞

||xn − x|| ≤ LφA(lim sup
n→∞

||xn − x||) + P · 0

+ φC(lim sup
n→∞

||xn − x||). (3.4)

Suppose that r = lim sup
n→∞

||xn − x|| > 0. Then, from (3.4) we derive the inequality

r ≤ LφA(r) + φC(r).

But this contradicts assumption (v) and yields that r = 0. Hence we infer that the operator
(

I−C
A

)−1
is

continuous on the set BS.
Now, we are going to show that the operator T satisfies the condition (H1).

In order to prove this fact assume that (xn) ⊂ S is a weakly convergent sequence. Since, in view of
assumption (iii) the operator B satisfies the condition (H1), this implies that the sequence (Bxn) contains a

strongly convergent subsequence (Bxkn ). In view of the continuity of the operator
(

I−C
A

)−1
on the set BS we

obtain that the sequence (( I − C
A

)−1

Bxkn

)
is strongly convergent i.e., the sequence (Txkn ) is strongly convergent. This means that the operator T
satisfies the condition (H1).
In the next step of our proof we show that the set TS is relatively weakly compact. At first, let us notice that
after converting of the equality

T =
( I − C

A

)−1

B

we obtain that T = ATB + CT.
Further, taking into account the properties of the De Blasi measure of weak noncompactness [9], we get

ω(TS) ≤ ω(A(TS)BS) + ω(C(TS)).

Hence, in view of Lemma 3.3, we obtain

ω(TS) ≤ ||BS||ω(A(TS)) + ||A(TS)||ω(BS)

+ ω(C(TS)). (3.5)
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In the above estimate we utilized the facts that the set BS is bounded (since BS is relatively weakly compact)
and the set TS is also bounded (since T(S) ⊂ S). Moreover, keeping in mind the assumption that the operator
A is D-Lipschitzian we deduce that the set A(TS) is bounded.

Further, in virtue of assumption (i) the operator C is D-Lipschizian and satisfies the condition (H2).
Hence, in view of Lemma 2.6 we derive the estimate

ω(C(TS)) ≤ φC(ω(TS)). (3.6)

Next, observe that according to assumption (iii) the set BS is relatively weakly compact. This yields

ω(BS) = 0. (3.7)

Now, let us notice that taking into account the boundedness of the set BS we can define the finite constant
L = ||BS||. Consequently, keeping in mind assumption (i) and Lemma 2.6, we obtain

||BS||ω(A(TS)) ≤ LφA(ω(TS)). (3.8)

Further, combining (3.6)-(3.8) and taking into account estimate (3.5), we get

ω(TS) ≤ LφA(ω(TS)) + φC(ω(TS)). (3.9)

According to the hypothesis (v), the last equations writes

ω(TS) ≤ LφA(ω(TS)) + φC(ω(TS)) < ω(TS),

which is a contradiction and therefore ω(TS) = 0.

Now the operator T satisfies the hypotheses of Theorem 3.1, so there exists x ∈ S such that x = Tx. Hence,
we obtain

x =
( I − C

A

)−1

Bx,

and consequently ( I − C
A

)
x = Bx.

From the above equality we get
x − Cx = BxAx.

Finally, we have
x = AxBx + Cx.

This completes the proof of our theorem. �

As an immediate consequence of the above theorem we derive the following corollary.

Corollary 3.6. Let S be a nonempty, bounded, closed and convex subset of a WC–Banach algebra X and let
A,C : X→ X, B : S→ X be three operators satisfying the below listed conditions:

(i) C is D-Lipschitzian with the D-function φC. Moreover, C satisfies the condition (H2).
(ii) A is nonexpansive, regular on X and satisfies the condition (H2).

(iii) The operator B is continuous, satisfies the condition (H1) and the set BS is relatively weakly compact.
(iv) For each y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(v) For any r > 0 the following inequality is satisfied

Lr + φC(r) < r,

where L = ||BS||.
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Then the operator equation x = AxBy + Cx has at least one solution in the set S.

Indeed, let us notice that the above corollary is a particular case of Theorem 3.5 if we put φA(r) = r.

Corollary 3.7. Let S be a nonempty, bounded, closed and convex subset of a WC–Banach algebra X and let C : X→ X,
B : S→ X be operators satisfying the following conditions:

(i) C is a nonlinear contraction and satisfies the condition (H2).
(ii) B is continuous, satisfies the condition (H1) and the set BS is relatively weakly compact.

(iii) For any y ∈ S the following implication holds

x = By + Cx⇒ x ∈ S.

Then, the operator equation x = Bx + Cx has at least one solution in S.

In fact, let A be the mapping defined by Ax = 1X, where 1X is the unit element of the Banach algebra
X, we see that the operator A satisfies condition (i) of Theorem 3.5 with D-function φA = 0. Obviously A
satisfies the condition (H2). Apart from this we have that the D-function φC of the operator C satisfies the
inequality φC(r) < r. Thus, our corollary follows easily from Theorem 3.5.

