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Abstract. The authors discover a new interesting generalized identity concerning differentiable functions
via k—fractional integrals. By using the obtained identity as an auxiliary result, some new estimates with
respect to Hermite-Hadamard—Fejér type inequalities via k—fractional integrals for a new class of function
involving Raina’s function, the so-called generalized (h;, hi;)-nonconvex are presented. These inequalities

have some connections with known integral inequalities. Also, some new special cases are provided as
well from main results.

1. Introduction

Definition 1.1. [13] A function f : I € R — R is said to be convex on I, if
flap+ (1 =) < 1f ) + (1= 1))
holds for every p,v € Iand 1 € [0, 1].

The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities in
the literature for convex functions.

Theorem 1.2. Let f : | € R — R be a convex function on I and €1,€, € 1 with {1 < €. Then the following
inequality holds:

L+6 1 t f(&) + f(£)
f( . )Sé,z_flf&f(x)dxs—z .

1)
This inequality (1) is also known as trapezium inequality.
The trapezium type inequality has remained an area of great interest due to its wide applications in the field

of mathematical analysis. For other recent results which generalize, improve and extend the inequality (1)
through various classes of convex functions interested readers are referred to [3]-[8],[10],[16]-[18],[20]-[23].

The most well-known inequalities related to the integral mean of a convex function f are the Hermite—
Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard—Fejér inequalities.
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Definition 1.3. [11] A function g : [£1,6,] € R — R is said to be symmetric with respect to 20 52, if g(x) =

g(t1 + €2 — x) holds for all x € [€1,£,].

2
Example 1.4. Assume that g1,9, : [€1,£&] CR — R, g1(x) = cforc € R, ga(x) = (x - 51;—52) , then g1, go are

, , , tH+ ¢
symmetric functions with respect to 4=

In [9], Fejér established the following Hermite-Hadamard-Fejér inequality which is the weighted general-
ization of the Hermite-Hadamard inequality (1).

Theorem 1.5. [9] Let f : [{1, £2] € R — R be a convex function. Then the following inequality holds:
f%)f%‘f

4

b+ 6\ [ (2
f(%) f gwiax< | feogedx < J(x)dx, @)
0 4

+ &

t
where g : [€1, €] — R is non-negative, integrable and symmetric to !

In recent years, various generalizations, extensions and variants of such inequalities have been obtained.
For other recent results which generalize, improve and extend the inequality (2) interested readers are
referred to [1],[2],[9]-[12],[14],[15].

In [19], Raina introduced a class of functions defined formally by

0) o(1),.. o(k) 2
(@) = @= Z T ©)
where p, A > 0,|z| < Rand ¢ = (6(0), ..., 0(k), .. ) is a bounded sequence of positive real numbers. Note that,
if we take in 3) p = 1,A = 0 and o(k) = (a();(ﬁ fork =0,1,2,..., where ,  and y are parameters which
can take arbitrary real or complex values (provided that y # 0,-1,-2,...), and the symbol (a); denote the
quantity

Fa+k)

I'(a)

and restrict its domain to |z| < 1 (with z € C), then we have the classical hypergeometric function, that is

@) = =a@+1)...a+k-1), k=0,1,2,...,

MM@kk
k()

F i@ =F,p;y;2) =
k=0

Also,ifo =(1,1,...) with p = &, (Re(a) > 0), A = 1 and restricting its domain to z € C in (3) then we have the
classical Mittag—Leffler function

+00
1
E = — 7k
2(?) kZa T+ ak)
Now we are able to define a new class of function involving Raina’s function.

Definition 1.6. Suppose hy,h; : [0,1] — [0, +00) and p1, p2, A1, A2 > 0, where 61 = (01(0),...,01(k),...), 02 =
(0200, ..., 02(k), ...) are bounded sequences of positive real numbers. If function f : I — IR satisfies the following
inequality

fl+ 1T (G = 0) < O f(E) + OF

(f(&) = f(6r), (4)



A. Kashuri, Th. M. Rassias / Filomat 34:8 (2020), 2549-2558 2551

for all 1 € [0,1] and &y, 6, € I, where ?pallm (6 —€1) > 0, 77;2A2(f([2) — f(1)) > 0, then f is called generalized
(h1, hy)—nonconvex. Taking hi(1) = 1 — 1, hy(1) = 1, where 7—7%1 (b —€1) = &, — €1 > 0 and 7—;‘22’/‘2(]‘(52) - f(6)) =
f(&) = f(€1) > 0 in our definition, then we obtain definition 1.1.

Remark 1.7. Let us discuss some special cases in definition 1.6 as follows:

(1) Taking h1(1) = h(1 — 1) and hy(1) = h(1), then we get generalized (h(1 — 1), h(1))—nonconvex functions.

