Filomat 34:8 (2020), 2585-2600
https://doi.org/10.2298/FIL2008585A

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

D
b
gy gy

&
Ipapor®
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Abstract. We consider a certain class of coupled systems of fractional differential equations involving
p-Caputo fractional derivatives. A numerical approach is provided for solving this class of systems. The
method is based on operational matrix of fractional integration of an arbitrary ip-polynomial basis. A
theoretical study related to the numerical scheme and the convergence of the method is presented. Next,

several numerical examples are given using different types of polynomials aiming to confirm the efficiency
of our approach.

1. Introduction

We consider the coupled system of fractional differential equations

DY x(t) = Aux(t) + Anyt) + pi(t)
CBY _ , a< t<b
Dy y(t) = Anx(t) + Any(t) + pa(t)

subject to the initial conditions

(61,0)ix(a) = Xi, (61;;)1]/(51) =Y i€ {Or 1r s, m— 1}/ (2)

where x and y are the unknown functions, A;j, x;, y; are given constants, p; : [2,b] — R are given functions,
m is a positive integer and a, 8 € (max{ !

3,m = 1},m). Hereisa C! function in [a, b], Y([a,b]) =[0,1], ¥ >0,
CD;’”D, r € {a, B}, is the Y-Caputo fractional derivative of order r, and

©0'20) =20, @92t = (s 5] 20, =12 m-1,

for z € {x, y}. Systems of type (1) were used as fractional models of different real world phenomena, such

as oscillator theory [19], pollution [6, 14, 29], circuit simulations [7], etc. Our aim is to provide a numerical
method for solving (1)—(2), as well as a rigorous justification of its convergence.
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After discovering the importance of fractional calculus in applications (see, e.g.[5, 12, 13, 15, 20, 21, 24,
25]), this theory attracted much attention from researchers both in mathematics and in other disciplines. In
particular, several contributions related to the development of numerical techniques for solving fractional
differential equations were published. One of the popular methods is the operational matrix approach,
which consists to transform the problem to an equation of algebraic-type by projecting it on an adequate
polynomial basis. This method has been first used for solving standard differential equations (see e.g.
[22, 23]). Next, due to the properties of fractional operators, it was shown that this technique is still useful
for solving large classes of fractional differential equations (see e.g. [1, 3, 8,9, 11, 14, 17, 19, 26, 28] and
the references therein). In particular, in [3], the authors investigated a certain class of fractional differential
equations involving y-Caputo fractional derivatives. Namely, in order to obtain numerical solutions, they
used the operational matrix approach by introducing 1)-shifted Legendre polynomials.

Motivated by the above cited works, we propose in this paper a numerical approach based on the oper-
ational matrix technique for solving (1)-(2). The convergence is established for an arbitrary 1p-polynomial
basis. Moreover, several numerical experiments using different types of polynomials are provided.

The rest of the paper is organized as follows. In Section 2, we establish some preliminary results. In
Section 3, some properties related to y-polynomials are derived. In Section 4, a general formula of the
Y-fractional integral of i-polynomials is obtained. The proof of the convergence is given in Section 5. Next,
numerical tests are presented using two different types of polynomials: -shifted Legendre polynomials
and y-shifted Jacobi polynomials with parameters (0, —1).

2. Preliminaries
First, let us fix some notations. We denote by IN the set of positive integers. Let | be a finite interval in

R and w : | = [0, o) be a measurable function. For p > 1, let L7(J, w(0) do) be the weighted Lebesgue space
of measurable functions R in | satisfying

f IRO)P (o) do < oo
J

If w = 1, then LP(J,w(o)do) = LP(]), is the standard Lebesgue space. The space L?(J, w(0)do) is equipped

with the norm
1

||R||Lp(],m(g)dg) = (£|R(G)|pw(0) dcf)p , YR e Lp(], w(a)da).