Our next result will be not an immediate corollary of Theorem 3.5.

Theorem 3.8. Let S be a nonempty, bounded, closed and convex subset of a Banach algebra X and let A,C : X→ X,
B : S→ X be operators satisfying the following conditions:

(i) B is continuous and ω-contraction (with a constant k ∈ [0, 1)). Moreover, B satisfies the condition (H1).
(ii) The operator A is regular and the set AS is relatively weakly compact.

(iii) The operators A and C are D-Lipschitzian with the D-functions φA, φC, respectively. Moreover, C satisfies the
condition (H2) and φC(r) < (1 − kQ)r for each r > 0, where Q = ||AS|| and kQ < 1.

(iv) For every y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(v) For any r > 0 the following inequality is satisfied

LφA(r) + φC(r) < r,

where L = ||BS||.

Then the operator equation x = AxBx + Cx has at least one solution x ∈ S.

Proof. In the similar way as in the proof of Theorem 3.5 we can show that the operator

T =
( I − C

A

)−1

B

transforms the set S into itself, is continuous and satisfies the condition (H1). Thus, in view of Theorem 3.2
it is sufficient to show that the operator T is ω-condensing. In order to prove this fact let us take a subset M
of S with ω(M) > 0. Then, we get

TM ⊂ A(TM) · BM + C(TM) .

Further, applying Lemmas 2.6 and 3.3 and keeping in mind assumptions concerning the operators A, B and
C, we obtain:

ω(TM) ≤ ω(A(TM)BM) + ω(C(TM))

≤ kQω(M) + φC(ω(TM)). (3.10)

If k = 0 then from (3.10) we obtain that

ω(TM) ≤ φC(ω(TM))
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which implies that ω(TM) = 0.
In other case, applying the inequality

φC(r) < (1 − kQ)r

for r > 0, we derive the estimate
ω(TM) < ω(M).

Observe that in both cases it is shown that the operator T is ω-condensing. Thus, the use of Theorem 3.2
ends the proof. �

The above theorem yields the following corollary.

Corollary 3.9. Assume that S is a nonempty, bounded, closed and convex subset of a WC–Banach algebra X. Let
A,C : X→ X and B : S→ X be operators satisfying the following conditions:

(i) C is nonlinear contraction with a contraction function φC. Moreover, C satisfies the condition (H2).
(ii) A is nonexpansive, regular on X and satisfies the condition (H2).

(iii) The operator B is continuous and satisfies the condition (H1).
(iv) The sets AS and BS are relatively weakly compact.
(v) For each y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(vi) For any r > 0 the following inequality is satisfied

Lr + φC(r) < r,

where L = ||BS||.

Then the operator equation x = AxBx + Cx has at least one solution x ∈ S.

Let us observe that it we put A = 1X in the above theorem (1X denotes the unit element in a WC–Banach
algebra X) then we obtain Krasnosel’skii type fixed point theorem.

Now, we formulate the final result of this section.

Theorem 3.10. Let S be a nonempty, bounded, closed and convex subset of a Banach algebra X and let A,C : X→ X
and B : S→ X be operators satisfying the following conditions:

(i) A and C are D-Lipschitzian with the D-functions φA and φC, respectively.
(ii) A is regular on X.

(iii) The operator B is continuous and satisfies the condition (H1). Moreover, the set BS is bounded.
(iv) There exists a constant k ∈ [0, 1) such that

ω(AM · BM + CM) ≤ kω(M),

for an arbitrary nonempty subset M of the set S.
(v) For every y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(vi) For any r > 0 the following inequality is satisfied

LφA(r) + φC(r) < r,

where L = ||BS||.
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Then the operator equation x = AxBx + Cx has at least one solution in the set S.

Proof. In view of assumptions (i)-(iii), (vi) and Lemma 3.4 the operator T : S → X, T =
(

I−C
A

)−1
B, is

well-defined.
We show that TS ⊂ S. To this end fix y ∈ TS. Then, there exists x ∈ S such that y = Tx. This equality can be
written in the form

y =
( I − C

A

)−1

Bx.

Hence we obtain
I − C

A
y = Bx,

which yields that y − Cy = AyBx. Thus we have

y = AyBx + Cy.

Since x ∈ S this implies, in view of assumption (v), that y ∈ S and our conclusion follows.
Further on, let us consider the sequence (Sn) consisting of subsets of the set S such that S1 = S and

Sn+1 = ConvSn for n = 1, 2, .... Obviously all sets of this sequence are nonempty, closed and convex
subsets of S. Keeping in mind that TS ⊂ S and the definition of the sequence (Sn), in view of the equality
T = AT · B + CT, we obtain:

TSn ⊂ A(TSn) · BSn + C(TSn) ⊂ ASn · BSn + CSn.