(II) Taking h1(1) = (1 —1)° and hy(1) = ©° for s € (0, 1], then we get generalized ((1 — 1)°, 1*)—nonconvex functions.
(III) Taking h1(1) = (1 —1)=° and hy(1) = 17° for s € (0, 1], then we get generalized ((1 —1)™°,1%)—nonconvex functions.
(IV) Taking h1(1) = ha(1) = 1(1 — 1), then we get generalized (1(1 — 1),1(1 — 1))-nonconvex functions.

At gy = — Y M
2V 21— 2V 2T
It is worth to mention here that to the best of our knowledge all the special cases discussed above are new
in the literature.

(V) Taking hy(1) =

, then we get generalized ( )—nonconvex functions.

Motivated by the above literatures, the main objective of this paper is to establish in Section 2, some new
Hermite-Hadamard-Fejér type inequalities via k—fractional integrals associated with generalized (h1, h)-
nonconvex functions. It is pointed out that some new special cases will be deduced from main results. Also
we will see that these inequalities have some connections with known integral inequalities. In Section 3, a
briefly conclusion will be given as well.

2. Main results

Throughout this section the following notation is used:
O=[b,b+ Fo G- t)], where Fo (= 0) > 0.
For establishing our main results we need to prove the following lemma.

Lemma 2.1. Let g: O C R — R be a continuous function. Assume that f : O — Ris a differentiable function on
O° (the interior of O) such that f € L(O). Then for a, k > 0, the following equality for k—fractional integrals holds:

T (6=0) i
[ f; g(s)ds) [fen+fla+77, (6 -a)]

LT, (=b) (- £-1
| ([ o) sos0m

a1

(T (G=6) [ paATol (G=6) ;
f [ f g (S)ds] 9() f ()
o :
1]%

0 +(F;§T11,/\1 (la=t) t % b +5L;t]11r/‘1 (-6) b +‘f;]11r"1 (&=t)
_ fg ( f[ g(s)ds) F )i - f( [ f g(s)ds) £, (5)

We denote

> R

| R

a
k

L (=) [ ;i OFFl (=) (- ~0+FL L (G=t)
Tk, &) = f ( f g(s)ds) £/()di f ( f g(s)ds] f@d.  (6)
§ [1 €1 fl 1

a
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Proof. Integrating by parts (6), we get

a

G+F,1y (b=6) g

. : 1/ a (0TG-t i1
T}ﬁ’g(&,{’z) = ( f g(s)ds) f(@ T f ( f g(s)ds) g() f()d
141 4 O 0
0+F, ’11//\1 (b-t1) ¥ b +7:;1,).1(€2—€1) a [0 +7, ’11/\1 (6=t1) €1+¢P"11/ 3, (=0 §1
- f g(s)ds | fQ) % ff f gs)ds| g f()dr
! f1 1 1

a7, (G-b) 3
= ( f[ g(s)ds] [fen+f(a+70, G -0)]

o €1+¢:11/A1 (&=6) ! . a (0 +¢:11//\1 (ba=t1) 4 1+(’t:11/A1 (b—t1) 51
-z f f ge)ds)  g)f @ -+ f f ge)ds| g f@)du
k 51 51 {71 1
The proof of Lemma 2.1 is completed. [

Remark 2.2. For 7":11}\1 (€2 = 1) = € — {1, where v = £, we get ([8], Lemma 2.1).

Using Lemma 2.1, we now state the following theorems for the corresponding version for power of first
derivative.

Theorem 2.3. Let hy,hy : [0,1] — [0, +o0) and g : O — R are continuous functions. Assume that f : O —
(0, +00) be a differentiable function on O° such that f',g € L(K). If f'1 is generalized (h1, hy)—nonconvex function,
where g > 1, p™ + g7 = 1 and ||glle = sup,.,, 19(s)l, then for a, k > 0, the following inequality holds:

2AglE[F, - )]
Illoo 1A 02 1

plpx
T+1

1
YT @) +[F22, () = (FE]a0), ?)

ok
Tf/g(£1/€2)| <

where

1
I(hi(2) = fo hi()d, Vi=1,2.

Proof. From Lemma 2.1, generalized (h1, h;)-nonconvexity of /9, Holder inequality, properties of the mod-
ulus, the fact that g(s) < ||gll<, ¥'s € O and changing the variable, we have

. (AT, (L=0) | 3 0 (Gm0) | raAT (=)
@ o)< [ |RCENCEE | 6)ds
§ €1 51 51 1

1
H4F (G-0) OV (o G-t i
| i ( | (f’(z))qdz]
f] [1
1

BT (6= T (o et g

+f di (f (f’(z))‘hiz)
b t

L+F 1 (6=6)
f g(s)ds
1
1

1
R m?p“l{ 3, (=) ) q fl*ﬁ?ﬂh (6=01) w )
<|glls % (f' (1))'da (t—0)Fdi
f] El

k

|f @)ld:

1

g(s)ds
4

IA
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51+‘7’-;1 2y (L2=6) v z
+(j; (fl-f-?"pll,/\l(fz—fl)—l)kdl] }

2||g||m[7:01,\ G-

( f (F&r+F7, (- @) dz)

JE+1
AL [ -] %
< : ( f [(F @)y + |72, (F (&) - (f’(&))q)]hz(l)]dl)
/4 l% +1 0

2Agl[F @ -]

JE @I + [T, () = (FE@M]1ka0).

