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Abstract. The aim of this paper is to introduce a new extension of preinvexity called exponentially
(m, ω1, ω2, h1, h2)–preinvexity. Some new integral inequalities of Hermite–Hadamard type for exponentially
(m, ω1, ω2, h1, h2)–preinvex functions via Riemann–Liouville fractional integral are established. Also, some
new estimates with respect to trapezium-type integral inequalities for exponentially (m, ω1, ω2, h1, h2)–
preinvex functions via general fractional integrals are obtained. We show that the class of exponentially
(m, ω1, ω2, h1, h2)–preinvex functions includes several other classes of preinvex functions. We shown by two
basic examples the efficiency of the obtained inequalities on the base of comparing those with the other
corresponding existing ones. At the end, some new error estimates for trapezoidal quadrature formula are
provided as well. This results may stimulate further research in different areas of pure and applied sciences.

1. Introduction

The class of convex functions is well known in the literature and is usually defined in the following way:

Definition 1.1. Let I be an interval in<. A function f : I→<, is said to be convex on I if the inequality

f (ta + (1 − t)b) ≤ t f (a) + (1 − t) f (b) (1)

holds for all a, b ∈ I and t ∈ [0, 1]. Also, we say that f is concave, if the inequality in (1) holds in the reverse direction.

The following inequality, named Hermite–Hadamard inequality, is one of the most famous inequalities in
the literature for convex functions.

Theorem 1.2. Let f : I ⊂ < →< be a convex function and a, b ∈ I with a < b. Then the following inequality holds:

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

. (2)

This inequality (2) is also known as trapezium inequality.
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The trapezium inequality has remained an area of great interest due to its wide applications in the field of
mathematical analysis. Authors of recent decades have studied (2) in the premises of newly invented
definitions due to motivation of convex function. Interested readers see the references [4]-[12],[15]-
[19],[22, 23, 28, 30, 31].

In [10], Dragomir and Agarwal proved the following results connected with the right part of (2).

Lemma 1.3. Let f : I◦ ⊂ < → < be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If f ′ ∈ L[a, b], then the
following equality holds:

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx =

(b − a)
2

∫ 1

0
(1 − 2t) f ′(ta + (1 − t)b)dt. (3)

Theorem 1.4. Let f : I◦ ⊂ < → < be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
∣∣∣ f ′∣∣∣ is convex on [a, b],

then the following inequality holds:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ (b − a)
8

(∣∣∣ f ′(a)
∣∣∣ +

∣∣∣ f ′(b)
∣∣∣) . (4)

Now, let us recall the following definitions.

Definition 1.5 ([22]). A function: f : I ⊂ < →< is said to be m-MT-convex, if f is positive and for ∀ x, y ∈ I, and
t ∈ (0, 1), among m ∈ (0, 1], satisfies the following inequality

f
(
tx + m(1 − t)y

)
≤

√
t

2
√

1 − t
f (x) +

m
√

1 − t

2
√

t
f (y). (5)

Definition 1.6 ([3]). A set K ⊂ <n is said to be invex respecting the mapping η : K × K → <n, if x + tη(y, x) ∈ K
for every x, y ∈ K and t ∈ [0, 1].

Definition 1.7 ([18]). Let h : [0, 1] → < be a non-negative function and h , 0. The function f on the invex set K
is said to be h–preinvex with respect to η, if

f
(
x + tη(y, x)

)
≤ h(1 − t) f (x) + h(t) f (y) (6)

for each x, y ∈ K and t ∈ [0, 1] where f (·) > 0.

Definition 1.8 ([11]). A set K ⊂ <n is named as m–invex with respect to the mapping η : K × K → <n for some
fixed m ∈ (0, 1], if mx + tη(y,mx) ∈ K holds for each x, y ∈ K and any t ∈ [0, 1].

Remark 1.9. Taking m = 1 in Definition 1.8, the mapping η(y,mx) reduce to η(y, x), and then we get Definition 1.6.

Definition 1.10 ([25]). Let K ⊂ < be m–invex set respecting the mapping η : K × K → < and h1, h2 : [0, 1] →
[0,+∞). A function f : K→< is said to be generalized (m, h1, h2)–preinvex, if

f
(
mx + tη(y,mx)

)
≤ mh1(t) f (x) + h2(t) f (y) (7)

is valid for all x, y ∈ K and t ∈ [0, 1], for some fixed m ∈ (0, 1].

Definition 1.11 ([16]). Let f ∈ L[a, b]. The Riemann–Liouville integrals Jαa+ f and Jαb− f of order α > 0 with a ≥ 0
are defined by

Jαa+ f (x) =
1

Γ(α)

∫ x

a
(x − t)α−1 f (t)dt, x > a
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and

Jαb− f (x) =
1

Γ(α)

∫ b

x
(t − x)α−1 f (t)dt, b > x,

where Γ(α) =

∫ +∞

0
e−uuα−1du. Here J0

a+ f (x) = J0
b− f (x) = f (x).

