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Abstract. We consider a certain class of coupled systems of fractional differential equations involving
ψ-Caputo fractional derivatives. A numerical approach is provided for solving this class of systems. The
method is based on operational matrix of fractional integration of an arbitrary ψ-polynomial basis. A
theoretical study related to the numerical scheme and the convergence of the method is presented. Next,
several numerical examples are given using different types of polynomials aiming to confirm the efficiency
of our approach.

1. Introduction

We consider the coupled system of fractional differential equationsCDα,ψ
a x(t) = A11x(t) + A12y(t) + p1(t)

CDβ,ψ
a y(t) = A21x(t) + A22y(t) + p2(t)

; a < t < b (1)

subject to the initial conditions

(δψ)ix(a) = xi, (δψ)iy(a) = yi, i ∈ {0, 1, · · · ,m − 1}, (2)

where x and y are the unknown functions, Ai j, xi, yi are given constants, pi : [a, b]→ R are given functions,
m is a positive integer and α, β ∈

(
max{ 12 ,m − 1},m

)
. Here ψ is a C1 function in [a, b], ψ([a, b]) = [0, 1], ψ′ > 0,

CDr,ψ
a , r ∈ {α, β}, is the ψ-Caputo fractional derivative of order r, and

(δψ)0z(t) = z(t), (δψ)iz(t) =

(
1

ψ′(t)
d
dt

)i

z(t), i = 1, 2, · · ·m − 1,

for z ∈ {x, y}. Systems of type (1) were used as fractional models of different real world phenomena, such
as oscillator theory [19], pollution [6, 14, 29], circuit simulations [7], etc. Our aim is to provide a numerical
method for solving (1)–(2), as well as a rigorous justification of its convergence.
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After discovering the importance of fractional calculus in applications (see, e.g.[5, 12, 13, 15, 20, 21, 24,
25]), this theory attracted much attention from researchers both in mathematics and in other disciplines. In
particular, several contributions related to the development of numerical techniques for solving fractional
differential equations were published. One of the popular methods is the operational matrix approach,
which consists to transform the problem to an equation of algebraic-type by projecting it on an adequate
polynomial basis. This method has been first used for solving standard differential equations (see e.g.
[22, 23]). Next, due to the properties of fractional operators, it was shown that this technique is still useful
for solving large classes of fractional differential equations (see e.g. [1, 3, 8, 9, 11, 14, 17, 19, 26, 28] and
the references therein). In particular, in [3], the authors investigated a certain class of fractional differential
equations involving ψ-Caputo fractional derivatives. Namely, in order to obtain numerical solutions, they
used the operational matrix approach by introducing ψ-shifted Legendre polynomials.

Motivated by the above cited works, we propose in this paper a numerical approach based on the oper-
ational matrix technique for solving (1)–(2). The convergence is established for an arbitrary ψ-polynomial
basis. Moreover, several numerical experiments using different types of polynomials are provided.

The rest of the paper is organized as follows. In Section 2, we establish some preliminary results. In
Section 3, some properties related to ψ-polynomials are derived. In Section 4, a general formula of the
ψ-fractional integral ofψ-polynomials is obtained. The proof of the convergence is given in Section 5. Next,
numerical tests are presented using two different types of polynomials: ψ-shifted Legendre polynomials
and ψ-shifted Jacobi polynomials with parameters (0,− 1

2 ).

2. Preliminaries

First, let us fix some notations. We denote byN the set of positive integers. Let J be a finite interval in
R and ω : J → [0,∞) be a measurable function. For p > 1, let Lp(J, ω(σ) dσ) be the weighted Lebesgue space
of measurable functions R in J satisfying ∫

J
|R(σ)|pω(σ) dσ < ∞

If ω ≡ 1, then Lp(J, ω(σ) dσ) = Lp(J), is the standard Lebesgue space. The space Lp(J, ω(σ) dσ) is equipped
with the norm

‖R‖Lp(J,ω(σ)dσ) =

(∫
J
|R(σ)|pω(σ) dσ

) 1
p

, ∀R ∈ Lp(J, ω(σ)dσ).

The scalar product in L2(J, ω(σ) dσ) is defined by

(R,S)L2(J,ω(σ)dσ) =

∫
J
R(σ)S(σ)ω(σ) dσ, ∀R,S ∈ L2(J, ω(σ) dσ).

Further, let ψ be a C1 function in I = [a, b] such that

(i) ψ′ > 0.

(ii) ψ(a) = 0 and ψ(b) = 1.

Let ω ∈ L1([0, 1]) be a positive function such that ω−1
∈ C([0, 1]). Denote µ(σ) = ψ′(σ)ω(ψ(σ)), ∀σ ∈ I.

For R : I→ R, let
TR = R ◦ ψ−1.

Lemma 2.1. For all R,S ∈ L2(I, µ(σ) dσ), it holds

(R,S)L2(I,µ(σ)dσ) = (TR,TS)L2([0,1],ω(s)ds).
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Proof. Let R,S ∈ L2(I, µ(σ) dσ). Then

(R,S)L2(I,µ(σ)dσ) =

∫ b

a
R(σ)S(σ)µ(σ) dσ

=

∫ b

a
R(σ)S(σ)ψ′(σ)ω((ψ(σ)) dσ.

