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Abstract. In this paper, an alternative discrete probability model, namely the discrete skew logistic dis-
tribution, suitable for both asymmetric and symmetric count data is proposed. Some important properties
of the distribution along with the estimation of the parameters are discussed. A detailed Monte Carlo
simulation study is carried out to assess the performance of the maximum likelihood method and the
method of proportion for parameter estimation. Finally, the application of the proposed model is discussed
by considering two real-life datasets.

1. Introduction

Quite often, in the field of medical, sports, health, ecology, life testing experiments etc. researchers come
across situations where certain phenomenon or processes over continuous domain are measured over a
discrete support. For example, in some life testing experiments, there are instances where it is inconvenient
to measure characteristics, such as life length of a device, on a continuous scale and hence measured on
a discrete scale. Therefore, it is pertinent to construct discrete probability distributions to model such
characteristics.

Further, it is often of interest to the practitioner to analyse count data distributed over the integer
supportZ. Discrete distributions overZ are rare in literature with only limited choices available including
the famous Skellam distribution (Skellam [14]) and a few others, namely, the discrete normal (Roy [11]),
Discrete Laplace (Kozubowski and Inusah [9]), discrete logistic (Chakraborty and Chakravarty [4]) etc.
Such distributions have a natural application when one is interested to model the difference of counts
rather than the count itself. For example, the difference in goals scored by two opponent teams (Karlis and
Ntzoufras [8], the difference in assessment score in count scales by two experts, the difference in the count
and estimated count in a survey and other similar situations which can easily be conceived off.

Discrete distributions such as the discrete normal in Roy [11], discrete Laplace distribution in Kozubowski
and Inusah [9], discrete logistic models in Chakraborty and Chakravarty [4] are suitable for symmetric count
data, whereas only few distributions such as Skellam distribution, Skew Laplace discrete distribution are
available for both symmetric or asymmetric count data sets. Because of meagreness in distributions relevant
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to both asymmetric or symmetric count data, in this article, we explore and develop an alternative discrete
distribution suitable for count data. For a comprehensive review on techniques to generate new class of
discrete distributions see Chakraborty [3].

In this article, we discretize the recently introduced two-parameter skew logistic distribution, SL(κ, β),
introduced in Sastry and Bhati [13]. As the skew logistic distribution of Sastry and Bhati possesses many
properties in closed form, this motivates us to explore the properties and applications of its discretized
version. The rest of the article is structured as follows: we start with a brief introduction of the skew
logistic distribution of Sastry and Bhati [13] and introduce the new discrete counterpart of the skew logistic
distribution in section 2; distributional properties like quantile function, mean, median, variance, mode of
the distribution and its relation with other distributions are presented in section 3. Section 3 also discusses
an algorithm for generating the skew logistic random variables which will be later used in simulation
studies in section 4. In Section 4, methods of estimation are discussed. Finally, suitability and superiority
of the proposed model compared to the other existing models is presented in section 6.

2. Proposed two parameter discrete skew logistic distribution

Here we begin our discussion by briefly introducing the SL(κ, β) of Sastry and Bhati [13] before propos-
ing its discrete version.

2.1. Continuous skew logistic distribution
The probability density function (pdf) of SL(κ, β) with skew parameter κ > 0 and scale parameter β > 0

is given by

f (x;κ, β) =
2κ

1 + κ2


e
−

x
κβ

β
(
1+e

−
x
κβ

)2 if x < 0

e
−

xκ
β

β
(
1+e

−
xκ
β

)2 if x ≥ 0
(1)

Letting κ = 1, the model reduces to the standard logistic distribution (see Johnson et al. [7]), values for
κ < 1 lead to left-skewed logistic distribution whereas κ > 1 leads to right-skewed logistic distribution.
Corresponding cumulative distribution function (cdf) and survival function (sf) of SL(κ, β) are given
respectively as

F(x;κ, β) =


2κ2

(1+κ2)
1

1+e
−

x
κβ
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(
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−

1
2

)
if x ≥ 0

(2)

and

S(x;κ, β) =


1 − 2κ2

(1+κ2)
1

1+e
−

x
κβ

if x < 0

2
1+κ2

(
e
−

xκ
β

1+e
−

xκ
β

)
if x ≥ 0

, (3)

with this prior knowledge of SL(κ, β), we now discuss the construction of the proposed distribution.

