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Abstract. Stieltjes classes play a significant role in the moment problem since they permit to expose
explicitly an infinite family of probability distributions all having equal moments of all orders. Mostly, the
Stieltjes classes have been considered for absolutely continuous distributions. In this work, they have been
considered for discrete distributions. New results on their existence in the discrete case are presented.

1. Introduction

Stieltjes classes initially appeared in [11], while the name may be viewed as present-day. For good
reasons, J. Stoyanov [12] suggested to use the name ‘Stieltjes classes’ and triggered their systematic study,
which is still in progress. See, for example [6, 8, 13]. Mostly, Stieltjes classes have been considered
for absolutely continuous distributions. However, they may also be used to construct sets of discrete
distributions with the same sequence of moments. For the sequel, we need the following definitions, which
are discrete analogues of those introduced in [12].

Definition 1.1. Let X be a random variable possessing a discrete distribution with probability mass function pX = p
given by p(x j) = p j, j ∈N0. A sequence h = {h j} j∈N0 is a perturbation for p if

Mh := sup
j
|h j| = 1 and

∞∑
j=0

xk
jp jh j = 0 for all k ∈N0.

It has to be noticed that not all probability mass functions own perturbations. Clearly, the existence of
a perturbation implies the moment indeterminacy of the underlying distribution. In this connection, the
next definition can be formulated.

Definition 1.2. Given a probability mass function p and a perturbation h, the set

S := {1 : 1 = p(1 + εh), ε ∈ [−1, 1]}

is called a (discrete) Stieltjes class for p generated by h.
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Examples of discrete Stieltjes classes are provided in [2] and [13, Section 11]. It has to be pointed out
that, since [2] had appeared before [12] was published, the name ‘Stieltjes class’ had not been used in the
former. However, the results of [2] can be easily restated in terms of Stieltjes classes. It is worth mentioning
that C. Berg characterizes discrete moment-indeterminate distributions possessing Stieltjes classes as the
ones which are not extreme points in the set of distributions with the same moment sequences. He also
constructed an example of a moment-indeterminate distribution, whose probability mass function has no
Stieltjes classes. See [2, Propositions 1.1 and 2.2].

In the present paper, the existence of Stieltjes classes is investigated related to certain families of discrete
distributions. More precisely, given a non-negative integer-valued random variable X, this study aims to
examine the presence of Stieltjes classes for the probability mass function of Y = aX, a > 0, a , 1. We refer
to the distributions of random variables of this form as logarithmic type. Obviously, when a ∈ (0, 1), the
distribution of Y is moment-determinate as it has a bounded support. Therefore, only the case a > 1 will
be considered. Denote by p j = P{X = j}, j ∈ N0. Correspondingly, the probability generating function of X
can be written as:

f (z) =

∞∑
j=0

p jz j, z ∈ C.

Clearly, Y has finite moments of all orders if and only if f (z) is entire. Some conditions in terms of coefficients
and growth estimates of f (z) for the Stieltjes classes of PY to exist are established. It will be proved that,
under the condition

p j > Ca− j( j−1)/2 for all j ∈N0 and some C > 0,

the probability mass function of Y has a perturbation and, as a result, the distribution is moment-
indeterminate. On the other hand, if

p j = o
(
a− j( j−1)/2

)
as j→∞,

then no perturbation functions exist. The application of these results to the case when X has a log-concave
distribution is provided.

Last but not least, it has to be acknowledged that this study is motivated by Examples 11.7 and 11.8 of
[13].

2. Results and examples

To begin with, let us recall some facts and notation from the q-calculus, which will be needed for the
sequel.

Given q > 0 and j ∈N0, the shifted q-factorial (q; q) j is defined as:

(q; q)0 = 1, (q; q) j =

j∏
s=1

(1 − qs) and (q; q)∞ :=
∞∏

s=1

(1 − qs).

The following identity established by Euler - see, for example, [4, formula (1.23)] - will be used repeatedly:

∞∏
j=0

(1 + q jt) =

∞∑
j=0

q j( j−1)/2

(q; q) j
t j, 0 < q < 1, t ∈ C. (1)

Throughout the text, the letter C - with or without indexes - denotes a positive constant whose value
is of no concern. Note that the same letter may be assigned to denote constants with different numerical
values.
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Theorem 2.1. Let a random variable X have probability mass function pX( j) = p j, j ∈ N0, and Y = aX, a > 1. If Y
has finite moments of all orders and

p j > Ca− j( j−1)/2 for all j > 0, (2)

then a perturbation of pY exists and, therefore, the distribution of Y is moment-indeterminate.

Proof. To establish this result, it suffices to find a bounded non-zero sequence h̃ = {h̃ j}
∞

j=0 satisfying

∞∑
j=0

akjp jh̃ j = 0 for all k ∈N0. (3)

Set

h̃ j =
(−1) ja− j( j−1)/2

(1/a; 1/a) jp j
, j ∈N0. (4)

Obviously, h̃ , 0, and owing to (2),

|h̃ j| 6
a− j( j−1)/2

(1/a; 1/a) jCa− j( j−1)/2
6

1
C(1/a; 1/a)∞

=: C1.

The validity of (3) follows immediately from (1) because for

ϕ(t) :=
∞∏

s=0

(
1 −

t
as

)
one has

0 = ϕ(ak) =

∞∑
j=0

akj (−1) ja− j( j−1)/2

(1/a; 1/a) j
=

∞∑
j=0

akjp jh̃ j for all k ∈N0.

Taking h := h̃/Mh̃, where Mh̃ = sup j |h̃ j|, one obtains a perturbation h for pY and in this way completes the
proof.

Corollary 2.2. Let X and Y be as in Theorem 2.1. Then, the set

S =
{
1 = {1 j} : 1 j = p j(1 + εh j), ε ∈ [−1, 1]

}
,

where h is constructed by means of (4), forms a Stieltjes class for pY.