Using the change of variable s = ψ(σ), by (i)–(ii), we get

(R,S)L2(I,µ(σ)dσ) =

∫ 1

0
R

(
ψ−1(s)

)
S

(
ψ−1(s)

)
ω(s) ds

=

∫ 1

0
(TR)(s)(TS)(s)ω(s) ds

= (TR,TS)L2([0,1],ω(s)ds)

which completes the proof.

Definition 2.1 (see [15]). The ψ-fractional integral of order α > 0 of a function R ∈ L1(I, ψ′(t) dt) is defined by

(Iα,ψa R)(t) =
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t) − ψ(s))α−1

R(s) ds,

where Γ denotes the Gamma function.

Lemma 2.2. Let α > 1
2 . Then

Iα,ψa : L2(I, µ(σ) dσ)→ L2(I, µ(σ) dσ)
is a linear and bounded operator. Moreover,

‖Iα,ψa R‖L2(I,µ(σ)dσ) ≤ Cα,ω‖R‖L2(I,µ(σ)dσ),

for all R ∈ L2(I, µ(σ) dσ), where Cα,ω = 1
Γ(α)

√
‖ω−1‖L∞ ([0,1])

(2α−1)

∫ 1

0 ω(s)ds.

Proof. Let α > 1
2 and R ∈ L2(I, µ(σ) dσ). By Hölder’s inequality, it holds∣∣∣∣(Iα,ψa R

)
(σ)

∣∣∣∣2 ≤ 1
Γ(α)2

(∫ σ

a
((ψ(σ) − ψ(z))2α−2ψ′(z) dz

) (∫ b

a
ψ′(z)R2(z) dz

)
, σ ∈ I. (3)

Using (i)–(ii), an elementary calculation yields∫ σ

a
((ψ(σ) − ψ(z))2α−2ψ′(z) dz =

ψ(σ)2α−1

2α − 1
≤

1
2α − 1

. (4)

On the other hand, since ω−1
∈ C([0, 1]), it holds∫ b

a
ψ′(z)R2(z) dz =

∫ b

a

1
ω(ψ(z))

R
2(z)µ(z) dz ≤ ‖ω−1

‖L∞([0,1])‖R‖
2
L2(I,µ(σ)dσ). (5)

Hence, combining (3)–(5), it holds

‖Iα,ψa R‖
2
L2(I,µ(σ)dσ) =

∫ b

a

∣∣∣∣(Iα,ψa R
)

(σ)
∣∣∣∣2 µ(σ) dσ

≤
‖ω−1
‖L∞([0,1])

(2α − 1)Γ(α)2

(∫ b

a
µ(σ) dσ

)
‖R‖

2
L2(I,µ(σ)dσ)

=
‖ω−1
‖L∞([0,1])

(2α − 1)Γ(α)2

(∫ 1

0
ω(s) ds

)
‖R‖

2
L2(I,µ(σ)dσ)

= C2
α,ω‖R‖

2
L2(I,µ(σ)dσ),
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which proves the desired result.

Definition 2.2 (see [3]). Let

F(t) =


F1(t)
F2(t)
...
FN(t)

 , ∀ t ∈ I,

where N ∈N and Fi ∈ L1(I, ψ′(t) dt), for all i. The ψ-fractional integral of order α > 0 of F is given by

(Iα,ψa F)(t) =


(Iα,ψa F1)(t)
(Iα,ψa F2)(t)
...

(Iα,ψa FN)(t)

 .
Lemma 2.3 (see [15]). For all τ > 0, κ > −1, one has

Iτ,ψa (ψ(t))κ =
Γ(1 + κ)

Γ(τ + κ + 1)
(ψ(t))τ+κ.

For all τ, κ > 0, one has
Iτ,ψa Iκ,ψa R(t) = Iτ+κ,ψa R(t).

Let

(δψ)0
R(t) = R(t) and (δψ)n

R(t) =

(
1

ψ′(t)
d
dt

)n

R(t),

where n ∈N.

Definition 2.3 (see [2]). Let n ∈ N, n − 1 < α < n and R, ψ ∈ Cn(I). The ψ-Caputo fractional derivative of order
α of R is given by

(CDα,ψ
a R)(t) = In−α,ψ

a (δψ)n
R(t).

Lemma 2.4 (see [2]). Let n ∈N and n − 1 < α < n.

1. If R ∈ C(I), then
CDα,ψ

a Iα,ψa R(t) = R(t).

2. If R ∈ Cn−1(I), then

R(t) − Iα,ψa
CDα,ψ

a R(t) =

n−1∑
i=0

(δψ)i
R(a)

i!
(ψ(t))i. (6)

3. ψ-polynomial basis

We start this section by recalling two fundamental results from Hilbertian Analysis (see e.g. [3, 10]).
Let (X, (·, ·)X) be a Hilbert space with norm ‖ · ‖X and {ei}i≥0 a Hilbertian basis. The orthogonal projection

on span{ei}
K−1
i=0 , K ∈N, is denoted by ΠK. For all z ∈ X, one has

ΠK(z) = (z, e0)Xe0 + · · · + (z, eK−1)XeK−1.

