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Abstract. Some necessary and sufficient conditions for the existence of the η-skew-Hermitian solution
quaternion matrix equations the system of matrix equations with η-skew-hermicity,

A1X = C1, XB1 = C2,

A2Y = C3, YB2 = C4,

X = −Xη∗, Y = −Yη∗,

A3XAη∗
3 + B3YBη∗3 = C5,

are established in this paper by using rank equalities of the coefficient matrices. The general solutions to the
system and its special cases are provided when they are consistent. Within the framework of the theory of
noncommutative row-column determinants, we also give determinantal representation formulas of finding
their exact solutions that are analogs of Cramer’s rule. A numerical example is also given to demonstrate
the main results.

1. Introduction

In this paper,R andC stand for the real number field and the complex field, respectively. The quaternion
algebra is denoted byH and is defined as

H = {h0 + h1i + h2j + h3k | i2 = j2 = k2 = ijk = −1, h0, h1, h2, h3 ∈ R}.

The collection of all the matrices of dimension m×n overH is denoted byHm×n. Its subset of matrices with
a rank r is specified byHm×n

r . An identity matrix with conformable shape is denoted by I. For any matrix A
overH, R(A) andN(A) stand for the column right space and the row left space of A, respectively. D[R(A)]
denotes the dimension of R(A). By [29], we have D[R(A)] = D[N(A)], which is known as rank of A denoted
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by r(A). The conjugate transpose of A is denoted by A∗. A† means the Moore-Penrose inverse of A ∈Hm×n,
i.e. the exclusive matrix Y ∈Hn×m satisfying

AYA = A, YAY = Y, (AY)∗ = AY, (YA)∗ = YA.

For more properties on generalized inverses, consult [6, 75] and [30]. Furthermore, LA = I − A†A and
RA = I − AA† are couple of projectors induced by A, respectively. It is evident that LA = L∗A = L†A = L2

A and
RA = R∗A = R†A = R2

A.
The idea of quaternions were first time introduced by an Irish mathematician Sir William Rowan

Hamilton in his research in [23]. Quaternions have prolific use in diverse areas of mathematics like
computation, geometry and algebra; see, e.g. [8, 31, 56, 83]. Presently, quaternion matrices have a central
position in control theory, mechanics, altitude control, computer graphics, quantum physics and signal
processing; see, e.g. [1, 34, 65]. In skeletal animation systems, quaternions are mostly practiced to interpolate
between joint orientations specified with key frames or animation curves [9]. A researcher in [88] gave a
comprehensive study on quaternions.

Numerous problems in different areas of sciences and engineering can be converted into matrix equations
and hence the investigation of linear matrix equations have crucial function in matrix theory and its
applications; see, e.g. [5, 10, 12, 13, 16–18, 20, 22, 26–28, 32, 33, 55, 57, 59, 62–64, 71–73, 76, 78, 80–
82, 84, 85, 89, 90]. For example, the most famous Lyapunov equation

B1X + (B1X)∗ = A1

has vital function in optimal control, stability analysis, system theory and model reduction [58, 69]. The
general solution of

CXC∗ + DYD∗ = A

was analyzed by different authors with different techniques in [11, 52, 86]. In [87], the least squares η-
Hermitian solution to AXB + CXD = E was computed. The numerical solution to the two sided Sylvester
matrix equation was researched in [14, 15]. We first introduce the definition.

Definition 1.1. [27, 74, 87] A matrix A ∈ Hn×n is known to be η-Hermitian and η-skew-Hermitian if A = Aη∗ =
−ηA∗η and A = −Aη∗ = ηA∗η, where η ∈ {i, j,k}, respectively.

Convergence analysis in statistical signal processing and linear modelling [72–74] are some fields in
which the applications of η-Hermitian matrices can be viewed. The singular value decomposition of the η-
Hermitian matrix was examined in [27]. Very recently, a researcher in [53] determined the anti-η-Hermitian
solution to some significant matrix equations including

A3XAη∗
3 + B3YBη∗3 = C5 (1)

and gave general solution to these equations when they are consistent. He and Wang [24] gave the general
solution to

A4X + (A4X)η∗ + B4YBη∗4 + C4ZCη∗4 = D4 (2)

bearing η-Hermicity overH. The η–skew-Hermitian solution to the equation (2) was explored in [60]. An
iterative algorithm for determining the η-Hermitian and η-skew-Hermitian solutions to AXB + CYD = E
were established in [4].

Motivated by the above mentioned work and keeping the latest advancement of η-skew-Hermitian
matrices in mind, we in this paper, find some necessary and sufficient conditions for the existence of the
η-skew-Hermitian solution to

A1X = C1, XB1 = C2,

A2Y = C3, YB2 = C4,

X = −Xη∗, Y = −Yη∗,

A3XAη∗
3 + B3YBη∗3 = C5,

(3)
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and provide its general solution when this system is consistent by using the rank equalities of coefficient
matrices. Observe that the system (1) is a particular case of our system (3). We will also give more necessary
and sufficient conditions for the existence of the solution of (1) than the one presented in [53]. One other
reason for the consideration of the system (3) is that the Hermitian solution to a system that is similar to (3)
was computed in [19], the η-Hermitian solution was analyzed in [25], and determinantal representations of
the least-norm solution are obtained in [61], respectively.

We also get the direct methods of finding exact solutions, namely explicit determinantal representation
formulas that are analogs of Cramer’s rule. Our proposed Cramer’s rules are based on the theory of row-
column noncommutative determinants introduced in [35, 36], by using determinantal representations of the
Moore-Penrose inverse matrix [37]. Within the framework of the theory of noncommutative row-column
determinants, determinantal representations of various generalized quaternion inverses and generalized
inverse solutions to quaternion matrix equations have been derived by one of the authors (see, e.g. [41–45])
and by other researchers (see, e.g. [66–68]). Moreover, Cramer’s rules for generalized Sylvester matrix
equation and for some systems of matrix equations over H are recently explored in [46–48] and [49–51],
respectively.

The remaining part of this paper is composed as follows. In Section 2, we start with some remarkable
results which have significant role during the construction of the main results of this paper. Necessary
and sufficient conditions for the general solution (X,Y) to (3), where X and Y are η-skew-Hermitian, are
presented in Section 3. Some particular cases of (3) are also examined in Section 4. Based on row-column
noncommutative determinants, Cramer’s rules of the system (3) and its particular cases are derived in
Section 5. A numerical example is presented in Section 6. Finally, in Section 7, the conclusions are drawn.

2. Preliminaries

We begin with some famous results which will be used in the remaining part of this paper.

Lemma 2.1. [54]. Let A ∈Hs×t, B ∈Hs×k and C ∈Hl×t be known. Then

(1) r(A) + r(RAB) = r(B) + r(RBA) = r
[

A B
]
.

(2) r(A) + r(CLA) = r(C) + r(ALC) = r
[

A
C

]
.

(3) r(B) + r(C) + r(RBALC) = r
[

A B
C 0

]
.

Lemma 2.2. [24] Let A ∈Hm×n be given. Then

(1) (Aη)† = (A†)η, (Aη∗)† = (A†)η∗.

(2) r(A) = r(Aη∗) = r(Aη) = r(AηAη∗) = r(Aη∗Aη).

(3) (A†A)η∗ = Aη∗(A†)η∗ = (A†A)η = (A†)ηAη.

(4) (AA†)η∗ = (A†)η∗Aη∗ = (AA†)η = Aη(A†)η.

(5) (LA)η∗ = −η(LA)η = (LA)η = LAη = RAη∗ .

(6) (RA)η∗ = −η(RA)η = (RA)η = LAη∗ = RAη .

Lemma 2.3. [79]. Let A, B and C be given matrices with right sizes overH . Then

(1) A† = (A∗A)†A∗ = A∗(AA∗)†.

(2) LA = L2
A = L∗A,RA = R2

A = R∗A.
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(3) LA(BLA)† = (BLA)†, (RAC)†RA = (RAC)†.

Lemma 2.4. [53]. Let A2,B2,C2 and D2 be given with conformable dimensions overH. Set

E =

[
A2

Bη∗2

]
,F =

[
C2

Dη∗
2

]
.

Then the system A2Y = C2,YB2 = D2 has η-Skew-Hermitian solution if and only if REF = 0 and EFη∗ = −FEη∗.
Under these terms, its general η-Hermitian solution is

Y = E†F − (E†F)η∗ + E†E(E†F)η∗ + LEVLη∗E ,

where V = −Vη∗ is a free matrix overH with conformable size.

Remark 2.5. Since for any ηm ∈ {i, j,k} for all m = 1, 2, 3, and q = a0 + a1η1 + a2η2 + a3η3, the conjugate of q is
q∗ = a0 − a1η1 − a2η2 − a3η3 and

qη1 = −η1qη1 = a0 + a1η1 − a2η2 − a3η3,

q−η1 = η1qη1 = −a0 − a1η1 + a2η2 + a3η3,

then elements of the main diagonal of an η1-Hermitian matrix A = Aη1∗ must be as

aη1∗

ii = a0 + a2η2 + a3η3,

and a pair of elements which are symmetric with respect to the main diagonal can be represented as

aη1∗

i j = a0 + a1η1 + a2η2 + a3η3,

aη1∗

ji = a0 − a1η1 + a2η2 + a3η3.