The scalar product in L*(J, w(0) do) is defined by
R, S)12w(0)do) = fR(O)S(a)a)(o) do, YRS e L%, w(0)do).
J

Further, let ¢ be a C! function in I = [a, b] such that
Q) ¢ > 0.
(i) Y@ = 0and ¥(b) = 1.
Let w € LY([0, 1]) be a positive function such that ™ € C([0, 1]). Denote p(0) = ¢’ (0)w(y(0)), Yo € I.
ForR:I - R, let
TR=Ro gb_l.
Lemma 2.1. Forall R,S € L*(I, (o) do), it holds

(R, S)r21,u0)do) = (TR, TS)120,11,0(5)ds) -
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Proof. LetR, S € L2(I, u(0) do). Then
b
R S ueie) = f R(0)S(o)u(o)do

b
- f R(0)S(0)y/ (@)o(($(0) do.

Using the change of variable s = {(0), by (i)—(ii), we get

1
RS = [ REO)S(p76)awds

1
f (TR)(S)(TS)(s)w(s) ds
0
(TR, TS)12(10,11,w(s)ds)

which completes the proof. [

2587

Definition 2.1 (see [15]). The y-fractional integral of order e > 0 of a function R € LY(I, ¢/ (t) dt) is defined by

Ia/LPR 1) = _1 t ! t) — a_lR d
where T denotes the Gammaﬂmction.

Lemma 2.2. Let o > 1. Then
1Y LA(1, u(o) do) — L2(I, u(o) do)
is a linear and bounded operator. Moreover,

”IOMPR”LZ(I w@)do) < Cawll Rl uo)do)s

for all R € L*(I, u(0) do), where Cp = F(a) \/”w oy j;) (s)ds.

2a-1)

Proof. Leta > } and R € L*(I, u(0) do). By Holder’s inequality, it holds

2
(1YR) ()
Using (i)—(ii), an elementary calculation yields

" 20—1
fﬂ (¥(0) = p@)* Y () dz = “;(Z)_ 1= Zal— 1

On the other hand, since w™! € C([0, 1]), it holds

b b
1 _
[ verEE= | s REuEE < o o/ oy
Hence, combining (3)-(5), it holds

b
ay _
Rty = f
llw™ I o,17) b
(Qa - 1DI'(a)? fy(a)dcr ”R”LZ(IMO)do)

o™ Mo 1
(2a — DI (a)? f () ds | 1R300
CZ

(1*R) @) (@) do

”RHLZ I[.l U)d(‘i)’

b
< r((ll)z ( f: (W(0) = Y)Y (z) dz) ( fﬂ V' (2)R%(z) dz), el

)
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which proves the desired result. [

Definition 2.2 (see [3]). Let
Fi(t)

Fa(t)
) =| . . Vtel,

En(t)
where N € N and F; € LY(I, ¢/ (t) dt), for all i. The y-fractional integral of order o > 0 of F is given by

(1“ ”*H)( )
wp=| &

(I Fn)(®)
Lemma 2.3 (see [15]). Forall T > 0, x > —1, one has

ra+x«)

I’ ol
)" = TS

(ll)(t))T_H(.

Forall T,k > 0, one has
TlpIK LPR(t) T+K wR(t)

Let

©9)°R(t) = R(t) and (6¢)”R(t)=( i) R(E),

1
Pr(t) dt
where n € IN.

Definition 2.3 (see [2]). Let n € N, n —1 < a < nand R, € C"(I). The y-Caputo fractional derivative of order
a of R is given by
(DRI =13 (04)"R(®).
Lemma 2.4 (see [2]). Letn € Nandn—-1<a <n.
1. If R € C(I), then
DVTVR(E) = R(B).
2. If R € C"7Y(I), then

n—1 1‘

R — 17 DI YR(t) Z CRD oy (6)

i=

3. Y-polynomial basis

We start this section by recalling two fundamental results from Hilbertian Analysis (see e.g. [3, 10]).
Let (X, (-, ) x) be a Hilbert space with norm || - ||x and {e;};>o a Hilbertian basis. The orthogonal projection
on span{e;}X°!, K € N, is denoted by Ilk. For all z € X, one has

i= 0 4
Ik (z) = (z,e0)xe0 + - -+ + (2, ex-1) x€K-1-

Lemma 3.1. Forall z € X, one has

Tk @)llx < llzllx

and
Tk (z) — zllx — 0 as K — oo.
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Lemma 3.2. Let {zx}xen C X be the sequence given by