Lemma 3.1. For all z ∈ X, one has
‖ΠK(z)‖X ≤ ‖z‖X

and
‖ΠK(z) − z‖X → 0 as K→∞.
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Lemma 3.2. Let {zK}K∈N ⊂ X be the sequence given by

zK =

K−1∑
i=0

λiei,

where {λn}n≥0 ⊂ R. Suppose that there exists z ∈ X such that

‖zK − z‖X → 0 as K→∞.

Then
zK = ΠK(z), ∀K ∈N.

Further, for i ∈N, let Si be a polynomial of degree i, defined by

Si(s) =

i∑
n=0

an(i)sn, ∀ s ∈ [0, 1].

Assume that {Si : i = 0, 1, · · · } is a Hilbertian basis of L2([0, 1], ω(s) ds). We introduce the ψ-polynomials Si,ψ
of degree i, defined by

Si,ψ(t) = Si(ψ(t)), ∀ t ∈ I. (7)

Lemma 3.3. The set {Si,ψ : i = 0, 1, · · · } is a Hilbertian basis of L2(I, µ(t) dt).

Proof. First, we claim that {Si,ψ : i = 0, 1, · · · } is orthonormal. Indeed, for two non-negative integers i and j,
by Lemma 2.1, we have

(Si,ψ,S j,ψ)L2(I,µ(t)dt) = (TSi,ψ,TS j,ψ)L2([0,1],ω(s)ds)

=

∫ 1

0
TSi,ψ(s)TS j,ψ(s)ω(s) ds

=

∫ 1

0
Si,ψ(ψ−1(s))S j,ψ(ψ−1(s))ω(s) ds

=

∫ 1

0
Si(s)S j(s)ω(s) ds

= (Si,S j)L2([0,1],ω(s)ds),

which proves the claim.
Next, we claim that for any f ∈ L2(I, µ(t) dt), we have

f =

∞∑
i=0

( f ,Si,ψ)L2(I,µ(t)dt)Si,ψ. (8)

Let f ∈ L2(I, µ(t) dt). By Lemma 2.1, we know that T f ∈ L2([0, 1], ω(s) ds). Using the fact that {Si : i =
0, 1, 2, · · · } is a Hilbertian basis of L2([0, 1], ω(s) ds), it holds

(T f )(s) =

∞∑
i=0

(T f ,Si)L2([0,1],ω(s)ds)Si(s), ∀ s ∈ [0, 1].

Hence, for all t ∈ I, we get

f (t) = (T f )(ψ(t))

=

∞∑
i=0

(T f ,Si)L2([0,1],ω(s)ds)Si(ψ(t))

=

∞∑
i=0

(T f ,Si)L2([0,1],ω(s)ds)Si,ψ(t).
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On the other hand, by Lemma 2.1, we have

(T f ,Si)L2([0,1],ω(s)ds) = (T f ,TSi,ψ)L2([0,1],ω(s)ds) = ( f ,Si,ψ)L2(I,µ(t)dt).

Then

f (t) =

∞∑
i=0

( f ,Si,ψ)L2(I,µ(t)dt)Si,ψ(t), ∀ t ∈ I,

which yields (8). Therefore, we conclude that {Si,ψ : i = 0, 1, · · · } is a Hilbertian basis of L2(I, µ(t) dt).

Next, given a function f ∈ L2(I, µ(t) dt) and K ∈N, we denote by ΠK( f ) its orthogonal projection on

span{Si,ψ : i = 0, 1, · · · ,K − 1},

that is,

ΠK( f )(t) =

K−1∑
i=0

( f ,Si,ψ)L2(I,µ(t)dt)Si,ψ(t), ∀ t ∈ I. (9)

Using Lemmas 3.1 and 3.3, we get

Lemma 3.4. Let f ∈ L2(I, µ(t) dt). Then

lim
K→∞
‖ f −ΠK( f )‖L2(I,µ(t)dt) = 0.

4. Operational matrices of integrations

Let

F(t) =


F0(t)
F1(t)
...
FK−1(t)

 , ∀ t ∈ I,

where K ∈N. We assume that F ∈ L2(I;RK, µ(t) dt), that is, {Fi}
K−1
i=0 ⊂ L2(I, µ(t) dt). Let

(ΠKF)(t) =


(ΠKF0)(t)
(ΠKF1)(t)
...
(ΠKFK−1)(t)

 , ∀ t ∈ I, (10)

where ΠK is given by (9).
For U,V ∈ L2(I;RK, µ(t) dt), the notation U 'K V means that V = ΠKU. For K � 1, let

ΦK,ψ(t) =


S0,ψ(t)
S1,ψ(t)
...
SK−1,ψ(t)

 , ∀ t ∈ I. (11)

Using Lemma 2.2, we deduce that

Lemma 4.1. Let α > 1
2 . Then

Iα,ψa ΦK,ψ ∈ L2(I;RK, µ(t) dt).
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For α > 0, let

Ω(τ, i, α) =

τ∑
n=0

∆τ,n,αG(i,n, α), i, τ ∈ {0, 1, · · · ,K − 1},

where

∆τ,n,α =
an(τ)n!