Similarly, elements of the main diagonal of an η1-skew-Hermitian matrix A = A−η1∗ must be as

a−η1∗

ii = a1η1,

and a pair of elements which are symmetric with respect to the main diagonal can be represented as

a−η1∗

i j = a0 + a1η1 + a2η2 + a3η3,

a−η1∗

ji = −a0 + a1η1 − a2η2 − a3η3.

where for all am ∈ R for all m = 0, . . . , 3.

Since the Moore-Penrose inverse of a coefficient matrix and its inducted projectors are crucial to expres-
sions of solutions, there is a problem of their construct. The inverse matrix is determined by the adjugate
matrix that gives a direct method of its finding by using minors of an initial matrix. Due to minors, this
method can be called the determinantal representation of an inverse. The same is desirable for generalized
inverses. However, determinantal representations of generalized inverses are not so unambiguous even
for complex or real generalized inverses. Through looking for their more applicable explicit expressions,
there are various determinantal representations of generalized inverses, in particular for the Moore-Penrose
inverse (see, e.g., [3, 21, 39, 40, 70]). By virtue of noncommutativity of quaternions, the problem for deter-
minantal representation of quaternion generalized inverses is even more complicated. All of the previous
defined quaternion determinants are derived by transforming a quaternion matrix to an equivalent com-
plex or real matrix (see, e.g.,[2, 7, 88]). However, by this way it is impossible to give the determinantal
representations of generalized inverses. Only now it became possible due to the theory of column-row
noncommutative determinants introduced in [35, 36].

For A ∈Hn×n, we define n row determinants and n column determinants. Suppose Sn is the symmetric
group on the set In = {1, . . . ,n}.
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Definition 2.6. [35]. The i-th row determinant of A = (ai j) ∈Hn×n is defined for any i ∈ In by setting

rdetiA =
∑
σ∈Sn

(−1)n−r (ai ik1
aik1 ik1+1 . . . aik1+l1 i) . . . (aikr ikr+1 . . . aikr+lr ikr

),

σ =
(
i ik1 ik1+1 . . . ik1+l1

) (
ik2 ik2+1 . . . ik2+l2

)
. . .

(
ikr ikr+1 . . . ikr+lr

)
,

where σ is the left-ordered permutation. It means that its first cycle from the left starts with i, other cycles start from
the left with the minimal of all the integers which are contained in it,

ikt < ikt+s for all t = 2, . . . , r, s = 1, . . . , lt,

and the order of disjoint cycles (except for the first one) is strictly conditioned by increase from left to right of their
first elements, ik2 < ik3 < · · · < ikr .

Definition 2.7. [35]. The j-th column determinant of A = (ai j) ∈Hn×n is defined for any j ∈ In by setting

cdet jA =
∑
τ∈Sn

(−1)n−r(a jkr jkr+lr
. . . a jkr+1 jkr

) . . . (a j jk1+l1
. . . a jk1+1 jk1

a jk1 j),

τ =
(
jkr+lr . . . jkr+1 jkr

)
. . .

(
jk2+l2 . . . jk2+1 jk2

) (
jk1+l1 . . . jk1+1 jk1 j

)
,

where τ is the right-ordered permutation. It means that its first cycle from the right starts with j, other cycles start
from the right with the minimal of all the integers which are contained in it,

jkt < jkt+s for all t = 2, . . . , r, s = 1, . . . , lt,

and the order of disjoint cycles (except for the first one) is strictly conditioned by increase from right to left of their
first elements, jk2 < jk3 < · · · < jkr .

Since [36] for Hermitian A we have

rdet1A = · · · = rdetnA = cdet1A = · · · = cdetnA ∈ R,

the determinant of a Hermitian matrix is defined by putting det A := rdeti A = cdeti A for all i = 1, . . . ,n.
Its properties are similar to the properties of an usual (commutative) determinant and they have been
completely explored by using row and column determinants in [36].

Further, we give determinantal representations of the Moore-Penrose inverse over H. Let α :=
{α1, . . . , αk} ⊆ {1, . . . ,m} and β :=

{
β1, . . . , βk

}
⊆ {1, . . . ,n} be subsets of the order 1 ≤ k ≤ min {m,n}. Let

Aα
β be a submatrix of A ∈ Hm×n whose rows are indexed by α and the columns indexed by β. Similarly, let

Aα
α be a principal submatrix of A whose rows and columns indexed by α. If A ∈Hn×n is Hermitian, then |A|αα

is the corresponding principal minor of det A. For 1 ≤ k ≤ n, the collection of strictly increasing sequences
of k integers chosen from {1, . . . ,n} is denoted by Lk,n := {α : α = (α1, . . . , αk) , 1 ≤ α1 < . . . < αk ≤ n}. For
fixed i ∈ α and j ∈ β, let Ir,m{i} :=

{
α : α ∈ Lr,m, i ∈ α

}
, Jr,n

{
j
}

:=
{
β : β ∈ Lr,n, j ∈ β

}
.

Suppose that a. j and a∗. j, ai. and a∗i. stand for the j-th columns and the i-th rows of A and A∗, respectively. Let
A. j (b) and Ai. (c) denote the matrices obtained from A by replacing its j-th column with the column-vector
b ∈Hm×1, and its i-th row with the row-vector c ∈H1×n, respectively.

Theorem 2.8. [37]. If A ∈ Hm×n
r , then the Moore-Penrose inverse A† =

(
a†i j

)
∈ Hn×m have the following determi-

nantal representations,

a†i j =

∑
β∈Jr,n{i}

cdeti

(
(A∗A).i

(
a∗. j

))β
β∑

β∈Jr,n

|A∗A|ββ
= (4)

=

∑
α∈Ir,m{ j}

rdet j

(
(AA∗) j.(a∗i.)

)α
α∑

α∈Ir,m

|AA∗|αα
. (5)
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Remark 2.9. For an arbitrary full-rank matrix A ∈ Hm×n
r , a column-vector c ∈ H1×n, and a row-vector b ∈ Hm×1

r ,
we put

cdeti ((A∗A).i (c)) =
∑

β∈Jn,n{i}

cdeti ((A∗A).i (c))β
β, det (A∗A) =

∑
β∈Jn,n

|A∗A|ββ when r = n,

rdet j

(
(AA∗) j. (b)

)
=

∑
α∈Im,m{ j}

rdet j

(
(AA∗) j. (b)

)α
α
, det (AA∗) =

∑
α∈Im,m

|AA∗|αα when r = m.

Corollary 2.10. If A ∈ Hm×n
r , then the projection matrices A†A =: QA =

(
qi j

)
n×n

and AA† =: PA =
(
pi j

)
m×m

have
the determinantal representations, respectively,

qi j =

∑
β∈Jr,n{i}

cdeti

(
(A∗A).i

(
ȧ. j

))β
β∑

β∈Jr,n

|A∗A|ββ
, (6)

pi j =

∑
α∈Ir,m{ j}

rdet j

(
(AA∗) j.(äi.)

)α
α∑

α∈Ir,m

|AA∗|αα
, (7)

where ȧ. j is the j-th column of A∗A ∈Hn×n and äi. is the i-th row of AA∗ ∈Hm×m.

Corollary 2.11. If A ∈ Hm×n
r , then the Moore-Penrose inverse (Aη∗)† =

(
(aη∗i j )†

)
∈ Hm×n has the following determi-

nantal representations, respectively,

(aη∗i j )† = −η(a∗ji)
†η = − η

∑
α∈Ir,n{ j}

rdet j

(
(A∗A) j. (ai. )

)α
α∑

β∈Ir,n

|A∗A|αα
η (8)

= − η

∑
β∈Jr,m{i}

cdeti

(
(AA∗). i(a. j)

)β
β∑

β∈Jr,m

|AA∗|ββ
η. (9)

Lemma 2.12. [77]. Let A, B and C be given matrices matrices of conformable shapes overH. Then

AXB = C (10)

is consistent if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗). In this case, the general solution of this equation is

X = A†CB† + LAU1 + U2RB,

where U1 and U2 are arbitrary matrices of adequate sizes overH.

Lemma 2.13. [38] Let A ∈ Hm×n
r1

, B ∈ Hr×s
r2

. Then the partial solution X = A†CB† = (xi j) ∈ Hn×r to (10 ) has
determinantal representations,

xi j =

∑
β∈Jr1 ,n{i}

cdeti

(
(A∗A). i

(
dB
. j

))β
β∑

β∈Jr1 ,n

|A∗A|ββ
∑

α∈Ir2 ,r

|BB∗|αα
=

∑
α∈Ir2 ,r{ j}

rdet j

(
(BB∗) j.

(
dA

i .

))α
α∑

β∈Jr1 ,n

|A∗A|ββ
∑

α∈Ir2 ,r

|BB∗|αα
,
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where

dB
. j =

 ∑
α∈Ir2 ,r{ j}

rdet j

(
(BB∗) j. (c̃k. )

)α
α

 ∈Hn×1, k = 1, . . . ,n,

dA
i. =

 ∑
β∈Jr1 ,n{i}

cdeti ((A∗A).i (c̃. l))
β
β

 ∈H1×r, l = 1, . . . , r,

are the column vector and the row vector, respectively. c̃k. and c̃. l are the k-th row and the l-th column of C̃ = A∗CB∗.