K-1
Zx = Z e,
=0

where {An}us0 C R. Suppose that there exists z € X such that
llzx —zllx = 0as K — oo.

Then
ZK = HK(Z), YK eN.

Further, for i € IN, let S; be a polynomial of degree 7, defined by

1

Si(s) = Zan(i)s”, Vse[0,1].

n=0

Assume that {S;: i =0,1,---} is a Hilbertian basis of L2([0, 1], w(s) ds). We introduce the y-polynomials S; y,
of degree i, defined by

Siy(t) = Si(y(h), Vtel -
Lemma 3.3. The set {S;y : i =0,1,---} is a Hilbertian basis of L*(I, u(t) dt).

Proof. First, we claim that {S;; : i =0,1,---}is orthonormal. Indeed, for two non-negative integers i and j,
by Lemma 2.1, we have

Sigs Sipleapwan = (TSig, TSjp)iao1,ee)s)

1
f TSiy(s)TSy(s)w(s)ds
0

1
J; S (@155 (W )a(s) ds

1
f Si(s)Sj(s)w(s) ds
0

(S, Sj12(0,11,0(s)ds) s

which proves the claim.
Next, we claim that for any f € L%(I, u(t) dt), we have

f= z( £+ Siw)eaudn Sipp- (8)
pary

Let f € LZ(I,y(t) dt). By Lemma 2.1, we know that Tf € L2([0,1], w(s) ds). Using the fact that {S; : i =
0,1,2,---}is a Hilbertian basis of L*([0, 1], w(s) ds), it holds

(THE) = Y (Tf, SDixpoaremaSis), Vs €011
i=0

Hence, for all t € I, we get

f&) = (THwWW)
Y (Tf SDioaneai SH)

i=0

Z(T £, S)r201,0(s)ds)Sip(t)-
i=0
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On the other hand, by Lemma 2.1, we have
(T, SHreqoatweds) = (T, TSiyp)reqoitweds) = (fr Sig)rzaun-

Then .
f) = Z(f, SigzauwanSip(t), YteL
=0

which yields (8). Therefore, we conclude that {S;;, : i =0,1,---}is a Hilbertian basis of L*(I, u(tydt). O
Next, given a function f € L*(I, u(t) dt) and K € IN, we denote by k() its orthogonal projection on
span{S;y :i=0,1,--- ,K-1},

that is,

K-1
() = Y (f SipdzauemnSiv®), Vel 9)
i=0

Using Lemmas 3.1 and 3.3, we get
Lemma 3.4. Let f € L*(I, u(t) dt). Then

Lim 1 = Tk (Hllezq,unan = 0.

4. Operational matrices of integrations

Let
Fo(t)
Fi(t)
F(t) = : , Vtel,

Fr-1(t)
where K € N. We assume that F € L*(I; IR, u(t) dt), that is, {F;}< ' € L2(I, u(t) dt). Let

(ITxFo)(f)
(ITxF1)(t)

(HKF)(t) = : s Vte I/ (10)
(ITxFr-1)(t)

where Ik is given by (9).
For UV e LZ(I,' RK, u(t)dt), the notation U ~x V means that V = IIxU. For K > 1, let

So,y(t)
S1,u(f)
(DK,lp(t) =1 . , VYtel (11)
Sk-1,4(t)
Using Lemma 2.2, we deduce that

Lemma 4.1. Let o > % Then
IV Ok, € LA(LRK, u(t) dt).
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For a > 0, let

T
Ori,0) = Y AcnaGlim@), it €01, ,K=1),

n=0
where
_ ap(T)n!