Γ(α + n + 1)
(12)

and

G(i,n, α) =

i∑
`=0

a`(i)
∫ 1

0
sα+n+`ω(s) ds. (13)

Consider the matrix
Mα

K×K = (Mα
i j)1≤i, j≤K, Mα

i, j = Ω(i − 1, j − 1, α).

Theorem 4.1. Let α > 1
2 . Then

Iα,ψa ΦK,ψ 'K Mα
K×KΦK,ψ.

Proof. First, observe that Mα
K×KΦK,ψ ∈ L2(I;RK, µ(t) dt). Similarly, by Lemma 4.1, since α > 1

2 , we have
Iα,ψa ΦK,ψ ∈ L2(I;RK, µ(t) dt). Hence, we have to prove that

Mα
K×KΦK,ψ = ΠK

(
Iα,ψa ΦK,ψ

)
,

i.e., for all τ ∈ {0, 1, · · · ,K − 1},

ΠK

(
Iα,ψa Sτ,ψ

)
=

K∑
j=1

Ω(τ, j − 1, α)S j−1,ψ. (14)

Fixing τ, one has

ΠK

(
Iα,ψa Sτ,ψ

)
=

K−1∑
i=0

(Iα,ψa Sτ,ψ,Si,ψ)L2(I,µ(t)dt)Si,ψ. (15)

On the other hand, for all i ∈ {0, 1, · · · ,K − 1}, using Lemma 2.3, we have

(Iα,ψa Sτ,ψ,Si,ψ)L2(I,µ(t)dt) =

τ∑
n=0

an(τ)
(
Iα,ψa ψn,Si,ψ

)
L2(I,µ(t)dt)

=

τ∑
n=0

an(τ)n!
Γ(α + n + 1)

(
ψα+n,Si,ψ

)
L2(I,µ(t)dt)

=

τ∑
n=0

∆τ,n,α

(
ψα+n,Si,ψ

)
L2(I,µ(t)dt)

.

Next, for n ∈ {0, 1, · · · , τ}, by Lemma 2.1, we get(
ψα+n,Si,ψ

)
L2(I,µ(t)dt)

= (Tψα+n,TSi,ψ)L2([0,1],ω(s)ds)

=

∫ 1

0
sα+nSi,ψ(ψ−1(s))ω(s) ds

=

i∑
`=0

a`(i)
∫ 1

0
sα+n+`ω(s) ds

= G(i,n, α).
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Therefore, for all i ∈ {0, 1, · · · ,K − 1}, it holds

(Iα,ψa Sτ,ψ,Si,ψ)L2(I,µ(t)dt) =

τ∑
n=0

∆τ,n,αG(i,n, α). (16)

Using (15) and (16), (14) follows.

5. The numerical approach and its convergence

Consider the coupled system of fractional differential equations (1) subject to the initial conditions (2).
It is supposed that p1, p2 ∈ L2(I, µ(t) dt) and (1)–(2) admits a unique solution (x, y) ∈ Cm(I) × Cm(I) (see e.g.
[4]). From (1), one has CDα,ψ

a x,CDβ,ψ
a y ∈ L2(I, µ(t) dt). For K ∈N, K � 1, for all t ∈ I, we have

ΠK(CDα,ψ
a x)(t) =

K−1∑
i=0

(CDα,ψ
a x,Si,ψ)L2(I,µ(t)dt)Si,ψ(t)

and

ΠK(CDβ,ψ
a y)(t) =

K−1∑
i=0

(CDβ,ψ
a y,Si,ψ)L2(I,µ(t)dt)Si,ψ(t),

where ΠK is given by (9). Then, we may write

ΠK(CDα,ψ
a x)(t) = Hα

KΦK,ψ(t) (17)

and

ΠK(CDβ,ψ
a y)(t) = Hβ

KΦK,ψ(t), (18)

where ΦK,ψ is defined by (11),

Hα
K =

(
(CDα,ψ

a x,S0,ψ)L2(I,µ(t)dt), (CDα,ψ
a x,S1,ψ)L2(I,µ(t)dt), · · · , (CDα,ψ

a x,SK−1,ψ)L2(I,µ(t)dt)

)
and

Hβ
K =

(
(CDβ,ψ

a y,S0,ψ)L2(I,µ(t)dt), (CDβ,ψ
a y,S1,ψ)L2(I,µ(t)dt), · · · , (CDβ,ψ

a y,SK−1,ψ)L2(I,µ(t)dt)

)
.

Using Lemma 3.1, we obtain the following result.

Lemma 5.1. We have

lim
K→∞

max
{∥∥∥∥Hα

KΦK,ψ −
CDα,ψ

a x
∥∥∥∥

L2(I,µ(t)dt)
,
∥∥∥∥Hβ

KΦK,ψ −
CDβ,ψ

a y
∥∥∥∥

L2(I,µ(t)dt)

}
= 0.

Since α, β > 1
2 , we deduce from Lemmas 2.2 and 5.1 the following result.