Note that α = 1, the fractional integral reduces to the classical integral.

Furthermore, let us define a function ϕ : [0,+∞)→ [0,+∞) satisfying the following conditions:

∫ 1

0

ϕ(t)
t

dt < +∞, (8)

1
A
≤
ϕ(s)
ϕ(r)

≤ A for
1
2
≤

s
r
≤ 2 (9)

ϕ(r)
r2 ≤ B

ϕ(s)
s2 for s ≤ r (10)∣∣∣∣∣∣ϕ(r)

r2 −
ϕ(s)
s2

∣∣∣∣∣∣ ≤ C|r − s|
ϕ(r)
r2 for

1
2
≤

s
r
≤ 2 (11)

where A,B,C > 0 are independent of r, s > 0. If ϕ(r)rα is increasing for some α ≥ 0 and ϕ(r)
rβ is decreasing for

some β ≥ 0, then ϕ satisfies (8)–(11), see reference [29]. Therefore, Sarikaya and Ertuğral [28] defined the
following left-sided and right-sided generalized fractional integral operators, respectively, as follows:

a+ Iϕ f (x) =

∫ x

a

ϕ(x − t)
x − t

f (t)dt, x > a (12)

and

b− Iϕ f (x) =

∫ b

x

ϕ(t − x)
t − x

f (t)dt, x < b. (13)

This fractional integral operators are a new generalization of fractional integrals such as the Riemann–
Liouville fractional integral, the k–Riemann–Liouville fractional integral, Katugampola fractional integrals,
the conformable fractional integral, Hadamard fractional integrals, etc. To read more about fractional
analysis, see references [13, 14, 20, 27].

An important class of convex functions, which is called exponential convex functions, was introduced and
studied by Antczak [2], Dragomir et al. [9] and Rashid et al. [26]. Alirezai and Mathar [1] have investigated
their basic properties along with their potential applications in statistics and information theory. Awan et
al. [5] and Pecarić and Jaksetić [24] defined another kind of exponential convex functions and have shown
that the class of exponential convex functions unifies various unrelated concepts.

Definition 1.12 ([2, 9, 26]). A function f : K ⊂ < →< is said to be exponentially convex, if

e f ((1−t)a+tb)
≤ (1 − t)e f (a) + te f (b) (14)

holds for all a, b ∈ K, t ∈ [0, 1], where f is positive.

For the applications of exponentially convex functions in different field of statistics, information theory and
mathematical sciences, see [1, 2, 5, 21] and the references therein.
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Definition 1.13 ([26]). A function f : K ⊂ < →< is said to be exponentially m–convex, where m ∈ (0, 1], if

e f ((1−t)a+mtb)
≤ (1 − t)e f (a) + mte f (b) (15)

holds for all a, b ∈ K, t ∈ [0, 1], where f is positive.

Motivated by the above literatures, the main objective of this article is to establish in Section 2 fractional
integral inequalities using a new class of preinvex functions called exponentially (m, ω1, ω2, h1, h2)–preinvex
function. Also, using a new identity pertaining differentiable functions defined on m–invex set as auxil-
iary result, some new Hermite–Hadamard inequalities for exponentially (m, ω1, ω2, h1, h2)–preinvex func-
tions via Riemann–Liouville fractional integral will be obtained. Also, some new estimates with respect
to trapezium-type integral inequalities for exponentially (m, ω1, ω2, h1, h2)–preinvex functions via general
fractional integrals will be given. Various special cases will be discussed. At the end of this section we will
demonstrate by two basic examples the efficiency of the obtained inequalities on the base of comparing
those with the other corresponding existing ones. In Section 3, some new error estimates for trapezoidal
quadrature formula will be given. This results may stimulate further research in different areas of pure and
applied sciences. In Section 4, a briefly conclusion is provided as well.

2. Main results

Now we introduce exponentially (m, ω1, ω2, h1, h2)–preinvex functions.

Definition 2.1. Let K ⊂ < be m–invex set with respect to the mapping η : K × K → < for some fixed m ∈ (0, 1]
and h1, h2 : [0, 1]→ [0,+∞). A function f : K→ (0,+∞) is called exponentially (m, ω1, ω2, h1, h2)–preinvex, if

e f (mx+tη(y,mx))
≤ mh1(t)eω1 f (x) + h2(t)eω2 f (y) (16)

holds for all x, y ∈ K, t ∈ [0, 1] and ω1, ω2 ∈ <.