Corollary 2.14. Let A ∈Hm×n
k , C ∈Hm×s be known and X ∈Hn×s be unknown. Then the matrix equation AX = C

is consistent if and only if AA†C = C. In this case, its general solution can be expressed as X = A†C + LAV, where
V is an arbitrary matrix over H with appropriate dimensions. Its partial solution X = A†C has the determinantal
representation

xi j =

∑
β∈Jk,n{i}

cdeti

(
(A∗A).i

(
ĉ. j

))β
β∑

β∈Jk,n

|A∗A|ββ
,

where ĉ. j is the j-th column of Ĉ = A∗C.

Corollary 2.15. Let B ∈Hr×s
k , C ∈Hn×s be given, and X ∈Hn×r be unknown. Then the equation XB = C is solvable

if and only if C = CB†B and its general solution is X = CB† + WRB, where W is a any matrix with conformable
dimension. Moreover, its partial solution X = CB† has the determinantal representation

xi j =

∑
α∈Ik,r{ j}

rdet j

(
(BB∗) j. (ĉi.)

)α
α∑

α∈Ik,r

|BB∗|αα
,

where ĉi. is the i-th row of Ĉ = CB∗.

3. Some solvability conditions and the general solution to (3)

In this section, we provide some necessary and sufficient conditions for the system (3) to have a solution
(X,Y), where X = −Xη∗ and Y = −Yη∗. Additionally, its general solution is also given when some solvability
conditions are accomplished.

Theorem 3.1. Let A1, A2, A3, B1, B2, B3, C1, · · · ,C4 and C5 = −Cη∗5 be known coefficient matrices in (3) overH
with adequate sizes. Denote

A4 =

[
A1

Bη∗1

]
, C6 =

[
C1

−Cη∗2

]
, B4 =

[
A2

Bη∗2

]
, C7 =

[
C3

−Cη∗4

]
,

A = A3LA4 , B = B3LB4 , M = RAB, S = BLM,

C = C5 − A3A†4C6Aη∗
3 + A3(A†4C6)η∗Aη∗

3 − A3A†4(A4Cη∗6 )(A†4)η∗Aη∗
3

− B3B†4C7Bη∗3 + B3(B†4C7)η∗Bη∗3 − B3B†4(B4Cη∗7 )(B†4)η∗Bη∗3

Then

(1) The system (3) has a solution (X,Y), where X = −Xη∗ and Y = −Yη∗.
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(2)

A4Cη∗6 = −C6Aη∗
4 , B4Cη∗7 = −C7Bη∗4 , RA4 C6 = 0, RB4 C7 = 0, (11)

RMRAC = 0, RACRη∗B = 0. (12)

(3)

A4Cη∗6 = −C6Aη∗
4 , B4Cη∗7 = −C7Bη∗4 , RA4 C6 = 0, RB4 C7 = 0,

MM†RAC = RAC = RAC(B†)η∗Bη∗.

(4)

A4Cη∗6 = −C6Aη∗
4 , B4Cη∗7 = −C7Bη∗4 ,

r
[

A1 C1

Bη∗1 −Cη∗2

]
= r

[
A1

Bη∗1

]
, r

[
A2 C2

Bη∗2 −Cη∗4

]
= r

[
A2

Bη∗2

]
,

r


C5 B3 A3

C1Aη∗
3 A2 0

−Cη∗2 Aη∗
3 Bη∗2 0

C3Bη∗3 0 A1

−Cη∗4 Bη∗3 0 Bη∗1

 = r


B3 A3
A2 0
Bη∗2 0
0 A1

0 Bη∗1

 ,

r


C5 A3 B3Cη∗3 −B3C4

Bη∗3 0 Aη∗
2 B2

C1Aη∗
3 A1 0 0

−Cη∗2 Aη∗
3 0 Bη∗1 0 0

 = r

 A3
A1

Bη∗1

 + r

 B3
A2

Bη∗2

 .
the above mentioned statements are equivalent. Under these conditions, the general solution to the system (3) can be
expressed as

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + LA4 [A†C(A†)η∗ −
1
2

A†BM†C[I + (B†)η∗Sη∗](A†)η∗

−
1
2

A†[I + SB†]C(M†)η∗Bη∗(A†)η∗ − A†SW12Sη∗(A†)η∗ − LAU12 + Uη∗
12LA

η∗](LA4 )η∗, (13)

Y = −Yη∗ = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ + LB4 [
1
2

M†C(B†)η∗[I + (S†S)η∗]

+
1
2

(I + S†S)B†C(M†)η∗ + LMW12(LM)η∗ −U13LB
η∗ + LBUη∗

13 + LMLSU14 −Uη∗
14(LMLS)η∗]Lη∗B4

, (14)

where U11, · · · ,U14 and Wη∗
12 = −W12 are arbitrary matrices overH with allowable dimensions.

Proof. Obviously, (2)⇐⇒(3).
Now we show (2)⇐⇒ (4). By means of Lemma 2.1 and Lemma 2.2, we have

RA4 C6 = 0⇔ r(RA4 C6) = 0⇔ r
[

A4 C6

]
= r(A4)

⇔ r
[

A1 C1

Bη∗1 −Cη∗2

]
= r

[
A1

Bη∗1

]
,

RB4 C7 = 0⇔ r(RB4 C7) = 0⇔ r
[

B4 C7

]
= r(B4)

⇔ r
[

A2 C3

Bη∗2 −Cη∗4

]
= r

[
A2

Bη∗2

]
.
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Observe that

A4(A†4C6 + (A†4C6)η∗ − A†4A4Cη∗6 (A†4)η∗) = C6, (15)

B4(B†4C7 + (B†4C7)η∗ − B†4B4Cη∗7 (B†4)η∗) = C7. (16)

It follows that (15)-(16) and Lemma 2.1, we have

RMRAC = 0⇐⇒ r(RMRAC) = 0⇐⇒ r
[

M RAC
]

= r(M)

⇐⇒ r
[

RAB RAC
]

= r(RAB)

⇐⇒ r
[

A B C
]

= r
[

A B
]

⇐⇒ r
[

A3LA4 B3LB4 C
]

= r
[

A3LA4 B3LB4

]
⇐⇒ r

 C B3 A3
0 B4 0
0 0 A4

 = r

 B3 A3
B4 0
0 A4


⇐⇒ r

 C5 B3 A3

C7Bη∗3 B4 0
C6Aη∗

3 0 A4

 = r

 B3 A3
B4 0
0 A4

 ,
similarly,

RAC(RB)η = 0⇐⇒ r(RAC(RB)η) = 0⇐⇒ r
[

C A
Bη∗ 0

]
= r(A) + r(B)

⇐⇒ r
[

C A3LA4

RB4
η∗Bη∗3 0

]
= r(A3LA4 + r(RB4

η∗Bη∗3 )

⇐⇒ r

 C A3 0
Bη∗3 0 Bη∗4
0 A4 0

 = r
[

A3
A4

]
+ r

[
B3
B4

]

⇐⇒ r


C5 A3 B3Cη∗7
Bη∗3 0 Bη∗4

C6Aη∗
3 A4 0

 = r
[

A3
A4

]
+ r

[
B3
B4

]
.

Now we show (1)=⇒ (2): If the system (3) has a solution (Y,Z), where Y = −Yη∗ and Z = −Zη∗. Then by
Lemma 2.4, the general η-skew-Hermitian solution to A4X = C6 and B4Y = C7 is

X = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + LA4 U1(LA4 )η∗ (17)

and

Y = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ + LB4 U2(LB4 )η∗ (18)

respectively, where U1 = −Uη∗
1 and U2 = −Uη∗

2 are arbitrary matrices of feasible shapes.
Using (17)-(18) in A3XAη∗

3 − B3YBη∗3 and simplifying, we have

AU1Aη∗ + BU2Bη∗ = C.

From this equation, we have

⇒ RA[C − AU1Aη∗
− BU2Bη∗]RB

η∗ = 0
⇒ RA[C]RB

η∗ = 0
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and

RA[AU1Aη∗ + BU2Bη∗] = RAC
⇒ MU2Bη∗ = RAC⇒ RMRAC = 0.

(2)=⇒(1): Now we prove that (X,Y) mentioned in (13)-(14), respectively, is a solution of (3) under (11) and
(12). Obviously, X and Y represented in (13) and (14) are η-skew-Hermitian. Put

P0 =
1
2

M†C(B†)η∗[I + (S†S)η∗] +
1
2

(I + S†S)B†C(M†)η∗

+ LMW12(LM)η∗ −U13LB
η∗ + LBUη∗

13 + LMLSU14 −Uη∗
14(LMLS)η∗, (19)

Q0 = A†(C − BP0Bη∗)(A†)η∗ − LAU12 + Uη∗
12(LA)η∗. (20)

Now (14) with the help of (19) can be expressed as

Y = −Yη∗ = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ + LB4 P0LB4
η∗. (21)

By Lemma 2.3, Eq. (12) and B − S = BM†M, we have

M†RA = M†, BS†S − S = (B − S)S†S = BM†MS∗(S†)∗ = 0, RAC = RAC(B†)η∗Bη∗. (22)