Lemma 5.2. We have

lim
K→∞

max
{∥∥∥∥Hα

KIα,ψa ΦK,ψ − Iα,ψa
CDα,ψ

a x
∥∥∥∥

L2(I,µ(t)dt)
,
∥∥∥∥Hβ

KIβ,ψa ΦK,ψ − Iβ,ψa
CDβ,ψ

a y
∥∥∥∥

L2(I,µ(t)dt)

}
= 0.

Next, we shall prove the following convergence result.

Lemma 5.3. We have

lim
K→∞

max
{∥∥∥∥Hα

KΠK(Iα,ψa ΦK,ψ) − Iα,ψa
CDα,ψ

a x
∥∥∥∥

L2(I,µ(t)dt)
,
∥∥∥∥Hβ

KΠK(Iβ,ψa ΦK,ψ) − Iβ,ψa
CDβ,ψ

a y
∥∥∥∥

L2(I,µ(t)dt)

}
= 0,

where ΠK is given by (10).
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Proof. First, we have∥∥∥∥Hα
KΠK(Iα,ψa ΦK,ψ) − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

≤

∥∥∥∥Hα
KΠK(Iα,ψa ΦK,ψ) −ΠK(Iα,ψa

CDα,ψ
a x)

∥∥∥∥
L2(I,µ(t)dt)

+
∥∥∥∥Iα,ψa

CDα,ψ
a x −ΠK(Iα,ψa

CDα,ψ
a x)

∥∥∥∥
L2(I,µ(t)dt)

.

Note that
Hα

KΠK(Iα,ψa ΦK,ψ) = ΠK

(
Hα

KIα,ψa ΦK,ψ

)
,

which implies by Lemma 3.1 that∥∥∥∥Hα
KΠK(Iα,ψa ΦK,ψ) − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

≤

∥∥∥∥ΠK

(
Hα

KIα,ψa ΦK,ψ − Iα,ψa
CDα,ψ

a x
)∥∥∥∥

L2(I,µ(t)dt)
+

∥∥∥∥Iα,ψa
CDα,ψ

a x −ΠK(Iα,ψa
CDα,ψ

a x)
∥∥∥∥

L2(I,µ(t)dt)

≤

∥∥∥∥Hα
KIα,ψa ΦK,ψ − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

+
∥∥∥∥Iα,ψa

CDα,ψ
a x −ΠK(Iα,ψa

CDα,ψ
a x)

∥∥∥∥
L2(I,µ(t)dt)

.

Next, using Lemmas 3.1 and 5.2, we deduce that

lim
K→∞

∥∥∥∥Hα
KΠK(Iα,ψa ΦK,ψ) − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

= 0.

Following the same argument as above, we get

lim
K→∞

∥∥∥∥Hβ
KΠK(Iβ,ψa ΦK,ψ) − Iβ,ψa

CDβ,ψ
a y

∥∥∥∥
L2(I,µ(t)dt)

= 0.

This ends the proof.

Further, since α, β > 1
2 , Theorem 4.1 and Lemma 5.3 yield the following result.

Lemma 5.4. We have

lim
K→∞

max
{∥∥∥∥Hα

KMα
K×KΦK,ψ − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

,
∥∥∥∥Hβ

KMβ
K×KΦK,ψ − Iβ,ψa

CDβ,ψ
a y

∥∥∥∥
L2(I,µ(t)dt)

}
= 0.

Given a vector X ∈ RK, we denote by XT its transpose. Using (6) and the initial conditions (2), we get

Iα,ψa
CDα,ψ

a x(t) = x(t) −
m−1∑
i=0

xi

i!
(ψ(t))i (19)

and

Iβ,ψa
CDβ,ψ

a y(t) = y(t) −
m−1∑
i=0

yi

i!
(ψ(t))i. (20)

Let

ΠK

m−1∑
i=0

xi

i!
(ψ(t))i

 = ZT
KΦK,ψ(t), ∀ t ∈ I (21)

and

ΠK

m−1∑
i=0

yi

i!
(ψ(t))i

 = WT
KΦK,ψ(t), ∀ t ∈ I, (22)



A. Alshabanat, B. Samet / Filomat 34:8 (2020), 2585–2600 2594

where ZK,WK ∈ RK (the known vectors). Let {xK}, {yK} ⊂ L2(I, µ(t) dt) be the sequences defined by

xK(t) =
(
HK,αMα

K×K + ZT
K

)
ΦK,ψ(t), ∀ t ∈ I (23)

and

yK(t) =
(
HK,βM

β
K×K + WT

K

)
ΦK,ψ(t), ∀ t ∈ I. (24)

Theorem 5.1. We have
lim

K→∞
max

{
‖xK − x‖L2(I,µ(t)dt, ‖yK − y‖L2(I,µ(t)dt

}
= 0.