Remark 2.2. In definition 2.1, if we choose ω1 = ω2 = 1, h1(t) = 1 − t, h2(t) = t and η(y,mx) = y − mx, this
definition reduce to the definition 1.13.

Remark 2.3. Under the conditions of remark 2.2, taking m = 1, we get definition 1.12.

Remark 2.4. Let us discuss some special cases of definition 2.1 as follows:

(I) Taking h1(t) = h(1 − t), h2(t) = h(t), then we get exponentially (m, ω1, ω2, h)–preinvex functions.
(II) Taking h1(t) = h2(t) = t(1 − t), then we get exponentially (m, ω1, ω2, t1s)–preinvex functions.

(III) Taking h1(t) =

√
1 − t

2
√

t
, h2(t) =

√
t

2
√

1 − t
, then we get exponentially (m, ω1, ω2)–MT–preinvex functions.

In this section, we obtain Hermite–Hadamard type inequalities for exponentially (m, ω1, ω2, h1, h2)–preinvex
function via Riemann–Liouville fractional integral.

Theorem 2.5. Let K = [ma,ma + η(b,ma)] ⊂ < be m–invex set with respect to the mapping η : K × K → < for
some fixed m ∈ (0, 1], where a < b and η(b,ma) > 0. Suppose h1, h2 : [0, 1]→ [0,+∞) be continuous functions. Let
f , 1 : K → (0,+∞) be exponentially (m, ω1, ω2, h1, h2)–preinvex functions. If f , 1 ∈ L(K), then for ω1, ω2 ∈ < and
α > 0, the following inequality holds:

Γ(α)
ηα(b,ma)

×

{
Jα(ma+η(b,ma))−e

f (ma) + Jα(ma+η(b,ma))−e
1(ma)

}
≤ m

(
eω1 f (a) + eω11(a)

)
H1(α) +

(
eω2 f (b) + eω21(b)

)
H2(α), (17)

where

Hi(α) =

∫ 1

0
tα−1hi(t)dt, ∀ i = 1, 2. (18)
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Proof. From exponentially (m, ω1, ω2, h1, h2)–preinvexity of f and 1 for all t ∈ [0, 1], we have

e f (ma+tη(b,ma))
≤ mh1(t)eω1 f (a) + h2(t)eω2 f (b)

and

e1(ma+tη(b,ma))
≤ mh1(t)eω11(a) + h2(t)eω21(b).

Adding both sides of the above inequalities, we get

e f (ma+tη(b,ma)) + e1(ma+tη(b,ma))
≤ m

(
eω1 f (a) + eω11(a)

)
h1(t) +

(
eω2 f (b) + eω21(b)

)
h2(t). (19)

Multiplying both sides of inequality (19) with tα−1 and integrating over [0, 1], we obtain∫ 1

0
tα−1

[
e f (ma+tη(b,ma)) + e1(ma+tη(b,ma))

]
dt

≤ m
(
eω1 f (a) + eω11(a)

) ∫ 1

0
tα−1h1(t)dt +

(
eω2 f (b) + eω21(b)

) ∫ 1

0
tα−1h2(t)dt.

Using definition 1.11, we get the required result.

Corollary 2.6. In Theorem 2.5, if we choose m = 1 and η(b,ma) = b −ma, we get

Γ(α)
(b − a)α

×

{
Jαb−e

f (a) + Jαb−e
1(a)

}
≤

(
eω1 f (a) + eω11(a)

)
H1(α) +

(
eω2 f (b) + eω21(b)

)
H2(α). (20)

Corollary 2.7. In Theorem 2.5, if we choose α = 1, we obtain

1
η(b,ma)

∫ ma+η(b,ma)

ma

[
e f (t) + e1(t)

]
dt

≤ m
(
eω1 f (a) + eω11(a)

)
H1 +

(
eω2 f (b) + eω21(b)

)
H2, (21)

where

Hi =

∫ 1

0
hi(t)dt, ∀ i = 1, 2. (22)

Theorem 2.8. Let K = [ma,ma + η(b,ma)] ⊂ < be m–invex set with respect to the mapping η : K × K → < for
some fixed m ∈ (0, 1], where a < b and η(b,ma) > 0. Suppose h1, h2 : [0, 1]→ [0,+∞) be continuous functions. Let
f , 1 : K → (0,+∞) be exponentially (m, ω1, ω2, h1, h2)–preinvex functions. If f , 1 ∈ L(K), then for ω1, ω2 ∈ < and
α > 0, the following inequality holds:

Γ(α)
ηα(b,ma)

×

{
Jα(ma)+ e f (ma+η(b,ma)) + Jα(ma+η(b,ma))−e

1(ma)
}

≤ m
(
eω1 f (a)C1(α) + eω11(a)H1(α)