Hence we get
ω(Sn+1) = ω(ConvTSn) = ω(TSn) ≤ ω(ASn · BSn + CSn).

Further, taking into account assumption (iv), we derive the estimate

ω(Sn+1) ≤ kω(Sn).

Using the induction we infer that
ω(Sn) ≤ kn−1ω(S).

Thus lim
n→∞

ω(Sn) = 0. Hence we deduce that the set S∞ =
∞⋂

n=1
Sn is nonempty, bounded, closed, convex and

weakly compact subset of S. Obviously TS∞ ⊂ S∞ which implies that the set TS∞ is relatively weakly
compact. Similarly as in the proof of Theorem 3.5 we can show that the operator T : S∞ → S∞ is continuous
and satisfies the condition (H1) on the set S∞. Applying Theorem 3.1 we complete the proof. �

Let us point out two immediate corollaries of the result contained in Theorem 3.10.

Corollary 3.11. Assume that S is a nonempty, bounded, closed and convex subset of a WC–Banach algebra X Let
A,C : X→ X and B : S→ X be operators satisfying the following conditions:

(i) A is regular and D-Lipschitzian with the D-function φA.
(ii) C is contraction with a constant k and satisfies the condition (H2).

(iii) The sets AS and BS are relatively weakly compact.
(iv) The operator B is continuous and satisfies the condition (H1).
(v) For each y ∈ S the following implication is satisfied

x = AxBy + Cx⇒ x ∈ S.

(vi) For any r > 0 the following inequality is satisfied

LφA(r) + kr < r,

where L = ||BS||.
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Then the operator equation x = AxBx + Cx has at least one solution in S.

Corollary 3.12. Let S be a nonempty, bounded, closed and convex subset of a WC–Banach algebra X and let
A,C : X→ X, B : S→ X be operators which satisfy the following conditions:

(i) A and C are D-Lipschitzian with the D-functions φA and φC, respectively. Moreover, the operator A is regular.
(ii) The sets AS, BS and CS are relatively weakly compact.

(iii) B is continuous and satisfies the condition (H1).
(iv) For each y ∈ S the following implication holds

x = AxBy + Cx⇒ x ∈ S.

(v) For any r > 0 the following inequality is satisfied

LφA(r) + φC(r) < r,

where L = ||BS||.

Then the operator equation x = AxBx + Cx has at least one solution in the set S.

4. Applications to infinite systems of integral equations

This section is dedicated to show the applicability of the theory developed in the previous section to prove
a result on the existence of solutions of the following infinite system of nonlinear integral equations

xn(t) = cn(xn(t)) + an(xn(t))

1∫
0

b(t, s) fn(s, xn(s), xn+1(s), ...)ds, (4.1)

where n = 1, 2, ... and t ∈ I = [0, 1]. Moreover, the integral in (4.1) is understood as the Lebesgue integral.
The infinite system of integral equations (4.1) will be investigated in the Banach space C0 = C(I, c0) (cf.
Examples 2.8 and 2.9) consisting of all functions acting from the interval I into the sequence space c0, which
are continuous on I. Obviously, the norm in the space C0 has the form

||x||C0 = ||(x1, x2, ...)||C0 = sup
t∈I
{sup[|xn(t)| : n = 1, 2, ...]}.

In what follows we will usually write || · ||0 instead of || · ||C0 . Moreover, let us recall that by C(I) we will
denote the space C(I,R) equipped with the norm ||x||C(I) = sup{|x(t)| : t ∈ I} (cf. Example 2.8).
Let us mention that C0 forms a WC–Banach algebra (cf. Examples 2.8 and 2.9).

Now, we formulate assumptions under which we will investigate infinite system (4.1).

(i) For any n ∈ N the function an : R → (0,∞) and there exists a function φA : R+ → R+ being
nondecreasing, φA(0) = 0, continuous at 0 and such that

|an(x) − an(y)| ≤ φA(|x − y|)

for x, y ∈ R and n = 1, 2, .... Moreover, there exists a constant N > 0 such that φA(r) ≤ N for r ≥ 0.
(ii) For any sequence (xn) with xn → 0 as n→∞we have that an(xn)→ 0 as n→∞.

(iii) cn : R→ R, cn(0) = 0 for n = 1, 2, ... and there exists a function φc : R+ → R+ which is nondecreasing,
continuous at the point 0 and such that

|cn(x) − cn(y)| ≤ φc(|x − y|)

for x, y ∈ R and n = 1, 2, ....
(iv) The function φc is bounded on R+ i.e., there exists a constant M2 > 0 such that φc(r) ≤M2 for r ≥ 0.
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Remark 4.1. Observe that from assumptions (i) and (iii) it follows that the functions an, cn (n = 1, 2, ...) are
continuous on R.

Remark 4.2. Notice that in view of assumption (i), for each x ∈ R we get:

an(x) ≤ |an(x) − an(0)| + an(0) ≤ φA(|x|) + an(0) .