Proof. Writing

‖xK − x‖L2(I,µ(t)dt) =
∥∥∥∥(HK,αMα

K×K + ZT
K

)
ΦK,ψ − x

∥∥∥∥
and using (19), (21), we obtain

‖xK − x‖L2(I,µ(t)dt) =

∥∥∥∥∥∥∥(HK,αMα
K×K + ZT

K

)
ΦK,ψ − Iα,ψa

CDα,ψ
a x −

m−1∑
i=0

xi

i!
ψi

∥∥∥∥∥∥∥
L2(I,µ(t)dt)

≤

∥∥∥∥HK,αMα
K×KΦK,ψ − Iα,ψa

CDα,ψ
a x

∥∥∥∥
L2(I,µ(t)dt)

+

∥∥∥∥∥∥∥ΠK

m−1∑
i=0

xi

i!
ψi

 − m−1∑
i=0

xi

i!
ψi

∥∥∥∥∥∥∥
L2(I,µ(t)dt)

.

Hence, using Lemmas 3.1 and 5.4, we obtain by taking K→∞,

lim
K→∞
‖xK − x‖L2(I,µ(t)dt) = 0.

Similarly, one has
lim

K→∞
‖yK − y‖L2(I,µ(t)dt) = 0,

which completes the proof.

From the previous result, (x, y) can be obtained as limits of the sequences {xK} and {yK} defined by
(23)–(24). However, before applying Theorem 5.1, we have to compute the unknown vectors HK,α and HK,β.

First, by Lemma 3.2 and Theorem 5.1, it holds

Lemma 5.5. For all K ∈N, we have
(xK, yK) = (ΠK(x),ΠK(y)).

Further, for i = 1, 2, let QK,i ∈ RK be the (known) vectors satisfying

ΠK(pi)(t) = QT
K,iΦK,ψ(t), ∀ t ∈ I. (25)

Using (1), we get  ΠK

(
CDα,ψ

a x
)

= A11ΠK(x) + A12ΠK(y) + ΠK(p1),
ΠK

(
CDβ,ψ

a y
)

= A21ΠK(x) + A22ΠK(y) + ΠK(p2).

By (17)–(25) and Lemma 5.5, it holds HK,α

(
IK×K − A11Mα

K×K

)
+ HK,β

(
−A12Mβ

K×K

)
= A11ZT

K + A12WT
K + QT

K,1,

HK,α

(
−A21Mα

K×K

)
+ HK,β

(
IK×K − A22Mβ

K×K

)
= A21ZT

K + A22WT
K + QT

K,2,

which can be written as{
HK,αA11 + HK,βA12 = U1
HK,αA21 + HK,βA22 = U2,

(26)
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where

A11 = IK×K − A11Mα
K×K,

A12 = −A12Mβ
K×K,

A21 = −A21Mα
K×K,

A22 = IK×K − A22Mβ
K×K,

U1 = A11ZT
K + A12WT

K + QT
K,1,

U2 = A21ZT
K + A22WT

K + QT
K,2

and IK×K is the unit matrix. One can shows that (26) is equivalent to

(
HK,α,HK,β

) (A11 A21
A12 A22

)
= (U1,U2) . (27)

Note that it is assumed that (
A11 A21
A12 A22

)
is invertible. Otherwise, one may increase, iteratively, the number K by one, until the matrix becomes
invertible. Next, after solving (27), (x, y) can be approximated by (23)–(24), for K � 1.

6. Numerical experiments

6.1. The model example

As a model example, consider the coupled system of fractional differential equations
CDα,ψ

0 x(t) =
2

Γ(3 − α)
x(t) +

2
Γ(3 − α)

y(t) +
2

Γ(3 − α)
(
ψ(t)

)2−α
(
1 −

(
ψ(t)

)α
−

(
ψ(t)

)α+1
)

CDβ,ψ
0 y(t) =

6
Γ(4 − β)

x(t) +
6

Γ(4 − β)
y(t) +

6
Γ(4 − β)

(
ψ(t)

)2
−

((
ψ(t)

)1−β
− 1 −

(
ψ(t)

)) ; t ∈ I (28)

subject to the initial conditions

x(0) = y(0) = 0, (29)

where (α, β) = (0.9, 0.6) and I = [0, 1]. one can show easily that

(x∗(t), y∗(t)) = (ψ(t)2, ψ(t)3), ∀ t ∈ I, (30)

is the exact solution to (28)–(29).
Our aim in this section is to illustrate the effectiveness of the approach presented in Section 5 by

computing the numerical solution (x, y) to (28)–(29) using different types of polynomials.
The absolute error at any point t ∈ I will be denoted by

E(t) = |x∗(t) − x(t)| + |y∗(t) − y(t)|.

6.2. ψ-shifted polynomials

We will use two types of polynomials.
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6.2.1. ψ-shifted polynomials of Legendre-type
The shifted Legendre polynomials are given by (see e.g. [18])

L j(s) = (1 + 2 j)
1
2

j∑
n=0

(−1) j−n (n + j)!
( j − n)!(n!)2 sn, ∀ s ∈ [0, 1].