By using (22), Eq. (20) can be written as follows

Q0 = A†(C − BP0Bη∗)(A†)η∗ − LAU12 + Uη∗
12(LA)η∗

= A†C(A†)η∗ − A†BP0Bη∗(A†)η∗ − LAU12 + Uη∗
12(LA)η∗

= A†C(A†)η∗ −
1
2

A†BM†C(B†)η∗[I + Sη∗(S†)η∗]Bη∗(A†)η∗

−
1
2

A†B[I + S†S]B†C(M†)η∗Bη∗(A†)η∗ − A†SW12Sη∗(A†)η∗ − LAU12 + Uη∗
12Lη∗A

= A†C(A†)η∗ −
1
2

A†BM†C(B†)η∗Bη∗(A†)η∗ −
1
2

A†BM†C(B†)η∗Sη∗(A†)η∗

−
1
2

A†C(M†)η∗Bη∗(A†)η∗ −
1
2

A†SB†C(M†)η∗Bη∗(A†)η∗

− A†SW12Sη∗(A†)η∗ − LAU12 + Uη∗
12Lη∗A

= A†C(A†)η∗ −
1
2

A†BM†RAC(B†)η∗Bη∗(A†)η∗ −
1
2

A†BM†RAC(B†)η∗(S†S)η∗Bη∗(A†)η∗

−
1
2

A†BB†C(RA)η∗(M†)η∗Bη∗(A†)η∗ −
1
2

A†BS†SB†C(M†)η∗Bη∗(A†)η∗

− A†SW12Sη∗(A†)η∗ − LAU12 + Uη∗
12Lη∗A , (23)

from (23), we have

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + LA4 Q0(LA4 )η∗. (24)

By using RA4 C6 = 0 and RB4 C7 = 0, we have

A4X =A4A†4C6 − A4(A†4C6)η∗ + A4A†4(A4Cη∗6 )(A†4)η∗ + A4LA4 Q0(LA4 )η∗

=C6 ⇒ r
[

A1

Bη∗1

]
X = r

[
C1

−Cη∗2

]
,

B4Y =B4B†4C7 − B4(B†4C7)η∗ + B4B†4(B4Cη∗7 )(B†4)η∗ + B4LB4 P0(LB4 )η∗

=C7 ⇒ r
[

A2

Bη∗2

]
Y = r

[
C3

−Cη∗4

]
.
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By using (21) and (24) in C5 − A3XA3 − B3YBη∗3 , we have

C5 − A3XA3 − B3YBη∗3 = C − AQ0Aη∗
− BPoBη∗. (25)

Notice that

MLB = 0, MS∗ = 0, MM†RAC = RAC = RAC(B†)η∗Bη∗,

Bη∗ − Sη∗ = Mη∗(M†)η∗Bη∗, Sη∗ = Sη∗(S†)η∗Bη∗, P0 = −Pη∗0 ,

then

MP0Bη∗ =
1
2

[MM†C(B†)η∗Bη∗ + MB†C(M†)η∗Bη∗ + MM†C(B†)η∗(S†S)η∗Bη∗]

=
1
2

[MM†RAC(B†)η∗Bη∗

+ MB†CRA
η∗(M†)η∗Bη∗ + MM†RAC(B†)η∗(S†S)η∗Bη∗]

=
1
2

[RAC + RABB†CRA
η∗(M†)η∗Bη∗ + MM†RAC(B†)η∗Sη∗]

=
1
2

[RAC + RACLAη∗ (M†)η∗Bη∗ + RAC(B†)η∗Sη∗]

=
1
2

[RAC + RAC(B†)η∗Bη∗LAη∗ (M†)η∗Bη∗ + RAC(B†)η∗Sη∗]

=
1
2

[RAC + RAC(B†)η∗Mη∗(M†)η∗Bη∗ + RAC(B†)η∗Sη∗]

=
1
2

[RAC + RAC(B†)η∗(Bη∗ − Sη∗) + RAC(B†)η∗Sη∗]

=
1
2

[RAC + RAC − RAC(B†)η∗Sη∗ + RAC(B†)η∗Sη∗]

= RAC. (26)

By putting Eq. (26) in (25), we have

C5 − A3XA3−B3YBη∗3 = C − AQ0Aη∗
− BP0Bη∗

=C − AA†C(A†)η∗Aη∗ + AA†BP0Bη∗(AA†)η∗ − BP0Bη∗

=C − AA†C(A†)η∗Aη∗ + (I − RA)BP0Bη∗(AA†)η∗ − BP0Bη∗

=C − AA†C(A†)η∗Aη∗ + BP0Bη∗(AA†)η∗ −MP0Bη∗(AA†)η∗ − BP0Bη∗

=0.

Next, we want to prove that any solution (X,Y), where X and Y are η-skew-Hermitian matrices, of the
system (3) can be expressed by (14)-(13). Suppose that (X0,Y0), where X0 = −Xη∗

0 and Y0 = −Yη∗
0 , be an

arbitrary solution of (3) and we show that its general solution can be expressed by (14)-(13). Observe that

LA4 X0Lη∗A4
= (I − A†4A4)X0(I − A†4A4)η∗ = X0 − A†4C6 + (A†4C6)η∗ − A†4A4Cη∗6 (A†4)η∗,

A3LA4 X0Lη∗A4
Aη∗

3 = A3(X0 − A†4C6 + (A†4C6)η∗ − A†4A4Cη∗6 (A†4)η∗)Aη∗
3 ,

that is,

AX0Aη∗ = A3X0 − A3A†4C6Aη∗
3 + A3(A†4C6)η∗Aη∗

3 − A3A†4A4Cη∗6 (A†4)η∗Aη∗
3 (27)

By the same approach, we have

BX0Bη∗ = B3Y0 − B3B†4C7Bη∗3 + B3(B†4C7)η∗Bη∗3 − B3B†4B4Cη∗7 (B†4)η∗Bη∗3 . (28)
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From (27) and (28), we can easily get that, AX0Aη∗ + BY0Bη∗ = C. Consequently,

MY0Bη∗ = RAC, BY0Mη∗ = C(RA)η∗, MY0Mη∗ = RAC(RA)η∗ (29)

Put

U14 =
1
2

Y0Bη∗(B†)η∗Mη∗(M†)η∗, U12 =
1
2

[−X0 − X0A1
η∗(A1

†)η∗] (30)

W12 =
1
2

[Y0Bη∗(B†)η∗ − B†BY0], U13 =
1
2

Y0. (31)

With the help of (30)-(31), P0 − Y0 can be written as follows

P0 − Y0 =
1
2

[M†C(B†)η∗ + B†C(M†)η∗ + M†C(B†)η∗(S†S)η∗ + S†SB†C(M†)η∗

+ LMLSY0Bη∗(B†)η∗Mη∗(M†)η∗ + LMY0Bη∗(B†)η∗Lη∗M + Y0Lη∗B
− LBY0 −M†MB†BY0Lη∗S Lη∗M − LMB†BY0Lη∗M − 2Y0]. (32)

To show P0−Y0 = 0, we examine the term present in the second line of (32). Since MS∗ = 0 and MY0Bη∗ = RAC,
we have

LMLSY0Bη∗(B†)η∗Mη∗(M†)η∗ + LMY0Bη∗(B†)η∗Lη∗M + Y0Lη∗B
= LMY0Bη∗(B†)η∗Mη∗(M†)η∗ − LMS†SY0Bη∗(B†)η∗Mη∗(M†)η∗ + LMY0Bη∗(B†)η∗Lη∗M + Y0Lη∗B
= LMY0Bη∗(B†)η∗ − LMS†SY0Bη∗(B†)η∗Mη∗(M†)η∗ + Y0Lη∗B
= Y0Bη∗(B†)η∗ −M†MY0Bη∗(B†)η∗ − S†SY0Bη∗(B†)η∗Mη∗(M†)η∗ + Y0Lη∗B
= Y0Bη∗(B†)η∗ −M†RAC(B†)η∗ − S†SY0Mη∗(M†)η∗ + Y0Lη∗B
= Y0 −M†C(B†)η∗ − S†SY0Mη∗(M†)η∗. (33)

The last term of (33) can be computed by using (12) and (29) as follow

S†SY0Mη∗(M†)η∗ = S†BLMY0Mη∗(M†)η∗

= S†BY0Mη∗(M†)η∗ − S†BM†MY0Mη∗(M†)η∗

= S†CLAη∗ (M†)η∗ − S†BM†RABB†CLAη∗ (M†)η∗

= S†C(M†RA)η∗ − S†BM†MB†CRη∗A (M†)η∗

= S†C(M†)η∗ − S†(B − S)B†CRη∗A (M†)η∗

= S†SB†C(M†)η∗. (34)

With the help of (32)-(34), we get that P0 = Y0. Similarly,

Q0 = A†(C − BP0Bη∗)(A†)η∗ −
1
2

LA[−X0 − X0Aη∗(A†)η∗] +
1
2

[X0 + A†AX0]Lη∗A

= A†AX0Aη∗(A†)η∗ −
1
2

LA[−X0 − X0Aη∗(A†)η∗] +
1
2

[X0 + A†AX0]Lη∗A
= 0 ⇒ Q0 = X0.

Hence

X0 = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + LA4 X0(LA4 )η∗,

and

Y0 = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ + LB4 Y0(LB4 )η∗.
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This implies that X0 and Y0 can be written as (13)-(14), respectively, where

U14 =
1
2

Y0Bη∗(B†)η∗Mη∗(M†)η∗, U12 =
1
2

[−X0 − X0A1
η∗(A1

†)η∗]

W12 =
1
2

[Y0Bη∗(B†)η∗ − B†BY0], U13 =
1
2

Y0.

Thus the proof is done.