Auna = Ta+n+1) (12)

and
i 1
G(i,n, a) = Zag(i) f s+ 65 (5) ds. (13)
=0 0

Consider the matrix

My = Mihsijek, M

=Q-1,j-1,0)

Theorem 4.1. Let a > 1. Then

Y0y ~¢ My Dy,
Proof. First, observe that Mg, Pxy € L*(I;RK, u(t)dt). Similarly, by Lemma 4.1, since a > %, we have
Ig’l’bq)lw € LX(I; RK, u(t) dt). Hence, we have to prove that

My Pry = Tk (IZ 'qu)K,lp) ,
ie., forallte{0,1,--- ,K—1},

USCE ZQ(T, —1,)S; 1,4 (14)

Fixing 7, one has

K-1

Ik (I;X”’DSW) = Z(Ig'lPSz,w, Sip)2 @ uctyan Siap- (15)
i=0

On the other hand, foralli € {0,1,--- , K — 1}, using Lemma 2.3, we have

T

Zﬂn(T)( l/’ 51¢)L2(1y(t)dt)

Iy ,¢Sw, Sip)i2(, )

’ i"’b)LZ(I,y(t)dt)

|
.1
)
+
=
+
\’_)
=
IS
T
2

I
D1- 1
s
g
_

a+n Q.
. (¢ ’ SZ’IP)LZ(I,p(t)dt) :
Next, forn € {0,1,--- , 7}, by Lemma 2.1, we get

(""", Si),. Lyt (TY™™", TSig)i2qo,11,06)ds)

1
f s“+”Si,¢(1p‘l(S))a)(s) ds
0

i 1
Z a(i) f sV (s) ds
=0 0

G(i,n, o).
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Therefore, for alli € {0,1,--- ,K — 1}, it holds
T
U5 Segr Sigdizagnin = Y AenaGli, 1, ).
n=0

Using (15) and (16), (14) follows. O

5. The numerical approach and its convergence

2592

(16)

Consider the coupled system of fractional differential equations (1) subject to the initial conditions (2).
It is supposed that py, po € L*(I, u(t) dt) and (1)~(2) admits a unique solution (x, y) € C"(I) x C"(I) (see e.g.

[4]). From (1), one has CDg’wx,ch’lpy € LX(I, u(t)dt). For K € N, K > 1, for all t € I, we have

K-1

k(DY x)(t) = Z(CDZ'””x, Si)i2uwn Sip(f)
i=0

and
K-1

(D y)®) = Y (DY, Sz uin S @),
i=0
where Ik is given by (9). Then, we may write
(D 2)(t) = HiDry (1)
and
k(DY y)(t) = He®@iy (),
where @, is defined by (11),

Hy = ((CDZ'IPX/ So)L2 (1 u(tyr), (CDg'lPx, S1p)eeaudn, ,(CDZ’wx, SK,1,¢)L2(LH(t)dt))

and
Hj, = ((CD§'¢yr So)12(,u(hdr), Dy, Svp)eaumdn, (DS, 5K—1,¢)Lz(1,y(f)dt)).
Using Lemma 3.1, we obtain the following result.

Lemma 5.1. We have

Hdyy — DYy

lim max {HHI"QCDK,#, - CDf’l’bx

K—o0

L2(u(Hdt)” LZ(I,p(t)dt)}

Since «a, > 1 we deduce from Lemmas 2.2 and 5.1 the following result.

Lemma 5.2. We have

lim max {||H§1,§"¢cp,<,¢ — [ DMy

K—oo

HL oy — 1 Dy

L2(Ludy L2 (I,y(t)dt)}
Next, we shall prove the following convergence result.
Lemma 5.3. We have

HeTIK (15 D ) — 15 DIV x HE Ty (15 D ) — 15Y DIy

lim max {| , }
K—s00 L2(Lu(Hdt) L2(T,u(t)dt)

=0,

where Ik is given by (10).