)
+ eω2 f (b)C2(α) + eω21(b)H2(α), (23)

where

Ci(α) =

∫ 1

0
(1 − t)α−1hi(t)dt, ∀ i = 1, 2, (24)

and H1(α), H2(α) are defined as in Theorem 2.5.
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Proof. From exponentially (m, ω1, ω2, h1, h2)–preinvexity of f and 1 for all t ∈ [0, 1], we have

e f (ma+tη(b,ma))
≤ mh1(t)eω1 f (a) + h2(t)eω2 f (b)

and

e1(ma+tη(b,ma))
≤ mh1(t)eω11(a) + h2(t)eω21(b).

Multiplying first above inequality with (1 − t)α−1, the second with tα−1 and adding both sides, we get

(1 − t)α−1e f (ma+tη(b,ma)) + tα−1e1(ma+tη(b,ma))
≤ (1 − t)α−1

[
mh1(t)eω1 f (a) + h2(t)eω2 f (b)

]
(25)

+tα−1
[
mh1(t)eω11(a) + h2(t)eω21(b)

]
.

Integrating over [0, 1] both sides of inequality (25) and using definition 1.11, we obtain the required
result.

Corollary 2.9. In Theorem 2.8, if we choose m = 1 and η(b,ma) = b −ma, we get

Γ(α)
(b − a)α

×

{
Jαa+ e f (b) + Jαb−e

1(a)
}

≤ eω1 f (a)C1(α) + eω11(a)H1(α) + eω2 f (b)C2(α) + eω21(b)H2(α). (26)

Corollary 2.10. In Theorem 2.8, if we choose α = 1, we obtain Corollary 2.7.

Remark 2.11. Under the conditions of Theorems 2.5 and 2.8, using remark 2.4, we can derive several new integral
inequalities. The details are left to the interested reader.

For establishing some new results regarding generalizations of Hermite–Hadamard type integral inequal-
ities associated with exponentially (m, ω1, ω2, h1, h2)–preinvexity via general fractional integrals, we need
the following lemma.

Lemma 2.12. Let K = [ma,ma +η(b,ma)] ⊂ < be m–invex set with respect to the mapping η : K×K→< for some
fixed m ∈ (0, 1], where a < b and η(b,ma) > 0. If f : K → < is a differentiable function on K◦ such that f ′ ∈ L(K),
then the following identity for generalized fractional integrals holds:

e f (ma) + e f (ma+η(b,ma))

2
−

1
2Λm(1)η(b,ma)

×

{
(ma)+ Iϕ e f (ma+η(b,ma)) + (ma+η(b,ma))− Iϕ e f (ma)

}

=
η(b,ma)
2Λm(1)

∫ 1

0

[
Λm(t) −Λm(1 − t)

]
e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt, (27)

where

Λm(t) =

∫ t

0

ϕ
(
η(b,ma)u

)
u

du < +∞. (28)

We denote

Ξ f ,Λm (a, b) =
η(b,ma)
2Λm(1)

∫ 1

0

[
Λm(t) −Λm(1 − t)

]
e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt. (29)
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Proof. From (29), we have

Ξ f ,Λm (a, b) =
η(b,ma)
2Λm(1)

×

[ ∫ 1

0
Λm(t)e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt

−

∫ 1

0
Λm(1 − t)e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt

]
=
η(b,ma)

2
×

[
Ξ(1)

f ,Λm
(a, b) − Ξ(2)

f ,Λm
(a, b)

]
, (30)

where

Ξ(1)
f ,Λm

(a, b) =

∫ 1

0
Λm(t)e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt (31)

and

Ξ(2)
f ,Λm

(a, b) =

∫ 1

0
Λm(1 − t)e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt. (32)

Now, integrating by parts (31), changing the variable u = ma + tη(b,ma) and using definition 12, we get

Ξ(1)
f ,Λm

(a, b) =
Λm(t)e f (ma+tη(b,ma))

η(b,ma)

∣∣∣∣1
0
−

1
η(b,ma)

∫ 1

0

ϕ
(
η(b,ma)t

)
t

e f (ma+tη(b,ma))dt

=
Λm(1)e f (ma+η(b,ma))

η(b,ma)
−

1
η2(b,ma) (ma+η(b,ma))− Iϕ e f (ma). (33)

Similarly, using (32), we obtain

Ξ(2)
f ,Λm

(a, b) = −
Λm(1)e f (ma)

η(b,ma)
+

1
η2(b,ma) (ma)+ Iϕ e f (ma+η(b,ma)). (34)

Substituting (33) and (34) in (30), we get (27). The completes the proof.