Remark 3.2. Due to Lemma 2.3, LA4 A† = LA4 (A3LA4 )† = A†, BM† = B3LB4 (RAB3LB4 )† = B3M†, and LB3 B† = B†.
Since LB4 LM = LMLB4 , then LB4 S† = S†. So, we have the following simplification of the general solution (14)

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + A†C(A†)η∗ −
1
2

[A†B3M†C(A†)η∗

+ A†C(A†B3M†)η∗] −
1
2

[A†SB†C(A†B3M†)η∗ + A†B3M†C(A†SB†)η∗]

− A†SW12(A†S)η∗ − LA4 LAU12Lη∗A4
+ (LA4 LAU12Lη∗A4

)η∗, (35)

Y = −Yη∗ = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ +
1
2

[B†C(M†)η∗ + M†C(B†)η∗]

+
1
2

[QSB†C(M†)η∗ + M†C(QSB†)η∗] + LMW12(LM)η∗ − LB4 U13Lη∗B Lη∗B4

+ (LB4 U13Lη∗B Lη∗B4
)η∗ + LB4 LMLSU14Lη∗B4

− (LB4 LMLSU14Lη∗B4
)η∗, (36)

where U11, · · · ,U14 and Wη∗
12 = −W12 are arbitrary matrices overH with allowable dimensions.

4. Particular cases of (3)

Now we discuss a particular case of (3). If A1, A2, B1, B2 and C1, · · · ,C4 are all zero in (3) then we get
the following renowned result.

Corollary 4.1. Suppose that A3, B3 and C3 are given coefficient matrices in (1) over H of adequate sizes. Denote
M = RA3 B3, S = B3LM. Then

(1) The system (1) has a solution (X,Y), where X = −Xη∗ and Y = −Yη∗.

(2) The coefficient matrices in (1) satisfy:

RMRA3 C5 = 0, RA3 C5RB3
η∗ = 0. (37)

(3) MM†RA3 C5 = RA3 C5 = RA3 C5(B3)η∗(B†3)η∗.

(4) r
[

A3 C5

0 Bη∗3

]
= r(B3) + r(A3), r

[
A3 B3 C5

]
+ r

[
B3 A3

]
are equivalent statements. Under these conditions, the general solution to the system (3) can be obtained as

X = −Xη∗ = A3
†C5(A3

†)η∗ −
1
2

A3
†B3M†C5[I + (B3

†)η∗Sη∗](A3
†)η∗

−
1
2

A3
†[I + SB3

†]C5(M†)η∗Bη∗3 (A†3)η∗ − A3
†SW2Sη∗(A3

†)η∗ − LA3 U + Uη∗(LBA3)η∗,

Y = −Yη∗ =
1
2

M†C5(B3
†)η∗[I + (S†S)η∗] +

1
2

(I + S†S)B†3C5(M†)η∗

+ LMW2(LM)η∗ + VLB3
η∗
− LB3 Vη∗ + LMLSW1 −Wη∗

1 (LMLS)η∗,

where U1, U2, W1, U, V and Wη∗
2 = −W2 are arbitrary matrices overH
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In addition, using Theorem 3.1 gives the η-skew-Hermitian solution to the system

A1X = C1, XB1 = D1, A3XAη∗
3 = C5. (38)

Let A2, B2, B3, C3 and C4 are all zero then we get the following consequence.

Corollary 4.2. Let A1, B1, C1, C2 and A3 be known coefficient matrices in (38) overH of suitable shapes. Denote

A4 =

[
A1

Bη∗1

]
, C6 =

[
C1

−Cη∗2

]
, A = A3LA4 ,

C = C5 − A3A†4C6Aη∗
3 + A3(A†4C6)η∗Aη∗

3 − A3A†4(A4Cη∗6 )(A†4)η∗Aη∗
3

Then

(1) The system (38) has a solution X, where X = −Xη∗,

(2) A4Cη∗6 = C6Aη∗
4 , RA4 C6 = 0, RAC = 0,

(3) r
[

A1 C1

Bη∗1 −Cη∗2

]
= r

[
A1

Bη∗1

]
, r

 C5 A3

C1Aη∗
3 A1

Cη∗2 Aη∗
3 Bη∗1

 = r

 A3
A1

Bη∗1

 ,
the above mentioned statements are equivalent. Under these conditions, the general solution to the system (38) can be
demonstrated as

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + AC(A†)η∗ − LA4 [LAU12 −Uη∗
12LA

η∗](LA4 )η∗,

where U12 is any arbitrary matrices overH.

5. Determinantal representations of solutions to system (3) and its partial cases

Let’s put U11, · · · ,U14 and Wη∗
12 = −W12 as zero matrices in Eqs. (35)-(36). Then we have the following

partial solution to the system (3)

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + A†C(A†)η∗ −
1
2

[A†B3M†C(A†)η∗ −
(
A†B3M†C(A†)η∗

)η∗
]−

−
1
2

[
A†SB†C(A†B3M†)η∗ −

(
A†SB†C(A†B3M†)η∗

)η∗]
, (39)

Y = −Yη∗ = B†4C7 − (B†4C7)η∗ + B†4(B4Cη∗7 )(B†4)η∗ +
1
2

[
B†C(M†)η∗ −

(
B†C(M†)η∗

)η∗]
+

1
2

[
QSB†C(M†)η∗ −

(
QSB†C(M†)η∗

)η∗]
. (40)

The following theorem gives determinantal representations of (39)-(40).

Theorem 5.1. Let A1 ∈ Ht×n
r1

, B1 ∈ Hn×h
r2

, A2 ∈ H
p×k
r3

, B2 ∈ Hk×l
r4

, A3 ∈ Hm×n
r5

, B3 ∈ Hm×k
r6

, r(A4) = r7,
r(B4) = r8, r(A) = r9, r(B) = r10, r(M) = r11, r(S) = r12. Then the partial pair solution (39)-(40) to the system (3),
X =

(
xi j

)
∈Hn×n, Y =

(
yp1

)
∈Hk×k, by the components

xi j =x(1)
i j + η

(
x(1)

ji

)∗
η + x(2)

i j + x(3)
i j −

1
2

(
x(4)

i j + η
(
x(4)

ji

)∗
η
)
−

1
2

(
x(5)

i j + η
(
x(5)

ji

)∗
η
)
, (41)

yp1 =y(1)
p1 + η

(
y(1)
1p

)∗
η + y(2)

p1 +
1
2

(
y(3)

p1 + η
(
y(3)
1p

)∗
η
)

+
1
2

(
y(4)

p1 + η
(
y(4)
1p

)∗
η
)
, (42)

possess the following determinantal representations,
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(i)

x(1)
i j =

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(
ĉ(6)
. j

))β
β∑

β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

, (43)

where ĉ(6)
. j is the j-th column of Ĉ6 := A∗4C6.

(ii)

x(2)
i j =

−η
∑

α∈Ir7 ,n{ j}
rdet j

((
A∗4A4

)
j.

(
u(1)

i.

)η)α
α
η

 ∑
β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

2 , (44)

=

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(
u. j

))β
β ∑

β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

2 , (45)

where

u(1)
i. =

 ∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
.i

(ã.t)
)β
β

 ∈H1×n, t = 1, . . . ,n, (46)

u(2)
. j =

−η ∑
α∈Ir7 ,n{ j}

rdet j

(
(A∗4A4) j.(ã

η
l.)
)α
α
η

 ∈Hn×1, l = 1, . . . ,n, (47)

are the row vector and the column vector, ã.t is the t-th column of Ã4 = A∗4A4Cη∗6 Aη
4 and ãηl. is the l-th row of Ãη

4.

(iii)

x(3)
i j =

−η
∑

α∈Ir9 ,n{ j}
rdet j

(
(A∗A) j.

(
vηi.

))α
α
η

 ∑
β∈Jr9 ,n

|A∗A|ββ

2 (48)

=

∑
β∈Jr9 ,n{i}

cdeti

(
(A∗A). i

(
v. j

))β
β ∑

β∈Jr9 ,n

|A∗A|ββ

2 , (49)

where

vηi. =

−η ∑
β∈Jr9 ,n{i}

cdeti ((A∗A).i (â.s))
β
β η

 ∈H1×n, s = 1, . . . ,n, (50)

v. j =

−η ∑
α∈Ir9 ,n{ j}

rdet j

(
(A∗A) j.(â

η
l.)
)α
α
η

 ∈Hn×1, l = 1, . . . ,n.
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Here â.s is the s-th column of Â = A∗CAη and âηl. is the l-th row of Âη.

(iv)

x(4)
i j =

−η
∑

α∈Ir9 ,n{ j}
rdet j

(
(A∗A) j.(φ̃i.)

)α
α
η

(
∑

β∈Jr9 ,n

|A∗A|ββ)
2

∑
α∈Ir11 ,m

|MM∗|αα
, (51)

where φ̃i. is the i-th row of Φ̃ := ΦηC∗A and Φ = (φiq) is such that

φiq =
∑

β∈Jr9 ,n{i}

cdeti

(
(A∗A). i

(
ϕM
. q

))β
β

=
∑

α∈Ir11 ,m{q}

rdetq

(
(MM∗)q.

(
ϕA

i.

))α
α
, (52)

and

ϕM
. q =

 ∑
α∈Ir11 ,m{q}

rdetq

(
(MM∗)q.

(
b̂ f .