2.2. New discrete skew logistic distribution
Given a continuous random variable (rv) X with survival function (sf) SX(.), discrete rv Y defined as

Y = bXc, where bXc is largest integer less or equal to X and its probability mass function (pmf) P(Y = y) of
Y is obtained as

P(Y = y) = SX(y) − SX(y + 1).
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The pmf of rv Y as defined may be viewed as a discrete concentration of pdf of X and retains the same
functional form of the sf as that of the continuous one. As a result, many characteristics remain unchanged.
Discretization of many well-known distributions is studied using this approach (for detail see Chakraborty
[3]). Hence, we re-parametrized the SL(κ, β) distribution given in (1), by assuming p = e−

κ
β and q = e−

1
κβ ,

obviously 0 < p < 1, 0 < q < 1 and p and q are related to κ and β as

κ =

√
ln p
ln q

and β =

√
1

ln p ln q
.

This leads us to the following definition of the proposed discrete skew logistic distribution.

Definition 1: A continuous rv X with sf SX(.) follows SL distribution then the rv Y = bXc follows the
Discrete skew logistic distribution with parameters p and q denoted as DSL(p, q) and its pmf P(Y = y) is
given by

P(Y = y) =


2 ln p
ln(pq)

(
q−(y+1)

1+q−(y+1) −
q−y

1+q−y

)
if y = ....,−2,−1

2 ln q
ln(pq)

(
py

1+py −
py+1

1+py+1

)
if y = 0, 1, 2, .....

(4)

where 0 < p < 1, 0 < q < 1. The cdf, sf and hf respectively given as

FY(y) =


2 ln p
ln(pq)

q−(y+1)

(1+q−(y+1)) if y = · · · ,−2,−1

1 − 2 ln q
ln(pq)

p(y+1)

(1+p(y+1)) if y = 0, 1, 2, · · ·
(5)

SY(y) =

1 − 2 ln p
ln(pq)

q−y

1+q−y if y = · · · ,−2,−1
2 ln q
ln(pq)

py

1+py if y = 0, 1, 2, · · ·
(6)

and

hY(y) =
P(Y = y)

SY(y)
=


2 ln p(1−q)

(1+qy+1)(ln(pq)+q−y ln(q/p)) if y = · · · ,−2,−1
1−p

1+py+1 if y = 0, 1, 2, · · ·
(7)

Remark: For p = q in (4), the model reduces to a symmetric distribution with integer support on (−∞,∞)
which was discussed in Chakraborty and Chakravarty [4]), for p > q the pmf will be right-skewed whereas
for p < q it will be left-skewed discrete skew logistic distribution, which can also be observed in Figure 1.
Beside skew parameters p and q, the location version ofDSL(p, q) can be obtained by introducing location
parameter µ and the resulting locationalDSL(p, q) distribution will be written as

P(Y = y) = P(Y = y; p, q, µ) =


2 ln p
ln(pq)

(
q−(y−µ+1)

1+q−(y−µ+1) −
q−(y−µ)

1+q−(y−µ)

)
if y = · · · , µ − 2, µ − 1

2 ln q
ln(pq)

(
py−µ

1+py−µ −
py−µ+1

1+py−µ+1

)
if y = µ, µ + 1, µ + 2, · · ·

(8)

Further, it can be noted that the mode of the location family ofDSL(µ, p, q) is either µ or µ−1 depending
on p > q or p < q, the proof of this result will be discussed in the coming section.
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Figure 1: Probability mass function ofDSL(p, q) distribution for several combinations of the parameter values.

3. Distributional Properties

In this section, we show the connection between DSL(p, q) and some other existing distributions and
study the distributional properties like quantile function, moments, and mode.