Moreover, the set {Li}i≥0 is a Hilbertian basis of L2([0, 1]) (see e.g. [16]). The ψ-shifted polynomials of
Legendre-type Si,ψ, are given by (see [3])

Si,ψ(t) = Li(ψ(t)),
for all t ∈ I, i.e., Si,ψ is defined by (7) with

an(i) = (−1)i−n(1 + 2i)
1
2

(i + n)!
(i − n)!(n!)2 , (31)

for all n = 0, 1, · · · , i. Hence, using (31), (12)–(13) with ω ≡ 1, for r ∈ {α, β} and j, τ ∈ {0, 1, · · · ,K − 1}, we get

∆τ,n,r = (1 + 2τ)
1
2 (−1)τ−n (n + τ)!

n!(τ − n)!Γ(r + n + 1)

and

G( j,n, r) = (1 + 2 j)
1
2

i∑
`=0

(−1) j−` (` + j)!
( j − `)!(`!)2(r + n + ` + 1)

.

6.2.2. ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 )

The shifted Jacobi polynomials with parameters (0,− 1
2 ) are given by (see e.g. [27])

J(0,− 1
2 )

i (s) =
(
2i +

1
2

) 1
2

i∑
n=0

(−1)i−n Γ( 1
2 + i + n)

Γ( 1
2 + n)(i − n)!n!

sn, ∀ s ∈ [0, 1].

The set
{

J(0,− 1
2 )

i

}
i≥0

is a Hilbertian basis of L2([0, 1], ω(s) ds), where

ω(s) =
1
√

s
, ∀ s ∈ (0, 1]. (32)

We define the ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 ) by

Si,ψ(t) = J(0,− 1
2 )

i (ψ(t)) ∀ t ∈ I,

i.e., Si,ψ is given by (7) with

an(i) =
(
2i +

1
2

) 1
2 (−1)i−nΓ( 1

2 + i + n)

Γ( 1
2 + n)(i − n)!n!

, (33)

for all n = 0, 1, · · · , i. Further, let r ∈ {α, β} and i, τ ∈ {0, 1, · · · ,K − 1}. For ` ∈ {0, 1, · · · , i}, we have∫ 1

0
sr+n+`ω(s) ds =

∫ 1

0
sr+n+`− 1

2 ds =
1

r + n + ` + 1
2

. (34)

Hence, using (33), (12)–(13) with ω given by (32), and (34), we get

∆τ,n,r =
(
2τ +

1
2

) 1
2

(−1)τ−n Γ(τ + n + 1
2 )

Γ(n + 1
2 )(τ − n)!Γ(r + n + 1)

and

G(i,n, r) =
(
2i +

1
2

) 1
2

i∑
`=0

(−1)i−` Γ(i + ` + 1
2 )

Γ(` + 1
2 )(i − `)!`!(r + n + ` + 1

2 )
.
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6.3. Numerical computations via ψ-shifted Legendre polynomials

In this subsection, the numerical approach presented in Section 5 will be applied for solving (28)–(29)
using ψ-shifted polynomials of Legendre-type.

6.3.1. The case ψ(t) =
t(t+1)

2
We consider (28)–(29) with

ψ(t) =
t(t + 1)

2
, t ∈ I, (35)

where I = [0, 1].
In Table 1, for K = 10, we give the numerical solution (x, y) to (28)–(29), as well as E(T) at different points

in I.

t
(
x∗(t), y∗(t)

)
(x(t), y(t)) E(t)

0.0 (0.0,0.0) (-7.4×10−6, -1.3×10−6) 8.7 × 10−6

0.1 (0.003025,0.000166) (0.003027,0.000166) 2.0 × 10−6

0.2 (0.014400,0.001728) (0.014397,0.001727) 4.0 × 10−6

0.3 (0.038025,0.007414) (0.038025,0.007414) 0
0.4 (0.078400,0.021952) (0.078401,0.021952) 1.0 × 10−6

0.5 (0.140625,0.052734) (0.140624,0.052734) 1.0 × 10−6

0.6 (0.230400,0.110592) (0.230399,0.110592) 1.0 × 10−6

0.7 (0.354025,0.210645) (0.354027,0.210645) 2.0 × 10−6

0.8 (0.518400,0.373248) (0.518398,0.373248) 2.0 × 10−6

0.9 (0.731025,0.625026) (0.731027,0.625026) 2.0 × 10−6

1.0 (1.0,1.0) (1.000010,0.999998) 1.2 × 10−5

Table 1: Exact and numerical solutions to (28)–(29) for K = 10 using ψ-shifted polynomials of Legendre-type with ψ(t) =
t(t+1)

2

6.3.2. The case ψ(t) = tan
(
π
4 t

)
We consider (28)–(29) with

ψ(t) = tan
(
π
4

t
)
, t ∈ I. (36)

In Table 2, for K = 10, we give the numerical solution (x, y) to (28)–(29), as well as E(T) at different points in
I.

6.4. Numerical computations via ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 )

In this subsection, the numerical approach presented in Section 5 is applied for solving (28)–(29) using
ψ-shifted polynomials of Jacobi-type with parameters (0,− 1

2 ).