On the other hand, taking in assumption (ii) the sequence xn = 0 (n = 1, 2, ...) we deduce that the sequence
(an(0)) is bounded. Thus, the constant A0 defined by putting A0 = sup{an(0) : n = 1, 2, ...} is finite. Linking
this fact with the above obtained estimate, we conclude that

an(x) ≤ N + A0

for any x ∈ R and n = 1, 2, ....
Further on, we will denote M1 = N + A0.

Remark 4.3. Let us pay attention to the fact that from assumption (iii) we have

|cn(x)| = |cn(x) − cn(0)| ≤ φC(|x|)

for n = 1, 2, ... and for every x ∈ R. Joining this inequality with assumption (iv) we infer that |cn(x)| ≤ M2
for any n = 1, 2, ... and x ∈ R.

Now we formulate other assumptions needed in our considerations.

(v) The function fn acts from the set I ×R∞ into R for any n = 1, 2, .... Moreover, we assume that there
exist two sequences (kn), (ln) with positive terms such that kn → 0 as n→ ∞, (ln) is bounded and the
following inequality is satisfied

| fn(t, xn, xn+1, ...)| ≤ kn + ln sup{|xi| : i ≥ n}

for any t ∈ I, x = (xi) ∈ c0 and for n = 1, 2, ....

Remark 4.4. From the above formulated assumption we deduce that K < ∞ and L < ∞, where the constants
K and L are defined by the equalities:

K = sup{kn : n = 1, 2, ...}, L = sup{ln : n = 1, 2, ...}.

Our further assumptions are as follows.

(vi) The family of function { fn}n∈N is uniformly equicontinuous on the set I× c0. This means that for every
ε > 0 there exists δ > 0 such that for any n ∈ N and t ∈ I, and for all x = (xn), y = (yn) ∈ c0 with
||x − y||c0 ≤ δ we have that

| fn(t, xn, xn+1, ...) − fn(t, yn, yn+1, ...)| ≤ ε.

(vii) The function b(t, s) = b : I × I → R is continuous in t uniformly with respect to the variable s ∈ I and
is integrable with respect to s for any t ∈ I.

Remark 4.5. In view of assumption (vii) the function

b(t) =

1∫
0

b(t, s)ds
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is well defined on I. Observe that this function is continuous on the interval I. In fact, for a fixed ε > 0 and
for arbitrary t1, t2 ∈ I such that |t2 − t1| ≤ ε, we have

|b(t2) − b(t1)| ≤

1∫
0

|b(t2, s) − b(t1, s)|ds

≤

1∫
0

µ1(b, ε)ds = µ1(b, ε),

where the function µ1(b, ε) denotes the modulus of continuity of the function t → b(t, s) defined by the
formula

µ1(b, ε) = sup{|b(t2, s) − b(t1, s)| : t1, t2, s ∈ I, |t2 − t1| ≤ ε}.

Obviously, in view of assumption (vii) we have that µ1(b, ε) → 0 as ε → 0. This shows that the function
b = b(t) defined above is continuous on I.
Taking into account the above statement we can define the finite constant B by putting

B = sup


1∫

0

|b(t, s)|ds : t ∈ I

 .
Now, we formulate our further assumptions. To this end, let us put M = max{M1,M2}.

(viii) The following inequality holds
MBL < 1,

where the constants B and L were defined earlier.

For further purposes we define the number r0 by putting

r0 = M
BK + 1

1 −MBL
. (4.2)

(ix) For any r > 0 the following inequality is satisfied

B
K + LM

1 −MBL
φA(r) + φC(r) < r.

Before formulating our main result we provide an auxiliary lemma which will be useful in our investigations.

Lemma 4.6. Let the function x(t) = (x1(t), x2(t), ...) = (xn(t)) be an element of the space C0 = C(I, c0). Then

lim
n→∞
||xn||C(I) = 0.

Proof. Observe that for an arbitrary t ∈ I we have that lim
n→∞

xn(t) = 0. Thus the function sequence (xn)
converges pointwise to the function x = 0 on the interval I.
Since x ∈ C0, the sequence (xn(t)) is equibounded on the interval I. Further, let us pay attention to the fact
that the function x = x(t) = (xn(t)), as an element of the space C0, acts continuously from the interval I into
the space c0. This implies that the function x is uniformly continuous on I. But this means that the following
condition is satisfied

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ I [|t2 − t1| ≤ δ⇒ ||x(t2) − x(t1)||c0 ≤ ε].
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Equivalently, we can write
∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ I [|t2 − t1| < ε⇒

sup{|x1(t2) − x1(t1)|, |x2(t2) − x2(t1)|, ..., |xn(t2) − xn(t1)|, ...} ≤ ε].