Remark 2.13. In Lemma 2.12, if we choose ϕ(t) =
tα

Γ(α)
for α > 0, we get the following identity for fractional

integrals:

e f (ma) + e f (ma+η(b,ma))

2
−

Γ(α + 1)
2ηα(b,ma)

×

{
Jα(ma)+ e f (ma+η(b,ma)) + Jα(ma+η(b,ma))−e

f (ma)
}

=
η(b,ma)

2

∫ 1

0

[
tα − (1 − t)α

]
e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))dt. (35)

Using Lemma 2.12, we now state the following theorems.

Theorem 2.14. Let K = [ma,ma + η(b,ma)] ⊂ < be m–invex set with respect to the mapping η : K × K → < for
some fixed m ∈ (0, 1], where a < b and η(b,ma) > 0. Suppose h1, h2 : [0, 1]→ [0,+∞) be continuous functions. Let
f : K → (0,+∞) be a differentiable exponentially (m, ω1, ω2, h1, h2)–preinvex function on K◦ such that f ′ ∈ L(K)
and ω1, ω2 ∈ <. If | f ′|q is generalized (m, h1, h2)–preinvex function, then for q > 1 and 1

p + 1
q = 1, the following

inequality holds:∣∣∣Ξ f ,Λm (a, b)
∣∣∣ ≤ η(b,ma)

2Λm(1)
p
√

BΛm (p) (36)
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×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qGh1 + m∆ f (q;ω1, ω2, a, b)Fh1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qGh2 ,

where

BΛm (p) =

∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣pdt, (37)

Fh1,h2 =

∫ 1

0
h1(t)h2(t)dt, Ghi =

∫ 1

0
[hi(t)]2dt, ∀ i = 1, 2 (38)

and

∆ f (q;ω1, ω2, a, b) = eqω1 f (a)
∣∣∣ f ′(b)

∣∣∣q + eqω2 f (b)
∣∣∣ f ′(a)

∣∣∣q. (39)

Proof. From Lemma 2.12, exponentially (m, ω1, ω2, h1, h2)–preinvexity of f , generalized (m, h1, h2)–preinvexity
of | f ′|q, Hölder inequality and properties of the modulus, we have∣∣∣Ξ f ,Λm (a, b)

∣∣∣ ≤ η(b,ma)
2Λm(1)

∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣∣∣∣∣e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))

∣∣∣∣dt

≤
η(b,ma)
2Λm(1)

p
√

BΛm (p)
(∫ 1

0
eq f (ma+tη(b,ma))

∣∣∣ f ′(ma + tη(b,ma))
∣∣∣qdt

) 1
q

≤
η(b,ma)
2Λm(1)

p
√

BΛm (p)

×

(∫ 1

0

[
mh1(t)eqω1 f (a) + h2(t)eqω2 f (b)

][
mh1(t)

∣∣∣ f ′(a)
∣∣∣q + h2(t)

∣∣∣ f ′(b)
∣∣∣q]dt

) 1
q

=
η(b,ma)
2Λm(1)

p
√

BΛm (p)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qGh1 + m∆ f (q;ω1, ω2, a, b)Fh1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qGh2 .

The proof of Theorem 2.14 is completed.

We point out some special cases of Theorem 2.14.

Corollary 2.15. In Theorem 2.14, if we choose ϕ(t) = t, we get∣∣∣∣∣∣ e f (ma) + e f (ma+η(b,ma))

2
−

1
η(b,ma)

∫ ma+η(b,ma)

ma
e f (t)dt

∣∣∣∣∣∣ ≤ η(b,ma)

2 p
√

p + 1
(40)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qGh1 + m∆ f (q;ω1, ω2, a, b)Fh1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qGh2 .

Corollary 2.16. In Theorem 2.14, if we choose ϕ(t) =
tα

Γ(α)
for α > 0 and η(b,ma) = b −ma, we obtain∣∣∣∣∣∣ e f (ma) + e f (b)

2
−

Γ(α + 1)
2(b −ma)α

×

{
Jα(ma)+ e f (b) + Jαb−e

f (ma)
}∣∣∣∣∣∣ ≤ (b −ma)

2
p
√

B(p, α) (41)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qGh1 + m∆ f (q;ω1, ω2, a, b)Fh1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qGh2 ,

where

B(p, α) =

∫ 1

0

∣∣∣tα − (1 − t)α
∣∣∣pdt.
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Theorem 2.17. Let K = [ma,ma + η(b,ma)] ⊂ < be m–invex set with respect to the mapping η : K × K → < for
some fixed m ∈ (0, 1], where a < b and η(b,ma) > 0. Suppose h1, h2 : [0, 1]→ [0,+∞) be continuous functions. Let
f : K→ (0,+∞) be a differentiable exponentially (m, ω1, ω2, h1, h2)–preinvex function on K◦ such that f ′ ∈ L(K) and
ω1, ω2 ∈ <. If | f ′|q is generalized (m, h1, h2)–preinvex function, then for q ≥ 1, the following inequality holds:∣∣∣Ξ f ,Λm (a, b)