(17)

(18)
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Proof. First, we have

HeTg (I O ) — 1Y DY x

a

< HH;;HK(IZ"%K,@ ~ k(15" Dy ¥'x)

L2(Lu(Hde) L2(Lu(Hdt)
+|[I°Y DM x — TT(™Y D™ .
a a X K( a a X) L2 u()dt)
Note that
He Tl (I ) = T (HEly ¥ Dy ),
which implies by Lemma 3.1 that
HeTI (ISY Dk ) — 177 DY
” kI (la™ ) = Lo a ¥ L2(Lu(t)dt)
< |[Tg (HerY @y, — 1Y DY Y DY x — T (1Y DY
= ” K( K'a Ky a a x) L2, u(t)dt) a e X K( a a x) L2, u(t)dt)
HeL Y Oy — 1Y DY 1Y DI x — (Y DY .
| “ a X L2(Lu(t)dt) a a X k(s 2 ) L2(Lu(Hdt)
Next, using Lemmas 3.1 and 5.2, we deduce that
1. HH“H Ia,l,UCD _ Iar‘l} CDD‘/W j—
|| H (0™ Pey) = L7 D, x L2(Lu(t)dt)
Following the same argument as above, we get
li ||H13H Iﬁﬂ/’q) Iﬁl/’C ﬁ‘l’ —
Kl—I:I;}o k(" Prcy) = Y L2(Lu(t)dt)
This ends the proof. [J
Further, since a, > 1, Theorem 4.1 and Lemma 5.3 yield the following result.
Lemma 5.4. We have
li {”HaMa ) _Ia#’CD“/lP L|H Mﬁ q) Iﬁ"bc ﬁ'ﬂb }
K50 UM oK ™ R 2 a7 1K Rxk ez uoar

=0.

Given a vector X € RX, we denote by X its transpose. Using (6) and the initial conditions (2), we get

§
L

BV DL = x() - Y, S pie) (19)
i=0
and
m=1 )
B D0 =90~ 3 L) @0
Let
m—=1 X;
Ik —,(ll’(f))Z = ZyQxy(), Ytel (21)
i=0
and
M Z W) | = Widky(t), Vtel, (22)
i=0
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where Zy, Wi € RX (the known vectors). Let {xx}, {yx} C L2(I, u(t) dt) be the sequences defined by
xk(t) = (HiaM g + Z) Dicy(t), Vel (23)
and
y(t) = (HsMp, o + W) Diy(t), Viel. (24)
Theorem 5.1. We have
Lim max {llxi = 2lli2g, o, 1y = Yz e} = 0.
Proof. Writing
llxx = xllr2q ey = ||(HK,0¢M%><K + ZIT<) Dk y — X”
and using (19), (21), we obtain

X;
ek = XMLzt uyr (HKaM%xK +Z )q)Kab 1Y D Z a4

L2(u(t)dt)

ml -1
_ &z

1!

i=l

IA

e @iy — 13 DV

L2(Lu(b)db) l Lttt

Hence, using Lemmas 3.1 and 5.4, we obtain by taking K — oo,
1}1—{?0 llxx = |2 piyan = O
Similarly, one has
Ill_fgo lyx = Yllr2qupan =0,
which completes the proof. 0O

From the previous result, (x,y) can be obtained as limits of the sequences {xx} and {yx} defined by
(23)-(24). However, before applying Theorem 5.1, we have to compute the unknown vectors Hk, and Hgg.
First, by Lemma 3.2 and Theorem 5.1, it holds

Lemma 5.5. Forall K € N, we have
(xx, yx) = (k(x), Tk (y)).