+1

=
~[3

The proof of Theorem 2.3 is completed. []

Remark 2.4. In Theorem 2.3 for hy(1) = 1, ha(1) = 1—1, if we choose 7:;1,/\1 (lr—11) = €y —ty, where 7:;22,)\2((]"(&))‘7 -
(f'(G)T) = (f' (€))7 = (f'(61))7, then

(1) If we put ¢ = v, we get ([8], Theorem 2.5).
(2) Ifwe put ¢ =v =1, we obtain ([7], Corollary 3).
We point out some special cases of Theorem 2.3.

Corollary 2.5. In Theorem 2.3 for p = q = 2, we have

2gIE[F (G- )]

V241

Corollary 2.6. In Theorem 2.3 for g(s) = 1, we get

Tk, 0)] < JEERIm@) + [ (F(E)P — ()1,

T4, )|
f@+fa+F@-0)  nasb .,
= l 5 P [9,;11; o {,l)] [I kf (51 + Tpl o (& - 51)) + I(flk’rT:ll,Al(52_[1))_f(€1)]

[ p1, /\1( 2= gl) o
< \/(f (EPLn ) + [F7 (@) = (i),

plpa
T +1

where I“ f()and I“ ¥ £() are denoted, respectively, the left and right k-fractional integrals.

Corollary 2.7. In Theorem 2.3 for hy(1) = h(1 —1) and hy(1) = h(1), we obtain

20gIL[ 77, (6 - )]

T, )| < \/(f @OV = 1) + [ T2, (F ()1 = (F @) |1).

P[P
k+1
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Corollary 2.8. In Corollary 2.7 for hi(1) = (1 —1)° and hy(1) = *, we have

29l [F7, -]
P \/(f Q)+ [F2 (@) — (Fem]:

T k(51,52)| \/7«/57

Corollary 2.9. In Corollary 2.7 for hi(1) = (1 —1)°

and hy(1) = 175, we get

a 241
gL |7, (- )]
G \/(f O+ [F2, (F @y — (FEem].

Tk, )] < \/7

Corollary 2.10. In Theorem 2.3 for hy(1) = hy(2)

=1(1 — 1), we obtain

k

20glI&[ 77, (6 -

TSN, )| <
fg | 6 pl—pTa 1
1- and hy(1) = Vi , we have
V1

Corollary 2.11. In Corollary 2.7 for h1(1) =
ry Yy 2.7 f o W

241
\/(f (Y + [F22 ()P~ (FE)m)].

i gl (7o, - 6]
o4, ) < z\f \/(f ()Y + [T (F @) = (f ],

v [P
T +1

Theorem 2.12. Let hy,hy : [0,1] — [0, +00) and g : O — R are continuous functions. Assume that f : O —
(0, +00) be a differentiable function on O° such that f’,g € L(K). If f'1 is generalized (hi, hy)-nonconvex function,
where g > 1 and ||glleo = sup,., |9(s)l, then for a, k > 0, the following inequality holds:
a 4+1
Igls [, 62 = &)

(g+1)

x{(/(f'(mwF(hl(z);a, R+ [F2 (F(@) = (F (@) ]|Fa0); o, k)

ok
Tk (0, 0)] <

PG s a k) + [F22, (£ - (F |Gy, k)},

where

1 1
F(hi(1); o, k) = fo 1 hi)d,  GhiG); a k) = fo (1-0) h()d, Yi=1,2.

Proof. From Lemma 2.1, generalized (h;, h;)-nonconvexity of f7, the well-known power mean inequality,
properties of the modulus, the fact that g(s) < ||gllw, Vs € O and changing the variable, we have

€1+Tp1 N el+¢p L, (=) €1+T:11,A1(€szl) %
T, £)] < f f g(s)ds If (0)ldz + f f g(s)ds| |f @)
€1 51 1

(L=t1)
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G+F (=) £\ a+F1, (=) : %
< f di f f g(s)ds
4 81 O
_1
€1+;t;’11//\1([2—(1) €1+gr:11,/\1((2—€1) a 1-3 0 +T:11/,\1("2‘€1)
+ f f g(s)ds| di f
2 1 8l

a 241
. gls] 75 (2 = )]
- 1

(3+1)7
1 i
L tnris-ora] o [ aso-or])