The above condition simply means that the function sequence (xn) is equicontinuous on the interval I. This
assertion in conjunction with the above established equiboundedness of the sequence (xn), in view of the
Ascoli-Arzelá criterion [11] implies that the sequence (xn) is relatively compact in the space C(I). Thus there
exists a subsequence (xkn ) of the sequence (xn) which converges uniformly (i.e., in the norm of the space
C(I)) to a function x ∈ C(I). Since (xkn ) converges pointwise to the function vanishing identically on I, this
yields that x = 0. Thus we have that lim

n→∞
||xkn ||C(I) = 0. Since we can repeat the same reasoning starting from

an arbitrary subsequence of the sequence (xn), in view of the well-known facts from mathematical analysis
we infer that lim

n→∞
||xn||C(I) = 0.

The proof is complete. �

Now, we are prepared to formulate our main result of this section.

Theorem 4.7. Under assumptions (i)-(ix) the infinite system of integral equations (4.1) has at least one solution
x(t) = (xn(t)) in the space C0 = C(I, c0).

Proof. In order to prove our theorem we will apply the result contained in Theorem 3.5. To this end let us
define on the space C0 three operators A, B, C by putting:

(Ax)(t) = (an(xn(t))) = (a1(x1(t)), a2(x2(t)), ...),

(Bx)(t) = ((Bnx)(t))

=


1∫

0

b(t, s) fn(s, xn(s), xn+1(s), ...)ds

 ,
(Cx)(t) = (cn(xn(t))) = (c1(x1(t)), c2(x2(t)), ...),

for t ∈ I = [0, 1]. We show that these operators satisfy the assumptions of Theorem 3.5.
We start with investigations concerning the operator A. At first, let us observe that assumption (i)

guarantees that A is regular. This means that there is satisfied assumption (ii) of Theorem 3.5.
Next, for fixed elements x = (xn), y = (yn) ∈ c0 we get:

||A(x) − A(y)||c0 = ||(a1(x1) − a1(y1), a2(x2) − a2(y2), ...)||c0

= sup{|an(xn) − an(yn)| : n = 1, 2, ...}
≤ sup{φA(|xn − yn|) : n = 1, 2, ...}
≤ φA(||x − y||c0 ).

This shows that the operator A is D-Lipschitzian with the D-function φA. Further, let us observe that on
the basis of assumption (ii) we deduce that the operator A transforms the space C0 into itself. Indeed, let us
take a function x(t) = (xn(t)) ∈ C0. This means, that for each fixed t ∈ I we have that xn(t)→ 0 when n→∞.
Hence, in view of assumption (ii) we get that an(xn(t))→ 0 as n→∞. This proves our claim.
Apart from this, taking into account Remark 4.2, for each fixed t ∈ I we obtain

||(Ax)(t)||c0 = ||(a1(x1(t)), a2(x2(t)), ...)||c0

= sup{an(xn(t)) : n = 1, 2, ...} ≤M1.

This implies that
||Ax||0 ≤M1. (4.3)
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In order to check that the operator A satisfies the condition (H2) let us take a sequence (xn) ⊂ C0 = C(I, c0)
which is weakly convergent to a function x ∈ C0. This means (cf. [10]) that if we denote

xn(t) = (xn
1(t), xn

2(t), xn
3(t), ...)

for n = 1, 2, ... and for an arbitrary t ∈ I and if we denote x(t) = (x1(t), x2(t), x3(t), ...), then we have that
xn

1(t)→ x1(t), xn
2(t)→ x2(t), ..., xn

k (t)→ xk(t), ... for any t ∈ I, if n→∞.
Now, let us consider the sequence (Axn) i.e.,

(Axn) = (A(xn
1 , x

n
2 , x

n
3 , ...)) = (a1(xn

1), a2(xn
2), a3(xn

3), ...)
= (ak(xn

k )).

Then, for an arbitrarily fixed t ∈ I we obtain:

((Axn)(t)) = (a1(xn
1(t)), a2(xn

2(t)), a3(xn
3(t)), ...)

= (ak(xn
k (t))).

Since, according to our assumptions we have that xn
k (t) → xk(t) as n → ∞ (k = 1, 2, ...), this implies

that ak(xn
k (t)) → ak(xk(t)) (k = 1, 2, ...), which is a simple consequence of the continuity of each function

ak(k = 1, 2, ...) on the set R (cf. Remark 4.1). But this means that the sequence ((Axn)) is weakly convergent
in the space C0 = C(I, c0). Thus the operator A satisfies the condition (H2) (it satisfies even a stronger
condition called the ww-compactness (cf. [6])).

In a similar way we can show that the operator C is D-Lipschitzian with the D-function φC (cf. Remark
4.3). Moreover, the operator C transforms the space C0 into itself and satisfies the condition (H2).
Summing up we deduce that there are satisfied assumptions (i) and (ii) of Theorem 3.5.