3.1. Relation with DLoG(p)
Chakraborty and Chakravarty [4] obtained a one parameter symmetric discrete logistic distribution (de-
noted as DLoG(p)) with support on Z by discretizing logistic distribution and its pmf given by

fY(y; p) = P(Y = y) =
(1 − p)py

(1 + py)(1 + py+1)
, y = 0,±1,±2 · · · . (9)

This distribution is symmetric in the sense that f−(Y+1)(y; p) = fY(y; p), y = 0,±1,±2 · · · with P(Y ≥ 0) =
P(Y ≤ −1) = 1/2. Clearly the pmf of truncated DLoG(p) on either y = 0, 1, · · · or on y = −1,−2, · · · is then
given by

2 fY(y; p) =
2(1 − p)py

(1 + py)(1 + py+1)
. (10)

Thus DSL(p, q) reduces to DLoG(p) when p = q. In the following result, we show that the DSL(p, q)
can be obtained as a mixture of two truncated DLoG distributions with proper mixing proportions.

Result 1: The DSL(p, q), is the mixture of truncated DLoG(p) over support y = 0, 1, · · · and DLoG(q)
distributions over support y = −1,−2, · · · with respective mixing proportions ln(q)/ ln(pq) and ln(p)/ ln(pq)
respectively. TheDSL(p, q) can therefore be thought of as being generated by

ln q
ln pq

2 fY(y; q)Iy≥0(y) +
ln p
ln pq

2 fY(y; q)Iy≤−1(y).

Denoting the mean of truncated DLoG(p) over support y = 0, 1, · · · by µ+(p) and that of truncated
DLoG(q) over support y = −1,−2, · · · by µ−(q) we can write

E(Y) =
ln q

ln(pq)
µ+(p) +

ln p
ln(pq)

µ−(q)

=
ln q

ln(pq)
µ+(p) −

ln p
ln(pq)

(1 + µ+(q)) (11)

It may be noted here that truncated DLoG(p) over support y = 0, 1, · · · is actually the generalized
geometric distribution (GGD)(2, q) of Goméz [6] discussed in the next section. ButGGD is defined over the
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support y = 0, 1, · · · while we have a truncated DLoG(p) is also available over support y = −1,−2, · · · . The
above formula for the mean can, therefore, be written in terms of the mean of GGD as

E(X) =
ln q

ln(pq)
µ+(2, p) −

ln p
ln(pq)

(1 + µ+(2, q)), (12)

where µ+(2, θ) is the mean of the GGD(2, θ) that is of truncated DLoG(θ) over the support y = 0, 1, · · · .

3.2. Relation with generalized Geometric(α, θ)
Goméz [6] obtained a two-parameter generalization of geometric distribution (denoted as (GGD)(2, q))

by utilizing the discretization technique to Marshall-Olkin exponential distribution. The pmf of (GGD)(2, q)
is given as

P(Y = y) =
αqy(1 − q)(

1 − ᾱqy+1) (1 − ᾱqy) y = 0, 1, · · · (13)

where α > 0, ᾱ = 1 − α and 0 < q < 1, and it reduces to geometric for α = 1.

Proposition 1: If Y ∼ DSL(p, q), then r.v. Y|Y ≥ 0 follows GGD(2, p).
Proof: The proof is straight forward by using the relation P(X = x|X ≥ 0) =

P(X=x)
P(X≥0) .

Proposition 2: If Y ∼ DSL(p, q) then r.v. Y|Y < 0 follows GGD(2, q) with support {· · · ,−2,−1}.

Proposition 3: If Y ∼ DSL(p, q), then r.v. Z = |Y| d
= wZ1 + (1 − w)Z2, where mixing proportion w =

ln p
ln pq ,

Z1 − 1 ∼ GGD(2, q) and Z2 ∼ GGD(2, p).