∣∣∣ ≤ η(b,ma)
2Λm(1)

[
BΛm (1)

]1− 1
q (42)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qPΛm,h1 + m∆ f (q;ω1, ω2, a, b)SΛm,h1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qPΛm,h2 ,

where

SΛm,h1,h2 =

∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣h1(t)h2(t)dt, (43)

PΛm,hi =

∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣[hi(t)]2dt, ∀ i = 1, 2 (44)

and ∆ f (q;ω1, ω1, a, b), BΛm (1) are defined as in Theorem 2.14.

Proof. From Lemma 2.12, exponentially (m, ω1, ω2, h1, h2)–preinvexity of f , generalized (m, h1, h2)–preinvexity
of | f ′|q, the well–known power mean inequality and properties of the modulus, we have

∣∣∣Ξ f ,Λm (a, b)
∣∣∣ ≤ η(b,ma)

2

∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣∣∣∣∣e f (ma+tη(b,ma)) f ′(ma + tη(b,ma))

∣∣∣∣dt

≤
η(b,ma)
2Λm(1)

[
BΛm (1)

]1− 1
q

(∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣eq f (ma+tη(b,ma))

∣∣∣ f ′(ma + tη(b,ma))
∣∣∣qdt

) 1
q

≤
η(b,ma)
2Λm(1)

[
BΛm (1)

]1− 1
q

×

(∫ 1

0

∣∣∣Λm(t) −Λm(1 − t)
∣∣∣[mh1(t)eqω1 f (a) + h2(t)eqω2 f (b)

][
mh1(t)

∣∣∣ f ′(a)
∣∣∣q + h2(t)

∣∣∣ f ′(b)
∣∣∣q]dt

) 1
q

=
η(b,ma)
2Λm(1)

[
BΛm (1)

]1− 1
q

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qPΛm,h1 + m∆ f (q;ω1, ω2, a, b)SΛm,h1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qPΛm,h2 .

The proof of Theorem 2.17 is completed.

We point out some special cases of Theorem 2.17.

Corollary 2.18. In Theorem 2.17, if we choose ϕ(t) = t, we get∣∣∣∣∣∣ e f (ma) + e f (ma+η(b,ma))

2
−

1
η(b,ma)

∫ ma+η(b,ma)

ma
e f (t)dt

∣∣∣∣∣∣ ≤ 2
1−2q

q η(b,ma) (45)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qΩh1 + m∆ f (q;ω1, ω2, a, b)Θh1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qΩh2 ,

where

Θh1,h2 =

∫ 1

0

∣∣∣2t − 1
∣∣∣h1(t)h2(t)dt, Ωhi =

∫ 1

0

∣∣∣2t − 1
∣∣∣[hi(t)]2dt, ∀ i = 1, 2. (46)
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Corollary 2.19. In Theorem 2.17, if we choose ϕ(t) =
tα

Γ(α)
for α > 0 and η(b,ma) = b −ma, we obtain∣∣∣∣∣∣ e f (ma) + e f (b)

2
−

Γ(α + 1)
2(b −ma)α

×

{
Jα(ma)+ e f (b) + Jαb−e

f (ma)
}∣∣∣∣∣∣ ≤ (b −ma)

2

[
BΛm (1)

]1− 1
q (47)

×
q
√

m2eqω1 f (a)
∣∣∣ f ′(a)

∣∣∣qPΛm,h1 + m∆ f (q;ω1, ω2, a, b)SΛm,h1,h2 + eqω2 f (b)
∣∣∣ f ′(b)

∣∣∣qPΛm,h2 .

Remark 2.20. Under the conditions of Theorems 2.14 and 2.17, using Remark 2.4, for the appropriate choices of

function ϕ(t) = t,
t
α
k

kΓk(α)
; ϕ(t) =

t
α

exp
[ (
−

1 − α
α

)
t
]
, where α ∈ (0, 1), we can get several new integral inequalities.

The details are left to the interested reader.