In what follows we will consider the operator B. To this end let us take the set S = B(θ, r0), where r0 is a
number described by equality (4.2).
At he beginning we show that B transforms the set S into the space C0. Thus, take an arbitrary function
x(t) = (xn(t)) ∈ S. Fix arbitrarily n ∈ N and a number t ∈ I. Then, keeping in mind assumptions (v) and (vii),
we obtain:

|(Bnx)(t)| ≤

1∫
0

|b(t, s)|| fn(s, xn(s), xn+1(s), ...)|ds

≤

1∫
0

|b(t, s)|{kn + ln sup[|xi(s)| : i ≥ n]}ds

≤ kn

1∫
0

|b(t, s)|ds + ln

1∫
0

|b(t, s)| sup[|xi(s)| : i ≥ n]ds

≤ knB + ln sup
i≥n
{sup[|xi(t)| : t ∈ I]}B,

where B was defined in Remark 4.5.
Consequently, in view of assumption (v) and Remark 4.4, we get

|(Bnx)(t)| ≤ knB + LB sup
i≥n
{sup[|xi(t)| : t ∈ I]},

for any n ∈ N and for each t ∈ I. The above estimate implies the following one

|(Bnx)(t)| ≤ knB + LB sup
i≥n
||xi||C(I) . (4.4)
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Now, taking into account that kn → 0 as n→∞ and keeping in mind Lemma 4.6 we conclude from estimate
(4.4) that the operator B transforms the set S (even the space C0) into itself. Moreover, from estimate (4.4)
we infer the following inequality

||Bx||C0 ≤ KB + LB||x||C0 .

Consequently (since x ∈ S), we obtain
||Bx||C0 ≤ KB + LBr0. (4.5)

Further on, we show that the operator B is continuous on the set S. To this end fix ε > 0 and choose a
number δ > 0 according to assumption (vi). Next, take y, x ∈ S such that ||x − y||C0 ≤ δ. This means that for
any t ∈ I we have:

sup
t∈I
||x(t) − y(t)||c0 ≤ δ.

Equivalently, we can write:
sup

t∈I
{max[|xn(t) − yn(t)| : n = 1, 2, ...]} ≤ δ.

Thus, linking the above estimates, we derive the following inequalities:

||Bx − By||C0 = sup
t∈I
||(Bx)(t) − (By)(t)||c0

= sup
t∈I
{max[|(Bnx)(t) − (Bny)(t)| : n = 1, 2, ...]}

= sup
t∈I

max
n∈N


∣∣∣∣∣∣∣∣

1∫
0

b(t, s)( fn(s, xn(s), xn+1(s), ...) − fn(s, yn(s), yn+1(s), ...))ds

∣∣∣∣∣∣∣∣



≤ sup
t∈I

max
n∈N


1∫

0

|b(t, s)| fn(s, xn(s), xn+1(s), ...) − fn(s, yn(s), yn+1(s), ...)|ds


 .

Hence, in view of assumption (vi), we obtain

||Bx − By||C0 ≤ sup
t∈I

1∫
0

|b(t, s)|εds = B · ε.

This shows that the operator B is continuous (even uniformly continuous) on the set S.
Now, we are going to prove that the operator B satisfies the condition (H1) on the set S. At first let us

observe that from estimate (4.5) we have that functions belonging to the set BS are equibounded on the
interval I.

Further, for arbitrarily fixed t1, t2 ∈ I and for a function x ∈ S, n ∈ N, on the basis of the estimate from
Remark 4.5, we have:

|(Bnx)(t2) − (Bnx)(t1)| ≤

1∫
0

|b(t2, s) − b(t1, s)|| fn(s, xn(s), xn+1(s), ...)|ds

≤

1∫
0

µ1(b, |t2 − t1|)(KB + LBr0)ds

= (KB + LBr0)µ1(b, |t2 − t1|),

where we utilized estimate (4.5). From the above established facts and Ascoli-Arzelá criterion for the relative
compactness, we deduce that the set BS is relatively compact. Obviously, this automatically implies, that
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the operator B satisfies the condition (H1). This means that there is satisfied assumption (iii) of Theorem
3.5.

In our next step we show that there is satisfied assumption (iv) of Theorem 3.5. To this end let us fix
arbitrarily y ∈ S = B(θ, r0). Next, assume that an element x ∈ C0 satisfies the equality

x = AxBy + Cx.

This yields
||x||C0 ≤ ||Ax||C0 ||By||C0 + ||Cx||C0 .

Further, in view of Remarks 4.2, 4.3 and estimate (4.5) we obtain

||x||C0 ≤ M1||By||C0 + M2

≤ M(KB + LBr0 + 1) = M[B(K + Lr0) + 1].

Hence, keeping in mind assumption (viii) we obtain that ||x||C0 ≤ r0. This implies that x ∈ S and shows
that there is satisfied assumption (iv) of Theorem 3.5.

Finally, let us notice that in view of equality (4.2) and estimate (4.5) we have:

L = ||BS||C0 = KB + LBr0 = B
K + ML

1 − BML
.