Proof: We know that, Z = |Y| =

−Y Y < 0
+Y Y ≥ 0

, hence the df of rv Z is given as

FZ(z) = P (Z ≤ z)
P(|Y| ≤ z) = P(−z ≤ Y ≤ z)

= P(−z ≤ Y ≤ −1) + P(0 ≤ Y ≤ z)

FZ(z) =
2 ln p
ln pq

(
1
2
−

qz

1 + qz

)
+

2 ln q
ln pq

(
1
2
−

pz+1

1 + pz+1

)
.

Therefore, P(Z = z) = FZ(z) − FZ(z − 1), hence

P(Z = z) =
2 ln p
ln pq

(
qz

1 + qz −
qz−1

1 + qz−1

)
+

2 ln q
ln pq

(
pz+1

1 + pz+1 −
pz

1 + pz

)
=

ln p
ln pq

(
2qz−1(1 − q)

(1 + qz)(1 + qz−1)

)
+

ln q
ln pq

(
2pz(1 − p)

(1 + pz+1)(1 + pz)

)
.

hence substituting w =
ln p
ln pq , we obtained the desired results.

In view of the proposition 3, we can write the following

E|Y| =
ln p

ln(pq)
+

ln p
ln(pq)

E(Z1 − 1) +
ln q

ln(pq)
E(Z2)

=
ln p

ln(pq)
+

ln p
ln(pq)

µ+(2, p) +
ln q

ln(pq)
µ+(2, q)

=
ln p

ln(pq)
(1 + µ+(2, p)) +

ln q
ln(pq)

µ+(2, q).
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It is known from Goméz [6] that the mean µ+(2, θ) of GGD(2, θ) tends to 0 as θ tends to 0. Therefore under
the assumption that ln p

ln(pq) and hence ln q
ln(pq) is finite for p, q or both very small we can state that

E|Y| →


ln p

ln(pq) +
ln q

ln(pq)µ
+(2, p) as q→ 0

ln p
ln(pq) +

ln p
ln(pq)µ

+(2, q) as p→ 0
ln p

ln(pq) as p, q→ 0

0.5 + µ+(2, p) as p→ q

, (14)

3.3. Quantile function

The quantile of order 0 < γ < 1, yγ, can be obtained by inverting the cdf (5). Then for γ ≥ 1 − 2 ln q
ln(pq)

p
1+p ,

the corresponding quantile is

yγ =
⌈

lnp

(
(1 − γ) ln(pq)

2 ln q − (1 − γ) ln(pq)

) ⌉
− 1, (15)

where dze represents the smallest integer greater than or equal to z; otherwise for γ < 1 − 2 ln q
ln(pq)

p
1+p , γ-th

quantile is

yγ =
⌈

lnq

(
2 ln p
γ ln pq

− 1
) ⌉
− 1. (16)

Usually, quantiles are used to simulate observations from a distribution. For which, we draw a random
number, say γ, from a standard uniform distribution, and the corresponding quantile yγ obtained by using
(15) or (16) is a random value from theDSLwith assigned parameters p and q.

The median (Med) ofDSL(p, q) obtained by substituting γ = 1
2 in the above two equations

Med =



⌈
lnp

 ln(pq)

ln( q3

p )

 ⌉ − 1 if q > p
1+p
3p−1

⌈
lnq

 ln( p3

q )

ln(pq)

 ⌉ − 1 if q ≤ p
1+p
3p−1

3.4. Moments

Theorem 1: If Y ∼ DSL(p, q), then

(i)
2 ln( p

q )

ln p ln q ln(2) − 1 ≤ E(Y) ≤
2 ln( p

q )

ln p ln q ln(2).

(ii) (ln p)3+(ln q)3

(ln pq)(ln p ln q)2
π2

3 −

(
2 ln( q

p )

ln p ln q ln(2)
)2

≤ V(Y) ≤ (ln p)3+(ln q)3

(ln pq)(ln p ln q)2
π2

3 −

(
2 ln( q

p )

ln p ln q ln(2)
)2

+ 1
4 .