Further, for i = 1,2, let Qx; € RX be the (known) vectors satisfying

Tk(pi)(t) = Qg Pry(t), Yiel (25)

Using (1), we get
Tk (CDg'lpx) = Anllk(x) + Aol (y) + Hk(p1),
Ik (DY) = AnTIk(x) + ApTTk(y) + Hk(p2).

By (17)—(25) and Lemma 5.5, it holds

AHZIT< + Alzwljg + le,l’
A21Z£ + A22W£ + QEZ’

Hgq <1K><K Allexk) + Hgpg ( A12M1<><1<)
Hxgo (—A21 K><K) + HKﬁ (IKXK AZZMKxK)

which can be written as

{ Hg oA + HgpAr U

U,

26
HK,aﬂm + H](,ﬁf(zz ( )
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A = Ikxk — AuMyg, g

A = —AleixK,
Ay = —AnMi g,
An = gk — AnpM,

KxK”’
T T T
u = AHZK + A12WK + QK,l’

u = A21ZIY; + AZZWIE + QIE,Z

and Ixxk is the unit matrix. One can shows that (26) is equivalent to

A A
(HK,Oc/ HK,ﬁ) (ﬂil ﬂi;) = (ulr UZ) . (27)
Note that it is assumed that
A Axn
A Ax

is invertible. Otherwise, one may increase, iteratively, the number K by one, until the matrix becomes
invertible. Next, after solving (27), (x, y) can be approximated by (23)—(24), for K > 1.

6. Numerical experiments

6.1. The model example

As a model example, consider the coupled system of fractional differential equations

i _ 2 2 2 2—q a a+1
D) = 5= O+ e VO * T g WO (1 - GO - o))

B oy 6 6 ’ 1-p ;tel (28)
DYV =t 0+ s YO * e VO - (o) T -1- )
subject to the initial conditions
x(0) = y(0) =0, (29)
where (a, ) = (0.9,0.6) and I = [0, 1]. one can show easily that
(@), y' (1) = @91, Vtel, (30)

is the exact solution to (28)-(29).

Our aim in this section is to illustrate the effectiveness of the approach presented in Section 5 by
computing the numerical solution (x, y) to (28)—(29) using different types of polynomials.

The absolute error at any point t € [ will be denoted by

E(t) = [x*(t) = x(®)| + ly*(t) — y(D)I.

6.2. y-shifted polynomials

We will use two types of polynomials.
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6.2.1. 1-shifted polynomials of Legendre-type
The shifted Legendre polynomials are given by (see e.g. [18])
f e+,

Li(s) = (1+2j) Z:;(—l)f‘"(],_nws , Vselo,1].

Moreover, the set {L;}i»o is a Hilbertian basis of L([0,1]) (see e.g. [16]). The y-shifted polynomials of
Legendre-type S; 4, are given by (see [3])
Sip(t) = Li(y(t)),
forallt €[, i.e., S;y is defined by (7) with
N i-n N (i+n)!
an(i) = (=1)7"(1 + 2i) =i’

foralln =0,1,--- ,i. Hence, using (31), (12)—(13) withw =1, for v € {a, B} and j, 7 € {0,1,--- ,K - 1}, we get

(31)

(n+1)!
nl(t—=n)T'(r+n+1)

Agpy = (14203 (=1)""

and )
’ (£ + )

G(jn 1) = (1 +2))? ;(_1)j_€(]’ O +n+l+1)

6.2.2. y-shifted polynomials of Jacobi-type with parameters (0, —%)
The shifted Jacobi polynomials with parameters (0, —1) are given by (see e.g. [27])

0-1 _ . 1% i _q\i-n F(%+i+1’l) n
J (s)—(21+2) é( 1) e Vs e[0,1].

i

The set { ](O’_%)} is a Hilbertian basis of L?([0, 1], w(s) ds), where
i=0
w(s) = L Vse(0,1] (32)
vgl 4 .