) lglE[7, (6 - m]%”
(8+1)7

1
x{[ fo (@)@ + [?;;;\Z((f'(fz))q—(f'(f1))q)]hz(l)]dl]

!J(S)ds (f ’(1))%]

(AT, (=)
f g(s)ds
1

a
k

(f'(l))qdl]

1

1 i
+ fo (1= F[(F (@) + [F) ( (f’(gz))q—(f’(fl))q)]hz(l)]dl]}

gl - o]

(% + 1)17%

x{(/(f’(&))qF(hl(z);a, R+ [F2 (F(@) = (F (@) ]|Fa0); o, k)

PG s a k) + [F22, (F(@) - (]G, k)}.

The proof of Theorem 2.12 is completed. [J

We point out some special cases of Theorem 2.12.

Corollary 2.13. In Theorem 2.12 for q = 1, we have

o, )| < N[ (6 - )]
fg | = il p1, AN 2 1

{f ()(FIn@); oK) + Gl ;@ k) + [F2, (F (62) = f/(@))|(Flha); @, k) + Glha(a); a, k))}.

Corollary 2.14. In Theorem 2.12 for g(s) = 1, we get

7o @ -e)

(2+1)"

T‘fx'k(fl, 52)| <




A. Kashuri, Th. M. Rassias / Filomat 34:8 (2020), 2549-2558

x{(/(f’(&))qF(hl(z);a, B+ [F72, (P (@) = (F (@) |Fa(); o )

PG a k) + [F22, (F(E@) - (F(EN]|Ghaw);a, k)}.

Corollary 2.15. In Theorem 2.12 for hy(1) = h(1 — 1) and hy(1) = h(1), we obtain

WlE[7e - )]
(g+1)7

X{(/(f’({fl))‘?F(h(l =i k) + [F2, (F (@) = (F ()| Fht); a, k)

ok
Tk, )] <

3P ENGR = ;0,0 +[F22, ()T = (F(E)N]GUw)a, k)}.

Corollary 2.16. In Corollary 2.15 for hi(1) = (1 —1)° and hy(1) = *, we have

WlE[F - )]

(s +1)

x{</<f'(fl>>‘fﬁ(5”’%”) e -on)( )

T?:§(€1/€2)| <

\/(f a»q( a”) ["F;;Az((f’(é’z))q—(f’(fl))q)]ﬁ(ﬁL%+1)}-

Corollary 2.17. In Corollary 2.15 for hi(1) = (1 —1)™° and hy(1) = 17°, we get

241
“g”oo 3 . ({2 - fl) :
T}“';((fl,fz)| < [ Puts ]

(£+1)

{\/(f (@B (15,5 +1) + [F2, (P (@) = (f m))q)]( S)

\/(f (=)@ - cemlp(i-s g +1))

Corollary 2.18. In Theorem 2.12 for hy(1) = hy(1) = 1(1 — 1), we obtain

20glI&[ 77 (6 -

Ta k(fl fz)’

(#+1)7 ’\/qﬁ(

\/(f () + [T (@) = (FEnm)]-

2556
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V1—1 Vi
and hy(1) = ———, we have
241 ’ 2V1 -1

Corollary 2.19. In Corollary 2.15 for hyi(1) =

s (62 —51)]%+1
\ﬁ(% + 1)17%

Igl&[ 7

T?:§(€1/€2)| <

x{(/(f’(el»ﬂﬁ(% b2 o)+ [ @ - emlp(E+ 3 3)

@B (543, 2) [T @y - eomp (s + 3, %)}

Remark 2.20. By taking particular values of positive parameters o and k in above Theorems 2.3 and 2.12, several
k—fractional integral inequalities associated with generalized (hy, hy)—nonconvex functions can be obtained. Also,
for different choices of p1, p2, A1, A2 > 0, where o1 = (01(0),...,01(k),...), 02 = (02(0),...,02(k),...) are bounded
sequences of positive real numbers, we can obtain several k—fractional integral inequalities. Also, for k = 1, we can
get some new special Hermite—Hadamard—Fejér type inequalities via fractional integrals. Finally, for o = k = 1, we
can get some new special Hermite—Hadamard—Fejér type inequalities via classical integrals. We omit their proofs and
the details are left to the interested readers.

Remark 2.21. Also, applying our Theorems 2.3 and 2.12 for 0 < f’(x) < K, Vx € O, we can get some new
k—fractional integral inequalities.

3. Conclusion

In this paper, we defined a new interesting class of functions involving Raina’s function and some Hermite—
Hadamard-Fejér type integral inequalities are provided as well. This results can be applied in convex
analysis, optimization and different areas of pure and applied sciences. The authors hope that these results
will serve as a motivation for future work in this fascinating area.
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