Proof: For skew logistic distribution with pdf in (1), it is known that

E(X) =
2 ln( p

q )

ln p ln q
ln 2 and V(X) =

(ln p)3 + (ln q)3

(ln pq)(ln p ln q)2

π2

3
−

 2 ln( q
p )

ln p ln q
ln(2)


2

Now the discretized version Y of X that is DSL(p, q) is defined as Y = bXc, where p = e−
κ
β and q = e−

1
κβ .

Further, it can be assumed that X = Y + U, where U is the fractional part of X which is chopped off from X
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to obtain Y. then

E(Y) = E(X) − E(U) =
2 ln( p

q )

ln p ln q
ln(2) − E(U)

and

V(Y) = V(X) +V(U)

V(Y) =
(ln p)3 + (ln q)3

(ln pq)(ln p ln q)2

π2

3
−

 2 ln( q
p )

ln p ln q
ln(2)


2

+V(U).

But for a continuous r.v. U with support (0, 1), 0 < E(U) < 1 and 0 ≤ V(U) ≤ 1
4 , (Popoviciu [10]). Hence the

result follows.

3.5. Mode
Theorem 2: DSL(p, q) has an unique mode at 0 if p > q, and at -1, if p < q and is bimodal with modes at -1,
0 if p = q.
Proof: Let us define ∆ fY(y) as

∆ fY(y) = f (y + 1) − f (y)

=


2 ln p
ln(pq)

(
q−y

1+q−y −
2q−(y+1)

1+q−(y+1) +
q−(y+2)

1+q−(y+2)

)
if y = · · · ,−2,−1

2 ln q
ln(pq)

(
2py+1

1+py+1 −
py+2

1+py+2 −
py

1+py

)
if y = 0, 1, 2, · · ·

It can be further observed that

∆ fY(y)

> 0 for y < 0
< 0 for y ≥ 0

implies f (y) is monotonically increasing for y < 0 and decreasing for y ≥ 0. Hence the only modal value
for the pmf are -1 and/or 0. 0 is the unique mode iff

f (0) > f (−1)

⇒
log q
log pq

1 − p
1 + p

>
log p
log pq

1 − q
1 + q

, (17)

since, 0 < p < 1 and 0 < q < 1, (17) holds iff

(ln q)
(

1 + q
1 − q

)
< (ln p)

(
1 + p
1 − p

)
.

Similarly, -1 will be the unique mode iff

f (0) < f (−1)

⇒
log q
log pq

1 − p
1 + p

<
log p
log pq

1 − q
1 + q

, (18)

(ln q)
(

1 + q
1 − q

)
> (ln p)

(
1 + p
1 − p

)
.

Consider, the function 1(ξ) = ln ξ
(

1+ξ
1−ξ

)
for ξ ∈ (0, 1), with derivative 1′(ξ) = 1−ξ2+2ξ ln ξ

ξ(1−ξ)2 =
h(ξ)

ξ(1−ξ)2 , in order to
prove 1(ξ) is increasing it is sufficient to prove 1′(ξ) or h(ξ) is positive in (0, 1). Further, we have h(0) = 1,
h(1) = 0 and the h′(ξ) = 2(1 − ξ + log ξ) < 0 for ξ ∈ (0, 1). Hence the function h(ξ) is decreasing function
decreasing to zero from 1 implies 1′(ξ) > 0 means increasing function. Hence, it follows that 0(−1) is the
unique mode if p > (<)q, and if p = q the pmf is bimodal with modes at 0 and at -1.
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4. Methods of Estimation

In this section we consider two methods of estimation of parameters p and q namely (i) Method of
proportion and zero’s (ii) Maximum likelihood method.

4.1. Method of Proportion
From (4), (5) and (6), we can obtain following:

p0 = P(Y = 0) =
(1 − p) ln q
(1 + p) ln pq

, p+ = P(Y ≥ 0) =
ln p
ln pq

and p− = P(Y ≤ −1) =
ln q

ln pq
(19)

and solving these equations, we obtain

p =
p+
− p0

p+ + p0
and q =

(
p+
− p0

p+ + p0

)p+/p−

.