))α
α

 ∈Hn×1, f = 1, . . . ,n,

ϕA
i. =

 ∑
β∈Jr9 ,n{i}

cdeti

(
(A∗A). i

(
b̂. s

))β
β

 ∈H1×m, s = 1, . . . ,m.

Here b̂ f . and b̂. s are the f -th row and the s-th column of B̂ = A∗BM∗.

(v)

x(5)
i j =

∑
β∈Jr9 ,n{ j}

cdeti

(
(A∗A). i

(
ω(1)
. j

))β
β

(
∑

β∈Jr9 ,n

|A∗A|ββ)
2

∑
α∈Ir10 ,m

|BB∗|αα
∑

β∈Jr11 ,m

|MM∗|ββ
(53)

=

−η
∑

α∈Ir9 ,n{ j}
rdet j

(
(A∗A) j.

(
ψ(2)

i.

))α
α
η,

(
∑

β∈Jr9 ,n

|A∗A|ββ)
2

∑
α∈Ir10 ,m

|BB∗|αα
∑

β∈Jr11 ,m

|MM∗|ββ
, (54)

where ω(1)
. j is the j-th column of Ω1 = ΩΨ1 and ψ(2)

i. is the i-th row of Ψ2 := Ω
η
2Ψ. The matrices Ω = (ωit) ∈

Hn×m, Ψ1 := (ψ(1)
t j ) ∈Hm×n, Ψ := (ψqj) ∈Hm×n, Ω2 = (ω(2)

iq ) are such that

ωit =
∑

α∈Ir10 ,m{t}

rdett

(
(BB∗)t.

(
s(1)

i.

))α
α
,

where s(1)
i. is the i-th row of of S1 = A∗SB∗;

ψ(1)
t j = −η

∑
α∈Ir9 ,n{ j}

rdet j

(
(A∗A) j.

(
c(11)

t.

))α
α
η,

where c(11)
t. is the t-th row of C11 := CηΨ;

ψqj =
∑

β∈Jr11 ,m{q}

cdetq

(
(MM∗). q

(
b̂(∗)
. f

))β
β
,
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where b̂(∗)
. f is f -th column of B̂∗ = MB∗A;

ω(2)
iq =

∑
β∈Jr9 ,n{i}

cdeti

(
(A∗A).i

(
c(12)
. q

))β
β
,

where c(12)
. q is the q-th column of C12 := ΩC.

(vi)

y(1)
p1 =

∑
β∈Jr8 , k{p}

cdetp

((
B∗4B4

)
. p

(
c̃. 1

))β
β∑

β∈Jr8 , k

∣∣∣B∗4B4

∣∣∣β
β

, (55)

where c̃. 1 is the 1-th column of C̃7 := B∗4C7.

(vii)

y(2)
p1 =

−η
∑

α∈Ir8 ,k{1}

rdet1
((

B∗4B4

)
1.

((
w(1)

p.

)η))α
α
η

 ∑
β∈Jr8 ,k

∣∣∣B∗4B4

∣∣∣β
β

2 , (56)

=

∑
β∈Jr8 ,k{p}

cdetp

((
B∗4B4

)
. p

(
w(2)
.1

))β
β ∑

β∈Jr8 ,k

∣∣∣B∗4B4

∣∣∣β
β

2 , (57)

where

w(1)
p. =

 ∑
β∈Jr8 ,k{p}

cdetp

((
B∗4B4

)
. p

(
b̃. s

))β
β

 ∈H1×n, s = 1, . . . , k, (58)

w(2)
. 1 =

−η ∑
α∈Ir8 ,k{1}

rdet1
(
(B∗4B4)1.(b̃

η
l.)
)α
α
η

 ∈Hn×1, l = 1, . . . , k. (59)

Here b̃. s is the s-th column of B̃4 = B∗4B4Cη∗7 Bη4 and b̃ηl. is the l-th row of B̃η4.

(viii)

y(3)
p1 =

−η
∑

α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.

((
$(1)

p.

)η))α
α
η

∑
β∈Jr10 ,k

|B∗B|ββ
∑

α∈Ir10 ,k

|M∗M|αα
, (60)

=

∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B).p

(
$(2)
.1

))β
β∑

β∈Jr10 ,k

|B∗B|ββ
∑

α∈Ir11 ,k

|M∗M|αα
, (61)
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where

$(1)
p . =

 ∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B).p (ĉ. l)

)β
β

 ∈H1×k, l = 1, . . . , k, (62)

$(2)
. 1 =

−η ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.

(
ĉηq .

))α
α
η

 ∈Hk×1, q = 1, . . . , k. (63)

Here ĉ. l is the l-th column of Ĉ := B∗CMη and ĉηq . is the q-th row of Ĉη.

(ix)

y(4)
p1 =

∑
β∈Jr12 ,m{p}

cdetp

(
(S∗S).p

(
υ̃. 1

))β
β∑

β∈Jr12 ,m

|S∗S|ββ
∑

β∈Ir10 ,k

|B∗B|ββ
∑

α∈Ir11 ,k

|M∗M|αα
, (64)

where υ̃. 1 is the 1-th column of Υ̃ := S∗SΥ. Here Υ = (υt1) is such that

υt1 =
∑

β∈Jr10 ,k{t}

cdett

(
(B∗B).t

(
$(2)
.1

))β
β

= −η
∑

α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.

(
$(1)

t.

)η)α
α
η,

and $(1)
t. , $(2)

. 1 are determined by (62) and (63), respectively.

Proof. (i) For the first term, X1 =
(
x(1)

i j

)
:= A†4C6, Eq. (43) follows immediately from Corollary 2.14.

(ii) For the second term, X2 = A†4A4Cη∗6 (A†4)η∗, due to Corollaries 2.10, 2.11, and 2.14, we get

x(2)
i j =

n∑
s=1

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(
ȧ(4)
. s

))β
β∑

β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

−η
∑

α∈Ir7 ,n{ j}
rdet j

((
A∗4A4

)
j.

(
ĉ∗s.

))α
α∑

β∈Ir7 ,n

∣∣∣A∗4A4

∣∣∣α
α

η

 =

∑n
s=1

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(
ȧ4
. s

))β
β

−η ∑
α∈Ir7 ,n{ j}

rdet j

((
A∗4A4

)
j.

(
ĉ∗s.

))α
α
η

 ∑
β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

2 ,

where ȧ(4)
. s is the s-th column of A∗4A4 and ĉ∗s. is the s-th row of Ĉ∗6 := C∗6A4.

Suppose es. and e. s are respectively the unit row and column vectors whose components are 0 except the
s-th components which are 1. So,

x(3)
i j =

∑
q

∑
t

∑
s

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(e. l)
)β
β
ȧqsĉ

(η∗)
st

−η ∑
α∈Ir7 ,n{ j}

rdet j

((
A∗4A4

)
j.

(es.)
)α
α
η

 ∑
β∈Jr7 ,n

∣∣∣A∗4A4

∣∣∣β
β

2 ,



A. Rehman et al. / Filomat 34:8 (2020), 2601–2627 2619

where ĉ(η∗)
st is the st-th entry of (Ĉ∗6)η := Cη∗6 Aη

4. Denote Ã4 = A∗4A4Cη∗6 Aη
4 =: Ã = (ãi j). Since

∑n
s=1 ȧqsĉ

(η∗)
st = ãst,

then

x(2)
i j =

∑n
s=1

∑n
t=1

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(e. s)
)β
β
ãst

−η ∑
α∈Ir7 ,n{ j}

rdet j

((
A∗4A4

)
j.

(et.)
)α
α
η

 ∑
β∈Jr,n

∣∣∣A∗4A4

∣∣∣β
β

2 ,

If we denote by

u(1)
it :=

n∑
s=1

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(e. s)
)β
β
ãst =

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(ã. t)
)β
β

the tth component of a row vector u(1)
i. =

[
u(1)

i1 , . . . ,u
(1)
in

]
, then

n∑
t=1

u(1)
it

−η ∑
α∈Ir7 ,n{ j}

rdet j

(
(A∗4A4) j.(et.)

)α
α
η

 = −η

 ∑
α∈Ir7 ,n{ j}

rdet j

(
(A∗4A4) j.

(
u(1)

i.

)η)α
α

 η,
where

(
u(1)

i.

)η
=

[(
u(1)

i1

)η
, . . . ,

(
u(1)

in

)η]
. So, the second term has the determinantal representation (44), where

u(1)
i. is determined by (46).

If we denote by

u(2)
sj :=

n∑
t=1

ãst

−η ∑
α∈Ir7 ,n{ j}

rdet j

(
(A∗4A4) j.(et.)

)α
α
η

 = −η
∑

α∈Ir7 ,n{ j}

rdet j

(
(A∗4A4) j.(ã

η
s. )

)α
α
η

the sth component of a column vector u(2)
. j =

[
u(2)

1 j , . . . ,u
(2)
nj

]
, then

n∑
s=1

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(e. s)
)β
β

u(2)
sj =

∑
β∈Jr7 ,n{i}

cdeti

((
A∗4A4

)
. i

(
u(2)
. j

))β
β
.

So, another determinantal representation of the second term is (44) with u(2)
. j determined by (47).