Linking the above equality with assumption (ix) we see that there is satisfied assumption (v) of Theorem
3.5.
The proof is complete. �

In what follows we are going to illustrate our result contained in Theorem 4.7 by a few examples.
At the beginning we provide examples related to assumptions (i)-(iv) of the mentioned theorem. To this
end we recollect some auxiliary facts which will be needed in our considerations (cf. [5]).
At first, let us assume that the function ϕ : R+ → R+ is continuous, nondecreasing on R+ and such that
ϕ(r) ≤ r for r > 0. Moreover, we assume that ϕ is subadditive i.e., ϕ(α+ β) ≤ ϕ(α) +ϕ(β) for α, β ∈ R+. Next,
let us take the function φ : R→ R+ defined by the formula

φ(x) =
Pϕ(|x|)

Q + ϕ(|x|)
, (4.6)

where P,Q are positive constant and P < Q.
Then, we can show that

|φ(x) − φ(y)| ≤ φ(|x − y|) (4.7)

and
φ(r) ≤

P
Q

r < r

for r > 0.

Example 4.8. As concrete examples of the functions ϕ appearing above we can give the functions defined
by the following formulas:

ϕ(r) = r,

ϕ(r) = ln(1 + r),

ϕ(r) = arctan r,

ϕ(r) = 2(
√

1 + r − 1).
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Example 4.9. Let us take into account the sequence (an) of functions defined on the set R by the formula

an(x) = γn +
Pnϕ(|x|)

Qn + ϕ(|x|)
,

where γn is a real sequence of positive numbers such that γn → 0 as n → ∞. Moreover, (Pn) and (Qn)
are sequences of positive numbers such that (Pn) is nondecreasing and Pn → P as n → ∞ and (Qn) is
nonincreasing and Qn → Q as n → ∞. Apart from this Q > 0 and P < Q. Additionally we assume that
ϕ : R+ → R+ is continuous, nondecreasing, ϕ(r) ≤ r for r ≥ 0 and ϕ is subadditive.
Observe that an(x) ≥ γn > 0 for n = 1, 2, ...which implies that an : R→ (0,∞). Next, let us denote by φA the
function defined by formula (4.6) i.e.,

φA(r) =
Pϕ(r)

Q + ϕ(r)
.

Obviously, the function φA is nondecreasing and continuous. Moreover, for arbitrary x, y ∈ R and for a
fixed natural number n we have:

|an(x) − an(y)| ≤ Pn

∣∣∣∣∣ ϕ(|x|)
Qn + ϕ(|x|)

−
ϕ(|y|)

Qn + ϕ(|y|)

∣∣∣∣∣ .
Hence, in view of (4.7) we get:

|an(x) − an(y)| ≤ Pn
ϕ(|x − y|)

Qn + ϕ(|x − y|)
≤

Pϕ(|x − y|)
Q + ϕ(|x − y|)

= φA(|x − y|).

Further, for r ≥ 0 we obtain

φA(r) = P
ϕ(r)

Q + ϕ(r)
≤ P.

Moreover, let us pay attention to the fact that an(xn)→ 0 as xn → 0 which is a consequence of the continuity
of the function ϕ(r) at r = 0 and the equality ϕ(0) = 0.
Hence we see that the functions an = an(x) (n = 1, 2, ...) and φA = φA(r) satisfy assumptions (i), (ii) of
Theorem 4.7.

Example 4.10. Now, let us take a sequence (cn) of function cn = cn(x) (n = 1, 2, ...) defined on R by the
equality

cn(x) =
Pnϕ(|x|)

Qn + ϕ(|x|)
,

where the constants Pn, Qn (n = 1, 2, ...) and the function ϕ satisfy the same conditions as in the previous
example. In the same way as in Example 4.9 we can show that there are satisfied assumptions (iii), (iv) of
Theorem 4.7 with the function

φC(r) =
Pϕ(r)

Q + ϕ(r)

for r ≥ 0.

Example 4.11. For a fixed n ∈ N let us consider the function fn : I ×R∞ → R defined in the following way

fn(t, xn, xn+1, ...) =
t

3nt + 1
+

n
n + 1

·
xn

x2
n + 1

+
2n

2n + 1
·

xn+1

x2
n+1 + 2

.

Then, we have the following estimate:
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| fn(t, xn, xn+1, ...)| ≤
1

3n
+

n
n + 1

·
|xn|

x2
n + 1

+
2n

2n + 1
·
|xn+1|

x2
n+1 + 2

≤
1

3n
+

2n
2n + 1

[|xn| + |xn+1|]

≤
1

3n
+

2n
2n + 1

· 2 max{|xn|, |xn+1|}

≤
1

3n
+

2n
2n + 1

· 2 sup{|xn|, |xn+1|, |xn+2|, ...}

=
1

3n
+

4n
2n + 1

sup{|xi| : i ≥ n}.