Since a straightforward estimate of p0 is the proportion of sample values equal to zero to the total sample

size, denote it with r0 =
n∑

i=1
I{y=0}/n, analogously an estimate for p− and p+ are the proportion of sample

values less and greater than or equal to zero, i.e. r− =
n∑

i=1
I{y<0}/n, r+ =

n∑
i=1
I{y≥0}/n respectively. Hence the

estimates of p and q are respectively given as

p̃ =
r+
− r0

r+ + r0
and q̃ =

(
r+
− r0

r+ + r0

)r+/r−

. (20)

As it is well know that the r0, r− and r+ are unbiased and consistent estimators of p0, p− and p+ respectively,
thus these can be used as an initial guess for searching global maxima of log-likelihood surface. It should
be noted that this method fails to provide estimate of parameters if the sample contains no zero’s or have
all negative observations. Hence, in such situation, we recommend to use method of maximum likelihood
estimation.

4.2. Maximum Likelihood estimation
The log-likelihood function of the discrete skew logistic model based on a iid sample Y1,Y2, · · · ,Yn is

l = n ln 2 − n ln(ln pq) + s− ln(ln p) + s+ ln(ln q)

+

n∑
i=1

(
ln

(
q−(yi+1)

1 + q−(yi+1)
−

q−yi

1 + q−yi

)
· I{yi<0}

)
+

n∑
i=1

(
ln

(
pyi

1 + pyi
−

pyi+1

1 + pyi+1

)
· I{yi≥0}

)
where s− =

∑n
i=1 Iyi<0 and s+ =

∑n
i=1 Iyi≥0 express the number of negative and non-negative values in the

sample, respectively.
Further differentiating the log-likelihood function partially w.r.t p and q, we get

∂l
∂q

= −
n

q ln(pq)
+

s+

q ln q
+

n∑
i=1

(
yi + yiq2yi+2

− 2qyi+1
− (yi + 1)q2yi+1

− q(yi + 1)
(1 − q)q

(
qyi + 1

) (
qyi+1 + 1

) · I{yi<0}

)
(21)

∂l
∂p

= −
n

p ln(pq)
+

s−

p ln p
+

n∑
i=1

(
yi + yip2yi+2

− 2pyi+1
− (yi + 1)p2yi+1

− p(yi + 1)
(1 − p)p

(
pyi + 1

) (
pyi+1 + 1

) · I{yi≥0}

)
. (22)

The solution to above equations provides the maximum likelihood estimates(MLEs) of p and q. It is quite
clear that no close analytical expression can be derived for the MLEs, and they have to be computed with
some numerical procedure. We use the maxlik() function available in the maxLik package in R environment
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to carry out this task.
Further differentiating (12) and (13), we have

∂2l
∂q2 = n

(
1

q2 ln2(pq)
+

1
q2 ln(pq)

)
− s+

(
1

q2 ln(q)2 +
1

(q2 ln(q)

)
+

n∑
i=1

 yi

q2 +
1 − 2q

q2(1 − q)2 +
(yi + 1)2

q2 (
qyi+1 + 1

)2 −
(yi + 1)(yi + 2)
q2 (

qyi+1 + 1
) +

y2
i

q2 (
qyi + 1

)2 −
(yi + 1)yi

qy2
i

(
qyi + 1

)  I{yi<0}

 ,
∂2l
∂p2 = n

(
1

p2 ln2(pq)
+

1
p2 ln(pq)

)
− s−

(
1

p2 ln(p)2 +
1

p2 ln(p)

)
+

n∑
i=1

 yi

p2 +
1 − 2p

p2(p − 1)2 +
(yi + 1)2

p2 (
pyi+1 + 1

)2 −
(yi + 1)(yi + 2)
p2 (

pyi+1 + 1
) +

y2
i

p2 (
pyi + 1

)2 −
(yi + 1)yi

p2 (
pyi + 1

)  I{yi≥0}

 ,
∂2l
∂p∂q

=
n

pq(log(pq))2 .