We define the y-shifted polynomials of Jacobi-type with parameters (0, —3) by
Sio® =1 2@W) Viel,
i.e., Siy is given by (7) with
()T +i+n)
T +n)i—n)nt’

foralln =0,1,--- ,i. Further, letr € {o,f} and i,7 € {0,1,--- ,K—1}. For £ € {0,1,--- ,i}, we have

1 1
1
f s (s) ds = f §HHd g = R — (34)
0 0 r+n+f+5

Hence, using (33), (12)—(13) with w given by (32), and (34), we get

an(i) = (21‘ i %) (33)

T(t+n+3)
I'(n+ %)(T -n)T(r+n+1)

A 2 1% 1)

and
1 i 1
. ) 1\2 it T(z +{+ E)
Gli, 1) = (21 * E) 2.1 T+ )i- 0 +n+e+1)
=0 > .l 2
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6.3. Numerical computations via -shifted Legendre polynomials
In this subsection, the numerical approach presented in Section 5 will be applied for solving (28)—(29)

using y-shifted polynomials of Legendre-type.

6.3.1. The case (t) = @
We consider (28)—(29) with

o(t) = t(t; D' el (35)

where [ = [0, 1].
In Table 1, for K = 10, we give the numerical solution (x, ) to (28)—(29), as well as E(T) at different points
inI.

t 0,7 0) (), y0) E(D)

0.0 (0.0,0.0) (-7.4x10°, -1.3x10°°) 87 x 107
0.1 (0.003025,0.000166) (0.003027,0.000166) 2.0 %107
0.2 (0.014400,0.001728) (0.014397,0.001727) 4.0x10°6
0.3 (0.038025,0.007414) (0.038025,0.007414) 0

0.4 (0.078400,0.021952) (0.078401,0.021952) 1.0x 107
0.5 (0.140625,0.052734) (0.140624,0.052734) 1.0x 107
0.6 (0.230400,0.110592) (0.230399,0.110592) 1.0x 107
0.7 (0.354025,0.210645) (0.354027,0.210645) 2.0x 1076
0.8 (0.518400,0.373248) (0.518398,0.373248) 2.0x 107
0.9 (0.731025,0.625026) (0.731027,0.625026) 2.0x10°6
1.0 (1.0,1.0) (1.000010,0.999998) 12x 1075

Table 1: Exact and numerical solutions to (28)—(29) for K = 10 using -shifted polynomials of Legendre-type with i (t) =

6.3.2. The case (t) = tan(%t)
We consider (28)—(29) with

Y(t) = tan(

TC
—t], tel
4)

H(t+1)
2

(36)

In Table 2, for K = 10, we give the numerical solution (x, y) to (28)—(29), as well as E(T) at different points in

L

6.4. Numerical computations via \-shifted polynomials of Jacobi-type with parameters (0, -3

In this subsection, the numerical approach presented in Section 5 is applied for solving (28)—(29) using
y-shifted polynomials of Jacobi-type with parameters (0, —3).

6.4.1. The case (t) = @
We consider (28)—(29) with 1 given by (35). In Table 3, for K = 10, we give the numerical solution (x, )

to (28)—(29), as well as E(T) at different points in I.
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f &0,y 0) EORI0) E(®

0.0 (0.0, 0.0) (-74x1075,-1.3x10°°) 87 x10°°
0.1 (0.006193,0.000487) (0.006194,0.000487) 1.0x 1076
0.2 (0.025085,0.003973) (0.025083,0.003972) 3.0x10°°
0.3 (0.057637,0.013837) (0.057639,0.013837) 2.0x 107
0.4 (0.105573,0.034302) (0.105573,0.034303) 1.0x 1077
0.5 (0.171573,0.071067) (0.171571,0.071067) 2.0x10°
0.6 (0.259616,0.132281) (0.259616,0.132281) 0

0.7 (0.375525,0.230122) (0.375526,0.230122) 1.0x 1076
0.8 (0.527864,0.383516) (0.527862,0.383516) 2.0 %107
0.9 (0.729454,0.623012) (0.729456,0.623012) 2.0 %107
1.0 (1.0,1.0) (1.000010,0.999998) 12x 1075