Hence we see that the function fn satisfies the inequality from assumption (v) with the sequences (kn) and
(ln) defined as follows:

kn =
1

3n
, ln =

4n
2n + 1

for n = 1, 2, .... Hence (cf. Remark 4.4) we have that K = 1
3 and L = 2. Thus the functions fn (n = 1, 2, ...)

satisfy assumption (v) of Theorem 4.7.
Further, observe that the functions xn →

xn
x2

n+1 , xn+1 →
xn+1

x2
n+1+2 are Lipschitzian on the set R with the constant

1. Thus, the function fn = fn(t, xn, xn+1, ...) satisfies on the set I × c0 the Lipschitz condition with the constant
1. This implies that the family of functions { fn}n∈N is uniformly equicontinuous on the set I × c0.
This allows us to conclude that there is satisfied assumption (vi) of Theorem 4.7.

Example 4.12. Consider the infinite system of integral equations of the form

xn(t) =
Pn arctan |xn(t)|

Qn + arctan |xn(t)|
+

( 1
n2 + n

+
P′n ln(1 + |xn(t)|)

Q′n + ln(1 + |xn(t)|)

) 1∫
0

[t + sD(s)]
{

s
3ns + 1

+
n

n + 1
·

xn(s)
x2

n(s) + 1

+
2n

2n + 1
xn+1(s)

x2
n+1(s) + 2

 ds, (4.8)

where D = D(s) denotes the so-called Dirichlet function defined on the interval I = [0, 1] as

D(t) =

{
0 for t rational
1 for t irrational.

Moreover, (Pn), (P′n) are nondecreasing sequences of positive numbers converging to P and P′, respectively,
while (Qn), (Q′n) are nonincreasing sequences of positive numbers converging to positive limits Q and Q′,
respectively. Apart from this we assume that P < Q and P′ < Q′.
Obviously t ∈ I and n = 1, 2, ....
Let us observe that infinite system (4.8) is a special case of infinite system (4.1) if we put

an(xn) =
1

n2 + n
+

P′n ln(1 + |xn|)
Q′n + ln(1 + |xn|)

,

cn(xn) =
Pn arctan |xn|

Qn + arctan |xn|
,
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fn(t, xn, xn+1, ...) =
t

3nt + 1
+

n
n + 1

·
xn

x2
n + 1

+
2n

2n + 1
·

xn+1

x2
n+1 + 2

,

b(t, s) = t + sD(s)

for n = 1, 2, ... and for t, s ∈ I = [0, 1].
Further, let us observe that an(0) = γn for n = 1, 2, .... Thus we have that A0 = sup{γn : n ∈ N}. Moreover,
we have that M1 = N + A0 = P + A0, M2 = P′ and M = max{M1,M2} = max{P + A0,P′}.
In the sequel of this chapter we will assume that M < 1

12 and

max{P,P′}
min{Q,Q′}

≤
1
2
. (4.9)

Apart from this let us notice that in our considerations we can accept that

φA(r) =
P′ ln(1 + r)

Q′ + ln(1 + r)
,

φC(r) =
P arctan r

Q + arctan r
.

Now, we check that there are satisfied assumptions imposed in Theorem 4.7.
Indeed, in view of Examples 4.8 - 4.11 we see that there are satisfied assumptions (i)-(vii), where K = 1

3 ,
L = 2. Moreover, we have:

B = sup


1∫

0

|b(t, s)|ds : t ∈ I

 = sup

t +

1∫
0

sD(s)ds : t ∈ [0, 1]

 =
3
2
.

In view of the above accepted assumptions, we get:

MBL =
3
2

M · 2 = 3M <
1
4
< 1.

Thus we see that there is satisfied assumption (viii).
Finally, let us observe that for an arbitrarily fixed r > 0 we have:

B
K + LM

1 −MBL
φA(r) + φC(r) =

1 + 6M
2(1 − 3M)

φA(r) + φC(r)

< φA(r) + φC(r) =
P′ ln(1 + r)

Q′ + ln(1 + r)
+

P arctan r
Q + arctan r

≤ max{P,P′}
[

ψ(r)
Q′ + ψ(r)

+
ψ(r)

Q + ψ(r)

]
,

where we denoted ψ(r) = max{ln(1 + r), arctan r} for r ≥ 0.
From the above estimate we derive the following one:

B
K + LM

1 −MBL
φA(r) + φC(r)

≤ max{P,P′}
2ψ(r)

min{Q,Q′} + r
≤

2 max{P,P; }
min{Q,Q′}

ψ(r) < r ,

where the last inequality is a consequence of the above assumed inequality (4.9) and the fact that ψ(r) < r
for r > 0.
This shows that assumption (ix) is satisfied.

Finally, let us notice that all assumptions of Theorem 4.7 are satisfied. In view of that theorem the infinite
system of integral equations (4.8) has at least one solution in the space C0 = C(I, c0).
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[5] J. Banaś, B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlin. Anal. 69 (2008) 1945-1952.
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