We now demonstrate the sharpness of the obtained inequalities by comparing with the other existing ones.
For simplicity, let us take, respectively, h1(t) = 1 − t, h2(t) = t and η(y,mx) = y −mx for all m ∈ (0, 1], where
ω1, ω2 ∈ (−∞, 1). From exponentially (m, ω1, ω2, 1− t, t)–convexity of function f , follows the definition 1.13.
Indeed

e f (mx+t(y−mx))
≤ m(1 − t)eω1 f (x) + teω2 f (y)

≤ m(1 − t)e f (x) + te f (y). (48)

From inequality (48), we have that, if the function f is exponentially (m, ω1, ω2, 1 − t, t)–convex then it is
exponentially m-convex as well. Also, if in addition, we take special value m = 1, we get

e f (x+t(y−x))
≤ (1 − t)eω1 f (x) + teω2 f (y)

≤ (1 − t)e f (x) + te f (y). (49)

Inequality (49), show that, if the function f is exponentially (1, ω1, ω2, 1− t, t)–convex then it is exponentially
convex.

The above inequalities (48) and (49) confirms the efficiency of the obtained inequalities on the base of
comparing those with the other corresponding existing ones in known literatures about convexity and
exponentially convexity, see [1, 2, 5, 9, 21, 26], which is the most important of all in the applied mathematics.
Let see the following interesting example.

Example 2.21 ([1]). The error function

er f (x) =
2
√
π

∫ x

0
e−t2

dt,

becomes an exponentially concave function in the form er f (
√

x), x ≥ 0,which describes the bit/symbol error probability
of communication systems depending on the square root of the underlying signal-to-noise ratio. But from the reverse
of the left-side of above inequality (49), if the function f is exponentially (1, ω1, ω2, 1 − t, t)–concave then it is
exponentially concave. This shows that the exponentially (1, ω1, ω2, 1 − t, t)–concave functions can play important
part in communication theory and information theory.

Let us do another interpretation of the above error function. Without lost of the generality we take, respectively,
x = 0, y = 1, m = 1 and ω1 an arbitrary real number for all t ∈ (0, 1). We define er f (1) = ξ > 0. Since er f (

√
x) for

x ≥ 0, is an exponentially concave function and er f (0) = 0, we have

(1 − t)eω1 f (0) + teω2 f (1)
≥ (1 − t)e f (0) + te f (1).

Hence

1 − t + teω2ξ ≥ 1 − t + teξ.

From the last inequality it is evident that for all ω2 ≥ 1 and t ∈ (0, 1) this inequality is satisfied.
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Now we recall the concept of θ–exponentially convex functions, which is mainly due to Awan et al. [5] and
after we will give another example in order to show efficiency of our new definition.

Definition 2.22 ([5]). Let θ ∈ <. Then a real–valued function f : [0,+∞) → < is said to be θ–exponentially
convex, if

f
(
tx + (1 − t)y

)
≤ teθx f (x) + (1 − t)eθy f (y) (50)

is valid for all x, y ∈ [0,+∞) and t ∈ [0, 1].

Example 2.23. The function f :<→<, defined by f (t) = −t2 is a concave function, thus this is an θ–exponentially
convex for all θ > 0. Without lost of the generality, we choose, respectively, x = 0, y = 1, m = 1, ω1 an arbitrary
real number and ω2 ≥ 1 for all t ∈ (0, 1). It is clear that f it is exponentially (1, ω1, ω2, 1 − t, t)–convex function as
well. Moreover it is evident that every exponentially (1, ω1, ω2, 1 − t, t)–convex function is θ–exponentially convex
for all θ > 0 and ω2 ≥ 1, where ω1 is an arbitrary real number for all t ∈ (0, 1). This shows the efficiency of our new
definition.

3. Applications

In this section, we provide some new error estimates for trapezoidal quadrature formula. Let Q be the
partition of the points a = x0 < x1 < . . . < xk = b of the interval [a, b]. Let consider the following quadrature
formula:∫ b

a
e f (x)dx = T( f ,Q) + E( f ,Q),

where

T( f ,Q) =

k−1∑
i=0

e f (xi) + e f (xi+1)

2
(xi+1 − xi)

is the trapezoidal version and E( f ,Q) is denote the associated approximation error.

Proposition 3.1. Let f : [a, b]→ (0,+∞) be a differentiable exponentially (ω1, ω2, h1, h2)–convex function on (a, b),
where a < b and ω1, ω2 ∈ <. Suppose h1, h2 : [0, 1] → [0,+∞) be continuous functions. If | f ′|q is generalized
(h1, h2)–convex on [a, b] for q > 1 and 1

p + 1
q = 1, then the following inequality holds:

∣∣∣E( f ,Q)
∣∣∣ ≤ 1

2 p
√

p + 1
×

k−1∑
i=0

(xi+1 − xi)2 (51)

×
q
√

eqω1 f (xi)
∣∣∣ f ′(xi)

∣∣∣qGh1 + ∆ f (q;ω1, ω2, xi, xi+1)Fh1,h2 + eqω2 f (xi+1)
∣∣∣ f ′(xi+1)

∣∣∣qGh2 ,

where

∆ f (q;ω1, ω2, xi, xi+1) = eqω1 f (xi)
∣∣∣ f ′(xi+1)

∣∣∣q + eqω2 f (xi+1)
∣∣∣ f ′(xi)

∣∣∣q (52)

and Fh1,h2 , Gh1 , Gh2 are defined as in Theorem 2.14.