Remembering that E(Iy≥0) = P[Y ≥ 0] =
ln q

ln(pq) and E(Iy≤0) = P[Y < 0] =
ln p

ln(pq) , we can compute the
elements of information matrix I(p, q) . If the true values of p and q are not available, one can plug in p̂ML
and q̂ML for p and q respectively and the naı̈ve large-sample confidence intervals at the nominal level (1−α)

can be separately provided for q and p respectively as q̂ML ± z(1− α2 )

√
Î−1
(n)11, and p̂ML ± z(1− α2 )

√
Î−1
(n)22, where z is

quantile of standard normal variate.

5. Simulation study

In this section we employ Monte Carlo simulations with 1000 repetition to assess the performance of
the estimation methods. Simulation study consisting of the following steps is carried out for different (p, q),
namely for each combination of p = 0.25, 0.50, 0.75 and q = 0.25, 0.50, 0.75 and the values of sample size
are n = 25, 50, 75 and 100. We obtained the point estimate using method of Maximum Likelihood (ML)
and Method of Proportion(MP) as discussed previously. The sample for each simulation run is generated
using the procedure discussed in section 3.3. The estimation methods have been compared through bias,
mean square error (MSE) and the average width (aw) of the obtained estimates over all 1000 samples. For
these, the bias and mean square error (MSE) and the proportion of 95% confidence interval covering the
true value of the parameter known as Coverage probability (CP), defined respectively as

bias(Θ̂) =
1
n

n∑
i=1

(Θ̂i −Θ0), mse(Θ̂) =
1
n

n∑
i=1

(Θ̂i −Θ0)2

and

CP(Θ̂) =
1
n

n∑
i=1

I(Θ̂i − 1.96SE < Θ0 < Θ̂i + 1.96SE),

where SE represent the standard error of Θ. The simulation results are shown in Table 1 and 2. We can
observe that the value of average bias obtained from ML estimate of (p, q) is negative for each n, whereas
the bias of MP estimators for p and q are positive. But for both parameters, for all cases, average bias goes
to zero as sample size n increases. Further, we can observe that the mean square error of ML and MP
estimators decreases as sample size n increases. Moreover, the average width of ML estimator decreases
with increase in the sample size n. The simulation study also gives an evidence that the CP of ML estimator
of p increases up to 0.95 more slowly than the CP of ML estimator of q.
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6. Applications

Here the applicability of the proposedDSL distribution is discussed for two real datasets. The descrip-
tion and the source of both the dataset are as follows:

i. The frequency data in Table 3 is taken from Chesneau and Kachour [5] is the difference (y) between
post perception of the teaching reputation measured (based on a seven-point Likert-scale) one year
after the entrance test) and the prior expectation measured at the entrance test among the candidates
who have passed the entrance test to IDRAC Business School.

Table 3: Dataset 1
y -2 -1 0 1 2 3
f requency 10 20 115 60 24 11

ii. The data set in Table 4 represents the differences in assessment of number of palpable lymph nodes
among sexual contacts of AIDS or an AIDS-related condition (ARC) patients by two physicians on 32
randomly selected participants, see Rosner [12].

Table 4: Dataset 2
y -4 -3 -2 -1 0 1 2 3 4 5 6 7
f requency 0 1 2 1 3 3 1 10 4 3 2 2

Table 5: Descriptive Statistics of both the data sets.
Min. Q1 Median Mean Q3 Max. st. dev. Skewness Kurtosis

Data set 1 -2 0 0 0.421 1 3 1.067 0.299 3.4626
Data set 2 -3 1 3 2.625 4 7 2.562 -0.381 2.5921

Table 5 gives the statistical description of both the data sets and it is clear that coefficient of skewness for
data set 1 is positive and for data set 2 is negative. Thus, for comparative performance appraisal, we consider
four other discrete distributions over the integer support Z suitable for symmetric and asymmetric count
data, namely, a new discrete Logistic (DLoG(p, µ)), discrete skew Laplace (DSLap(p, q)), discrete Normal
(DNr(µ, σ)) and Skellam(p, q) distribution.