(iii) For the third term X3 = A†C(Aη∗)†, it’s evident that Eqs. (48)-(49) follow from Lemma 2.13.
(iv) Consider the forth term A†B3M†C(A†)η∗ := X4 =

(
x(4)

i j

)
of (39). Taking into account (8) for the

determinantal representation of (Aη∗)† =
(
aη∗,†t j

)
, we have for the multiplier C(Aη∗)†

m∑
t=1

cqta
η∗,†
t j =

m∑
t=1

cqt ·

−η
∑

α∈Ir9 ,n{ j}
rdet j

(
(A∗A) j. (at .)

)α
α∑

β∈Ir9 ,n

|A∗A|αα
η

 =

−η
∑

α∈Ir9 ,n{ j}
rdet j

(
(A∗A) j.

(
c̃q .

))α
α
η∑

β∈Ir9 ,n

|A∗A|αα

where c̃q . is the q-th row of C̃ := CηA. By applying the determinantal representations (4) and (5) for the
Moore-Penrose inverses A† and M†, respectively, and due to Lemma 2.13 for the first multiplier A†BM†, we
obtain the matrix Φ = (φiq) such that

φiq =
∑

β∈Jr9 ,n{i}

cdeti

(
(A∗A). i

(
ϕM
. q

))β
β

=
∑

α∈Ir11 ,m{q}

rdetq

(
(MM∗)q.

(
ϕA

i.

))α
α
,
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and

ϕM
. q =

 ∑
α∈Ir1 ,m{q}

rdetq

(
(MM∗)q.

(̂
b f .

))α
α

 ∈Hn×1, f = 1, . . . ,n,

ϕA
i. =

 ∑
β∈Jr1 ,n{i}

cdeti

(
(A∗A). i

(̂
b. s

))β
β

 ∈H1×m, s = 1, . . . ,m.

Here b̂ f . and b̂. s are the f -th row and the s-th column of B̂ = A∗BM∗. So, we have

x(4)
i j =

m∑
q=1
φiq

−η ∑
α∈Ir9 ,n{ j}

rdet j

(
(A∗A) j.(̃cq .)

)α
α
η


(

∑
β∈Jr9 ,n

|A∗A|ββ)
2

∑
α∈Ir11 ,m

|MM∗|αα
. (65)

Denote Φ̃ := ΦηC∗A. From this denotation and Eq. (65), it follows (51).
(v) For the fifth term (A†SB†)C((M†)η∗Bη∗(A†)η∗) := X5 =

(
x(5)

i j

)
of (39), we have

x(5)
i j =

m∑
q=1

m∑
t=1
ω̃itctqψ̃qj

(
∑

β∈Jr9 ,n

|A∗A|ββ)
2

∑
α∈Ir2 ,m

|BB∗|αα
∑

β∈Jr10 ,m

|MM∗|ββ
, (66)

where

ψ̃qj = −ηφ jq
∗η = −η

∑
α∈Ir9 ,n{ j}

rdet j

(
(A∗A) j.

(
ψq.

))α
α
η,

and

ψq. =

 ∑
β∈Jr11 ,m{q}

cdetq

(
(MM∗).q

(̂
b(∗)
. f

))β
β

 ∈H1×n, f = 1, . . . ,n, (67)

and b̂(∗)
. f is f -th column of B̂∗ = MB∗A;

ω̃it =
∑

β∈Jr1 ,n{ j}

cdeti ((A∗A). i (ω. t))
β
β,

ω. t =

 ∑
α∈Ir10 ,m{t}

rdett

(
(BB∗)t.

(
s(1)

f .

))α
α

 ∈Hn×1, f = 1, . . . ,n, (68)

where s(1)
f . is the f -th row of S1 = A∗SB∗. Construct the matrices Ψ = (ψq f ) ∈ Hm×n and Ω = (ω f t) ∈ Hn×m

determined by (67) and (68), respectively. Denote C11 := CηΨ, Ψ1 := (ψ(1)
t j ), where

ψ(1)
t j =

m∑
q=1

ctqψ̃qj = −η
∑

α∈Ir9 ,n{ j}

rdet j

(
(A∗A) j.

(
c(11)

t.

))α
α
η,

c(11)
t. is the t-th row of C11, and Ω1 := ΩΨ1. From these denotations and Eq. (66), it follows (53).
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Another determinantal representation of x(5)
i j can obtained by putting C12 := ΩC, Ω2 := (ω(2)

t j ), where

ω(2)
iq =

m∑
q=1

ω̃itctq =
∑

β∈Jr1 ,n{i}

cdeti

(
(A∗A).i

(
c(12)
. q

))β
β
,

c(12)
. q is the q-th column of C12, and Ψ2 := Ω

η
2Ψ. From these denotations and Eq. (66), it follows (54).

(vi)-(vii) It’s evident that the proofs of the determinantal representations (55) and (56)-(57) for the first
term, Y1 := B†4C7. and the second term, Y2 := B†4(B4Cη∗7 )(B†4)η∗, of (40) are similar to the proofs of (43) and
(44)-(45), respectively.

(viii) Now consider the third item B†C(M†)η∗ := Y3 =
(
y(3)

p1

)
of (40). Using the determinantal representa-

tions (4) for B†, and (8) for
(
M†

)η∗
, we have

y(3)
p1 =

m∑
t=1

m∑
l=1

b†ptctl

(
mη∗

l1

)†
=

∑
t

∑
l

∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B). p

(
b∗. t

))β
β
ctl

−η ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M) j. (ml.)

)α
α
η

∑
β∈Jr10 ,k

|B∗B|ββ
∑

β∈Ir11 ,k

|M∗M|αα
,

Denote B∗CMη =: Ĉ = (ĉi j). Then, thinking as in the point (ii), we have

y(3)
p1 =

∑
t

∑
m

∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B).p (e. t)

)β
β̂
ctl

−η ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M)1. (el.)

)α
α
η

∑
β∈Jr10 ,k

|B∗B|ββ
∑

β∈Ir11 ,k

|M∗M|αα
,

where et. and e. l are respectively the unit row and column vectors.
If we denote by

$(1)
pl :=

m∑
t=1

∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B).p (e. t)

)β
β
ĉtl =

∑
β∈Jr10 ,k{i}

cdetp

(
(B∗B).p

(̂
c. l

))β
β

the l-th component of the row-vector $(1)
p. =

[
$(1)

p1 , . . . , $
(1)
pm

]
, then

m∑
l=1

$(1)
pl

−η ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.(el.)

)α
α
η

 = −η

 ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.

((
$(1)

p.

)η))α
α

 η,
where

(
$(1)

p.

)η
=

[(
$(1)

p1

)η
, . . . ,

(
$(1)

pm

)η]
. So, y(3)

p1 has the determinantal representation (60), where $(1)
p. is (62).

If we denote by

$(2)
t1 :=

m∑
l=1

ĉtl

−η ∑
α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.(el.)

)α
α
η

 = −η
∑

α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.(ĉ

η
t.)
)α
α
η

the t-th component of the column-vector $(2)
.1 =

[
$(2)

11 , . . . , $
(2)
m1

]
, then

m∑
t=1

∑
β∈Jr10 ,k{p}

cdetp

(
(B∗B). p (e.t)

)β
β
$(2)

t1 =
∑

β∈Jr10 ,k{p}

cdetp

(
(B∗B). p

(
$(2)
.1

))β
β
.
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So, another determinantal representation of y(3)
p1 is (61) with $(2)

.1 determined by (63).

(ix) For the forth term QSB†C(M†)η∗ = Y4 =
(
y(4)

p1

)
of (40) using (6) for a determinantal representation of

QS, and similarly as in the point (viii), we have

y(4)
p1 =

k∑
t=1

∑
β∈Jr12 ,k{p}

cdetp

(
(S∗S).p (ṡ. t)

)β
β
υt1∑

β∈Jr12 ,k

|S∗S|ββ
∑

β∈Jr10 ,k

|B∗B|ββ
∑

α∈Ir11 ,k

|M∗M|αα
, (69)

where ṡ. t is the t-th column of S∗S, and

υt1 =
∑

β∈Jr10 ,k{t}

cdett

(
(B∗B).t

(
$(2)
.1

))β
β

= −η
∑

α∈Ir11 ,k{1}

rdet1
(
(M∗M)1.

(
$(1)

t.

)η)α
α
η,

and $(1)
t. , $(2)

.1 are determined by (62) and (63), respectively. Construct the matrix Υ = (υt1) and denote the
matrix Υ̃ := S∗SΥ. Using of these denotations in (69) yields to (64).

Since for an arbitrary matrix D = (di j) overH, Dη∗ = (di j)η∗ = (d∗ji)
η = (−ηd∗jiη), then from this it follows

(41)-(42).

Now we give determinantal representations for particular cases of (3).

Corollary 5.2. Suppose that in conditions of Corollary 4.1, we put arbitrary matrices U, V, U1, U2, W1 and W2 as
zeros. Then the generalized Sylvester matrix equation (1) has partial solution

X = −Xη∗ =A†3C5(A†3)η∗ −
1
2

[A†3B3M†C5(A†3)η∗ −
(
A†3B3M†C5(A†3)η∗

)η∗
]

−
1
2

[
A†3SB†3C5(A†3B3M†)η∗ −

(
A†3SB†3C5(A†3B3M†)η∗

)η∗]
, (70)

Y = −Yη∗ =
1
2

[
M†C5(B†3)η∗ −

(
M†C5(B†3)η∗

)η∗]
+

1
2

[
QSB†3C5(M†)η∗ −

(
QSB†3C5(M†)η∗

)η∗]
(71)

which can be expressed componentwise by

xi j =x(3)
i j −

1
2

(
x(4)

i j + η
(
x(4)

ji

)∗
η
)
−

1
2

(
x(5)

i j + η
(
x(5)

ji

)∗
η
)
,

yp1 =
1
2

(
y(3)

p1 + η
(
y(3)
1p

)∗
η
)

+
1
2

(
y(4)

p1 + η
(
y(4)
1p

)∗
η
)
,

where x(3)
i j is (48) or (49), x(4)

i j is (51), x(5)
i j is (53) or (54), y(3)

p1 is (60) or (61), and y(4)
p1 is (64). Taking into account that

A = A3, B = B3, and C = C5.