Proof. Applying Theorem 2.14 for m = 1, η(b,ma) = b − ma and ϕ(t) = t on the subintervals [xi, xi+1] (i =
0, . . . , k − 1) of the partition Q, we have∣∣∣∣∣∣ e f (xi) + e f (xi+1)

2
−

1
xi+1 − xi

∫ xi+1

xi

e f (x)dx

∣∣∣∣∣∣ ≤ (xi+1 − xi)

2 p
√

p + 1
(53)
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×
q
√

eqω1 f (xi)
∣∣∣ f ′(xi)

∣∣∣qGh1 + ∆(q;ω, xi, xi+1)Fh1,h2 + eqω2 f (xi+1)
∣∣∣ f ′(xi+1)

∣∣∣qGh2 .

Hence from (53), we get∣∣∣E( f ,Q)
∣∣∣ =

∣∣∣∣∣∣
∫ b

a
e f (x)dx − T( f ,Q)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ k−1∑
i=0

{∫ xi+1

xi

e f (x)dx −
e f (xi) + e f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣∣∣
≤

k−1∑
i=0

∣∣∣∣∣∣
{ ∫ xi+1

xi

e f (x)dx −
e f (xi) + e f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣∣∣
≤

1

2 p
√

p + 1
×

k−1∑
i=0

(xi+1 − xi)2

×
q
√

eqω1 f (xi)
∣∣∣ f ′(xi)

∣∣∣qGh1 + ∆ f (q;ω1, ω2, xi, xi+1)Fh1,h2 + eqω2 f (xi+1)
∣∣∣ f ′(xi+1)

∣∣∣qGh2 .

The proof of Proposition (3.1) is completed.

Proposition 3.2. Let f : [a, b]→ (0,+∞) be a differentiable exponentially (ω1, ω2, h1, h2)–convex function on (a, b),
where a < b and ω1, ω2 ∈ <. Suppose h1, h2 : [0, 1] → [0,+∞) be continuous functions. If | f ′|q is generalized
(h1, h2)–convex on [a, b] for q ≥ 1, then the following inequality holds:

∣∣∣E( f ,Q)
∣∣∣ ≤ 2

1−2q
q ×

k−1∑
i=0

(xi+1 − xi)2 (54)

×
q
√

eqω1 f (xi)
∣∣∣ f ′(xi)

∣∣∣qΩh1 + ∆ f (q;ω1, ω2, xi, xi+1)Θh1,h2 + eqω2 f (xi+1)
∣∣∣ f ′(xi+1)

∣∣∣qΩh2 ,

where ∆ f (q;ω1, ω2, xi, xi+1) is defined from (52) and Θh1,h2 , Ωh1 , Ωh2 are defined from (46).

Proof. The proof is analogous as to that of Proposition 3.1, taking m = 1, η(b,ma) = b − ma and ϕ(t) = t in
Theorem 2.17.

Remark 3.3. Under the conditions of Theorems 2.14 and 2.17, using Remark 2.4, for the appropriate choices of

function ϕ(t) = t,
t
α
k

kΓk(α)
; ϕ(t) =

t
α

exp
[ (
−

1 − α
α

)
t
]
, where α ∈ (0, 1), we can deduce several new bounds for the

trapezoidal quadrature formula using above idea and technique. The details are left to the interested reader.

4. Conclusion

We have established some fractional integral inequalities using a new class of preinvex functions called
exponentially (m, ω1, ω2, h1, h2)–preinvex. By applying the new identity pertaining to differentiable func-
tions, some new Hermite–Hadamard inequalities via exponentially (m, ω1, ω2, h1, h2)–preinvex functions
involving Riemann–Liouville fractional integral are obtained. Also, some new estimates with respect to
trapezium-type integral inequalities for exponentially (m, ω1, ω2, h1, h2)–preinvex functions via general frac-
tional integrals are given. In order to show the unification of our main results various special cases were also
discussed. Using two interesting examples we have also shown the efficiency of the obtained results. At the
end, some new error estimates for trapezoidal quadrature formula were provided as well. Exponentially
(m, ω1, ω2, h1, h2)–preinvex functions can be employed for statistical analysis, recurrent neural networks,
and experimental designs. We believe that this general class will be very useful and will be explored due
to its dominant characteristics.
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