Table 2: Exact and numerical solutions to (28))-(29) for K = 10 using 1-shifted polynomials of Legendre-type with ¢(f) = tan (%t)

t (), y'®) (x(), y(1)) E(t)

0.0 (0.0,0.0) (-1.6x107°,-9.6x107°) 1.12x107°
0.1 (0.003025,0.000166) (0.003029,0.000168) 6.00 x 107°
0.2 (0.014400,0.001728) (0.014399,0.001730) 3.00 x 107°
0.3 (0.038025,0.007414) (0.038032,0.007420) 1.30 x 1075
0.4 (0.078400,0.021952) (0.078410,0.021964) 220x107°
0.5 (0.140625,0.052734) (0.140634,0.052756) 3.10x 107>
0.6 (0.230400,0.110592) (0.230425,0.110635) 6.80 x 107°
0.7 (0.354025,0.210645) (0.354082,0.210741) 1.53 x 107*
0.8 (0.518400,0.373248) (0.518513,0.373466) 3.31x 107
0.9 (0.731025,0.625026) (0.731319,0.625557) 8.25x 1074
1.0 (1.0,1.0) (1.00077,1.00138) 2.15x 1073

Table 3: Exact and numerical solutions to (28)-(29) for K = 10 using y-shifted polynomials of Jacobi-type with parameters (0, — 1
(t+1)
and y(f) = 1

00025 FT
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0.00010
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(a) E(t) for (28)-(29) with y(f) = 11
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(b) E(t) for (28)~(29) with y(#) = tan (%t)

Figure 1: Comparison of absolute error E(t) using y-shifted polynomials of Legendre-type and -shifted polynomials of Jacobi-type
with parameters (0, —%) with (a, B, K) = (0.9, 0.6, 10) for the considered choices of ¢.

6.4.2. The case (t) = tan(%t)

We consider (28)—(29) with 1 given by (36). In Table 4, for K = 10, we give the numerical solution (x, )
to (28)—(29), as well as E(T) at different points in I.
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f &0,y 0) EORI0) E(®

0.0 (0.0, 0.0) (-1.59x107°,-9.6 X 10~7) 2.55x 107
0.1 (0.006193,0.000487) (0.006194,0.000489) 3.00 x 107
0.2 (0.025085,0.003973) (0.025088,0.003976) 6.00 x 107
03 (0.057637,0.013837) (0.057648,0.013846) 2.00 X 10~
0.4 (0.105573,0.034302) (0.105582,0.034318) 2.50 x 107
0.5 (0.171573,0.071067) (0.171585,0.071095) 4.00 x 10-°
0.6 (0.259616,0.132281) (0.259649,0.132334) 8.60 X 107
0.7 (0.375525,0.230122) (0.375587,0.230230) 1.70 x 1074
0.8 (0.527864,0.383516) (0.527983,0.383744) 347 x 1074
0.9 (0.729454,0.623012) (0.729746,0.623540) 8.20 x 1074
1.0 (1.0,1.0) (1.000770,1.001380) 2.15% 103

Table 4: Exact and numerical solutions to (28)~(29) for K = 10 using y-shifted polynomials of Jacobi-type with parameters (0, —%)
and Y(t) = tan(%t)

Figure (1a) shows a comparison of the obtained absolute error E(f) for (28)-(29) using 1-shifted poly-
nomials of Legendre-type and i-shifted polynomials of Jacobi-type with parameters (0,—3) in the case

Y(t) = @ Figure (1b) shows a comparison of the obtained absolute error E(t) for (28)—(29) using y-shifted
polynomials of Legendre-type and ¢-shifted polynomials of Jacobi-type with parameters (0, —3) in the case

P(t) = tan (4‘1nt).

The numerical tests presented in this section confirm the efficiency of the method.
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