6.4.1. The case ψ(t) =
t(t+1)

2
We consider (28)–(29) with ψ given by (35). In Table 3, for K = 10, we give the numerical solution (x, y)

to (28)–(29), as well as E(T) at different points in I.
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t
(
x∗(t), y∗(t)

)
(x(t), y(t)) E(t)

0.0 (0.0 , 0.0) (-7.4×10−6,-1.3×10−6) 8.7 × 10−6

0.1 (0.006193,0.000487) (0.006194,0.000487) 1.0 × 10−6

0.2 (0.025085,0.003973) (0.025083,0.003972) 3.0 × 10−6

0.3 (0.057637,0.013837) (0.057639,0.013837) 2.0 × 10−6

0.4 (0.105573,0.034302) (0.105573,0.034303) 1.0 × 10−7

0.5 (0.171573,0.071067) (0.171571,0.071067) 2.0 × 10−6

0.6 (0.259616,0.132281) (0.259616,0.132281) 0
0.7 (0.375525,0.230122) (0.375526,0.230122) 1.0 × 10−6

0.8 (0.527864,0.383516) (0.527862,0.383516) 2.0 × 10−6

0.9 (0.729454,0.623012) (0.729456,0.623012) 2.0 × 10−6

1.0 (1.0,1.0) (1.000010,0.999998) 1.2 × 10−5

Table 2: Exact and numerical solutions to (28))–(29) for K = 10 using ψ-shifted polynomials of Legendre-type with ψ(t) = tan
(
π
4 t

)

t
(
x∗(t), y∗(t)

)
(x(t), y(t)) E(t)

0.0 (0.0,0.0) (-1.6×10−6,-9.6×10−6) 1.12 × 10−5

0.1 (0.003025,0.000166) (0.003029,0.000168) 6.00 × 10−6

0.2 (0.014400,0.001728) (0.014399,0.001730) 3.00 × 10−6

0.3 (0.038025,0.007414) (0.038032,0.007420) 1.30 × 10−5

0.4 (0.078400,0.021952) (0.078410,0.021964) 2.20 × 10−5

0.5 (0.140625,0.052734) (0.140634,0.052756) 3.10 × 10−5

0.6 (0.230400,0.110592) (0.230425,0.110635) 6.80 × 10−5

0.7 (0.354025,0.210645) (0.354082,0.210741) 1.53 × 10−4

0.8 (0.518400,0.373248) (0.518513,0.373466) 3.31 × 10−4

0.9 (0.731025,0.625026) (0.731319,0.625557) 8.25 × 10−4

1.0 (1.0,1.0) (1.00077,1.00138) 2.15 × 10−3

Table 3: Exact and numerical solutions to (28)–(29) for K = 10 using ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 )

and ψ(t) =
t(t+1)

2

(a) E(t) for (28)–(29) with ψ(t) =
t(t+1)

2 (b) E(t) for (28)–(29) with ψ(t) = tan
(
π
4 t

)
Figure 1: Comparison of absolute error E(t) usingψ-shifted polynomials of Legendre-type andψ-shifted polynomials of Jacobi-type
with parameters (0,− 1

2 ) with (α, β,K) = (0.9, 0.6, 10) for the considered choices of ψ.

6.4.2. The case ψ(t) = tan
(
π
4 t

)
We consider (28)–(29) with ψ given by (36). In Table 4, for K = 10, we give the numerical solution (x, y)

to (28)–(29), as well as E(T) at different points in I.
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t
(
x∗(t), y∗(t)

)
(x(t), y(t)) E(t)

0.0 (0.0 , 0.0) (-1.59×10−6,−9.6 × 10−7) 2.55 × 10−6

0.1 (0.006193,0.000487) (0.006194,0.000489) 3.00 × 10−6

0.2 (0.025085,0.003973) (0.025088,0.003976) 6.00 × 10−6

0.3 (0.057637,0.013837) (0.057648,0.013846) 2.00 × 10−5

0.4 (0.105573,0.034302) (0.105582,0.034318) 2.50 × 10−5

0.5 (0.171573,0.071067) (0.171585,0.071095) 4.00 × 10−5

0.6 (0.259616,0.132281) (0.259649,0.132334) 8.60 × 10−5

0.7 (0.375525,0.230122) (0.375587,0.230230) 1.70 × 10−4

0.8 (0.527864,0.383516) (0.527983,0.383744) 3.47 × 10−4

0.9 (0.729454,0.623012) (0.729746,0.623540) 8.20 × 10−4

1.0 (1.0,1.0) (1.000770,1.001380) 2.15 × 10−3

Table 4: Exact and numerical solutions to (28)–(29) for K = 10 using ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 )

and ψ(t) = tan
(
π
4 t

)

Figure (1a) shows a comparison of the obtained absolute error E(t) for (28)–(29) using ψ-shifted poly-
nomials of Legendre-type and ψ-shifted polynomials of Jacobi-type with parameters (0,− 1

2 ) in the case
ψ(t) =

t(t+1)
2 . Figure (1b) shows a comparison of the obtained absolute error E(t) for (28)–(29) usingψ-shifted

polynomials of Legendre-type and ψ-shifted polynomials of Jacobi-type with parameters (0,− 1
2 ) in the case

ψ(t) = tan
(
4−1πt

)
.

The numerical tests presented in this section confirm the efficiency of the method.
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