Corollary 5.3. Suppose that in conditions of Corollary 4.2 an arbitrary matrix U12 is zero. Then the system (38) has
partial solution

X = −Xη∗ = A†4C6 − (A†4C6)η∗ + A†4(A4Cη∗6 )(A†4)η∗ + AC(A†)η∗,

which by the components can be expressed as

xi j =x(1)
i j + ηx(1),∗

ji η + x(2)
i j + x(3)

i j ,

where x(1)
i j is (43), x(2)

i j is (44) or (45), and x(3)
i j is (48) or (49).
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6. An example

Given the matrices:

A =

[
i k
j −1

]
, B =

[
2i −j
j i

]
, C =

[
i −j + k

j − k i

]
. (72)

Since C = −Cη∗ with η = i, we shall find the i-skew-Hermitian solution to Eq. (1) with the given matrices
(72). By Theorem 2.8, one can find,

A† =
1
4

[
−i −j
−k −1

]
, RA =

1
2

[
1 k
−k 1

]
, B† =

[
−2i −j

j −i

]
, RB = 0,

M =
1
2

[
i 0
−j 0

]
, M† =

[
−i j
0 0

]
, RM =

1
2

[
1 −k
k 1

]
, LM =

[
0 0
0 1

]
.

It is easy to check that the consistency conditions (37) of Eq. (1) are fulfilled by given matrices. So, Eq. (1)
has the η-Hermitian solution. We compute the partial solution (70)-(71) by Cramer’s rule from Corollary
5.2. So,

A∗ =

[
−i −j
−k −1

]
, Aη =

[
i −k
−j −1

]
, A∗A =

[
2 2j
−2j 2

]
, Â = A∗CAη = 4

[
i −k
k i

]
.

Since r(A∗A) = 1, then by (50),

vη1. =
[
4i 4k

]
, vη2. =

[
−4k 4i

]
.

Further, by (48), we obtain

x(1)
11 =
−i(4i)i

16
= 0.25i, x(1)

12 =
−i(4k)i

16
= −0.25k, x(1)

21 =
−i(−4k)i

16
= 0.25k, x(1)

22 =
−i(4i)i

16
= 0.25i.

Now, we find x(2)
i j by (51). Since

B̂ = A∗BM∗ = 1.5
[
−i j
−k 1

]
, (73)

then

ϕA
1. =

[
−1.5i, 1.5j

]
, ϕA

2. = [−1.5k, 1.5] .

Taking into account (52), we get Φ =

[
−1.5i 1.5j
−1.5k 1.5

]
and Φ̃ = ΦηC∗A =

[
−3 −3j
−3j 3

]
. Finally, we have

x(2)
11 =

−i(−3)i
32

= −
3
32
, x(2)

12 =
−i(−3j)i

32
=

3
32

j, x(2)
21 =

−i(−3j)i
32

=
3

32
j, x(2)

22 =
−i(3)i

32
=

3
32
.

Now, we find X3 by (53). The following algorithm of finding X3 is given by Theorem 5.1.

1. Find the matrix S1 = A∗SB∗ = 2
[
−i −j
−k −1

]
.

2. Find the matrix BB∗ =

[
5 −3k

3k 2

]
.
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3. By (68), construct the matrix the matrix Ω. Since r(BB∗) = 2, then

ω11 = rdet1

((
B1B∗1

)
1.

(
s(1)

1.

))
= rdet1

[
−2i −2 j
3k 2

]
= 2i.

By similar computing, we get

Ω =

[
2i −4j
2k −4

]
.

4. Obtain the matrix C12 = ΩC.

C12 =

[
2 + 4k −2j + 2k
−2j + 4k −2 − 2i

]
.

5. Construct the matrix Ω2. Since r(A∗A) = 1, then Ω2 = C12.
6. Construct the matrix the matrix Ψ. Since r(MM∗) = 1, then Ψ = B̂∗, where B̂ is obtained in (73).
7. Get the matrix Ψ2 = Ω

η
2Ψ.

Ψ2 =

[
3 − 6j 6 + 3j
−3j 3

]
.

8. Finally, by (54) and due to r(A∗A) = 1, we have X3 = 1
8 Ψ

η
2. So,

X3 =
1
8

[
3 + 6j 6 − 3j

3j 3

]
.

Hence,

X =X1 −
1
2

(
X2 − Xη∗

2

)
−

1
2

(
X3 − Xη∗

3

)
=

1
4

[
i −k
k i

]
−

1
8

[
0 3 − 3j

3j − 3 0

]
=

1
8

[
2i −3 + 3j − 2k

3 − 3j + 2k 2i

]
.

Further, we find yp1 by (36) for all p, 1 = 1, 2. Since

Ĉ = B∗CMη =

[
−1.5 0

k 0

]
, M∗M =

[
0.5 0
0 0

]
, B∗B =

[
5 3k
−3k 2

]
and $(1)

1. = [0, 0] , $(1)
2. = [0.5k, 0] , then by (60) we have

y(1)
11 =y(1)

12 = y(1)
22 = 0, y(1)

21 =
0.5k
0.5

= k.

Further, we find Y2 by (64). Since, as it is obtained before, Υ = 1
2 Y =

[
0 0

0.5k 0

]
, and

S = BLM =

[
0 −j
0 i

]
, Υ̃ = S∗SΥ =

[
0 0
k 0

]
,

then by (64), Y2 =

[
0 0
k 0

]
. Hence,

Y =
1
2

(
Y1 − Yη∗

1

)
+

1
2

(
Y2 − Yη∗

2

)
=

1
2

([
0 0
k 0

]
−

[
0 k
0 0

])
+

1
2

([
0 0
k 0

]
−

[
0 k
0 0

])
=

[
0 −k
k 0

]
So,

X =
1
8

[
2i −3 + 3j − 2k

3 − 3j + 2k 2i

]
, Y =

[
0 −k
k 0

]
is the partial i-skew-Hermitian solution to Eq.(1) with the given matrices (72).
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7. Conclusion

Some necessary and sufficient conditions for the existence of the η-skew-Hermitian solution to the quater-
nion system (3) are constructed in this paper. The expression of the general η-skew-Hermitian solution to
this system is presented when the system is consistent. Some particular cases of (3) are also discussed in
this paper. Within the framework of the theory of noncommutative row-column determinants, we give
determinantal representation formulas of finding its exact solution that are analogs of Cramer’s rule. A
numerical example is also given to demonstrate the main results.
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[57] A.B. Özgöler, N. Akar, A common solution to a pair of linear matrix equations over a principle domain, Linear Algebra Appl.

144 (1991) 85-99.
[58] F.X. Piao, Q.L. Zhang, Z.F. Wang, The solution to matrix equation AX + XTC = B, J. Franklin. Inst. 344 (2007) 1056-1062.
[59] A. Rehman, M. Akram, Optimization of a nonlinear hermitian matrix expression with application, Filomat 31(9) (2017) 2805-2819.
[60] A. Rehman, I. Kyrchei, I. Ali, M. Akram, A. Shakoor, The general solution of quaternion matrix equation having-skew-hermicity

and its Cramer’s rule, Math. Probl. Eng. ID 7939238 (2019) 25.
[61] A. Rehman, I. Kyrchei, I. Ali, M. Akram, A. Shakoor, Least-norm of the general solution to some system of quaternion matrix

equations and its determinantal representations, Abstr. Appl. Anal. ID 9072690 (2019) 18.
[62] A. Rehman, Q.W. Wang, A system of matrix equations with five variables, Appl. Math. Comput. 271 (2015) 805-819.
[63] A. Rehman, Q.W. Wang, I. Ali, M. Akram, M.O. Ahmad, A constraint system of generalized Sylvester quaternion matrix

equations, Adv. Appl. Clifford Algebras 27(4) (2017) 3183-3196.
[64] A. Rehman, Q.W. Wang, Z.H. He, Solution to a system of real quaternion matrix equations encompassing η-Hermicity, Appl.

Math. Comput. 265 (2015) 945-957.
[65] K. Shoemake, Animating rotation with quaternion curves, Comput. Graph. 19(3) (1985) 245-254.
[66] G.J. Song, Q.W. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comp. 218 (2011)

3110-3121.
[67] G.J. Song, C.Z. Dong, New results on condensed Cramer’s rule for the general solution to some restricted quaternion matrix

equations, J. Appl. Math. Comput. 53 (2017) 321-341.
[68] G.J. Song, Q.W. Wang, S.W. Yu, Cramer’s rule for a system of quaternion matrix equations with applications, Appl. Math. Comp.

336 (2018) 490-499.
[69] D.C. Sorensen, A.C. Antoulas, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl. 351-352 (2002)

671-700.



A. Rehman et al. / Filomat 34:8 (2020), 2601–2627 2627
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