(i) DLoG(p, µ)(Chakraborty and Chakravarty [4])

P(Y = y) =
(1 − p)py−µ

(1 + py−µ)(1 + py−µ+1)

where y ∈ Z, −∞ < µ < ∞,0 < p < 1.
(ii) DSLap(p, q)(Barbiero [2])

P(Y = y) =
1

ln(pq)

ln(p)(q−(y+1)(1 − q)) if y < 0
ln(q)(py(1 − p)) if y ≥ 0

where 0 < p < 1, 0 < q < 1.
(iii) DNr(µ, σ) (Roy [11])

P(Y = y) = Φ

(
y + 1 − µ

σ

)
−Φ

( y − µ
σ

)
y = 0,±1,±2, ....∞;−∞ < µ < ∞, σ > 0, and Φ(y) is the cdf of Standard Normal distribution.
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(iv) Skellam(p, q) (Skellam [14])

P(Y = y) = e−(p+q)

(
p
q

)y/2

I|y|
(
2
√

pq
)
.

where y = 0,±1,±2, · · · , p, q > 0, and Ir(x) is the modified Bessel function or order r (see Abramowitz
and Stegun [1], p. 375).

We use maximum likelihood estimates of the parameters, that were obtained numerically by searching
for global maxima of log-likelihood surface using method of proportion estimates as initial values. The
findings of distribution fit for both datasets are presented in Table 6-7. For model assessment and compar-
ison, we consider three criteria namely: the log-likelihood (LL), Akaike Information criteria(AIC) defined
as −2·LL+2k, and the Hannan–Quinn information-criterion (HQIC) defined as −2·LL+2(k + 1) log(log(n)),
where k is the number of estimated parameters and n refers to the sample size. It can be further observed
that theDSL distribution has maximum LL and minimum AIC and HQIC values for data set 1 and while
for data set 2 the proposed distribution gives equally good fit when compared with Skellam distribution.
With these illustrations, we conclude thatDSL distribution can be considered as a suitable alternative for
asymmetric count model having integer Z as support.

Table 6: Data fitting for dataset 1
parameter(mse) DSL(µ, p, q) DLoG(µ, p) DSLap(p, q) DNr(µ, σ) Skellam(p, q)

µ̂ 0.731 (0.086) 0.882(0.066) 0.9212(0.068) -
p̂ 0.215 (0.023) 0.168(0.017) 0.446(0.026) - 0.742(0.068)
q̂ 0.088 (0.019) - 0.059(0.019) - 0.321(0.054)
σ̂ - - 1.026(0.050) -

LL -343.281 -353.156 -365.861 -355.818 -347.341
AIC 692.562 710.312 735.722 715.636 698.681

HQIC 700.172 716.519 741.929 721.843 704.887

Table 7: Data fitting for dataset 2
parameter(mse) DSL(µ, p, q) DLoG(µ, p) DSLap(p, q) DNr(µ, σ) Skellam(p, q)

µ̂ 3.045(0.549) 3.258(0.446) 3.125(0.444) -
p̂ 0.531(0.062) 0.498(0.052) 0.782(0.036) - 4.757(0.893)
q̂ 0.440(0.079) - 0.345(0.118) - 2.132(0.842)
σ̂ - - 2.505(0.317) -

LL -74.963 -75.458 -83.735 -75.004 -75.432
AIC 155.925 154.915 171.471 154.009 154.864

HQIC 150.457 151.270 167.826 150.365 151.220

7. Conclusions

A new discrete distribution defined on Z suitable for symmetric/asymmetric count data is proposed
here. Some of its important probabilistic properties and its relation with other distribution(s) were also
discussed. Monte Carlo simulations were carried out to illustrate the behaviour of the estimation methods.
From the results of the data fitting examples considered here, the proposed discrete distribution is suitable
and preferred than other count distributions over Z.
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