Example 2.3. (Log-Poisson distribution) Let X have Poisson distribution with parameter λ. Then, the probabilities
p j = λ je−λ/ j!, j ∈ N0 satisfy condition (2) for every a > 1. Indeed, with the help of Stirling’s formula, it can be
observed that

p j ∼ C exp{ j lnλ − ( j + 1/2) ln j + j} > C1 exp
{
−

j( j − 1)
2

ln a
}
.

Hence, by Theorem 2.1, the distribution of Y = aX, a > 1, is moment-indeterminate and a Stieltjes class for pY can be
written in the form:

S := {1 : 1 = pY(1 + εh), ε ∈ [−1, 1]},

where h = h̃/Mh̃ and h̃ j =
(−1) jeλ j! a− j( j−1)/2

λ j(1/a; 1/a) j
, j ∈N0.
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The result of Theorem 2.1 can be complemented by the next result. The proof below is similar to the one
presented in Lemma 2.6 of [7]. For the convenience of the readers, it will be presented in detail here.

Recall the standard notation M(r; f ) := max|z|=r | f (z)| where f (z) is analytic in {z : |z| 6 r}. The following
estimate will be needed.

Lemma 2.4. Let a > 1 and ρa(z) =
∞∑
j=0

a− j( j−1)/2z j. Then,

M(r;ρa) 6 C exp
{

ln2 r
2 ln a

+
ln r
2

}
, C = C(a) and r > r0. (5)

Proof. First, we estimate the sum of the following auxiliary series: Sb(r) :=
∞∑
j=0

b− j2 r j, where b > 1 and r > 0.

Clearly,

Sb(r) =

∞∑
j=0

exp
{
− j2 ln b + j ln r

}
= exp

{
ln2 r
4 ln b

} ∞∑
j=0

exp
{
− ln b

(
j −

ln r
2 ln b

)2}

= exp
{

ln2 r
4 ln b

} ∞∑
j=0

b−( j−ln r/(2 ln b))2

.

Observe that, for every t > 0, there holds:

∞∑
j=0

b−( j−t)2
=

btc∑
j=0

b−( j−t)2
+

∞∑
j=btc+1

b−( j−t)2
6
btc∑
j=0

b− j2 +

∞∑
j=0

b− j2 6 2
∞∑
j=0

b− j2 =: C(b)

independently of t. Consequently, for r > 1, we conclude that

Sb(r) 6 C(b) exp
{

ln2 r
4 ln b

}
. (6)

Writing ρa(r) =
∑
∞

j=0(
√

a)− j2 (
√

ar) j, one obtains with the help of (6):

M(r;ρa) = ρa(r) 6 C1(a) exp
{

ln2(
√

ar)
4 ln(

√
a)

}
= C2(a) exp

{
ln2 r
2 ln a

+
ln r
2

}
as stated by (5).

Theorem 2.5. Let X and Y be as in Theorem 2.1. If

p j = o(a− j( j−1)/2) as j→ +∞,

then there are no perturbation functions for pY.

Proof. Assume that 0 , h = {h j} j>0 is a bounded sequence such that

∞∑
j=0

akjp jh j = 0 for all k ∈N0. (7)

Set c j := p jh j. Obviously, the coefficients c j satisfy c j = o
(
a− j( j−1)/2

)
as j → +∞, implying that the entire

function φ(z) =
∑
∞

j=0 c jz j enjoys the estimate:

M(r;φ) 6
∞∑
j=0

|c j|r j = o
(
M(r;ρa)

)
as r→∞. (8)
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Indeed, given ε > 0, there is j0 ∈ N such that |c j| 6 εa− j( j−1)/2 when j > j0. Hence, M(r;φ) 6
∑ j0

j=0 |c j|r j +

εM(r;ρa) =: P j0 (r)+εM(r;ρa).Meanwhile, since P j0 is a polynomial and ρa is a transcendental entire function,
it follows that P j0 (r) 6 εM(r;ρa), r > r0 leading to M(r;φ) 6 2εM(r;ρa) for r large enough. As ε > 0 has been
selected arbitrarily, (8) follows. Plugging r = ak into (5), and using (8) one derives

M(ak;φ) = o(ak(k+1)/2), k→∞. (9)

On the other hand, by (7), φ(ak) = 0 for all k ∈ N0. Applying Jensen’s Theorem [14, §3.61, formula (2),
page 126] in the annulus {z ∈ C : 1 6 |z| 6 q−k

}, one obtains∫ ak

1

n(t;φ)
t

dt 6 ln M(ak;φ) + C1,

where n(t;φ) is the number of zeros counting multiplicities of φ in the annulus {z ∈ C : 1 6 |z| 6 t}. Since φ
has zeros at 1, a, . . . , ak, one obtains:∫ ak

1

n(t;φ)
t

dt >
k(k + 1)

2
ln a,

implying that

ln CM(ak;φ) >
k(k + 1)

2
ln a, k ∈N,

which, however, contradicts (9). The proof is complete.

To illustrate the results of Theorems 2.1 and 2.5, consider the following example.

Example 2.6. (Log-Heine distribution) It is said that a random variable X has the Heine distribution with parameter
λ > 0 - and is written X ∼ Heine(λ) - if its probability mass function is given by:

p j = eq(−λ)
q j( j−1)/2((1 − q)λ) j

(q; q) j
, j ∈N0, λ > 0, 0 < q < 1, (10)

where eq(t) denotes the following q-analogue of the exponential function:

eq(t) =

∞∏
j=0

(
1 − t(1 − q)q j

)−1
, 0 < q < 1, t < 1/(1 − q).

This distribution is regarded as a q-analogue of the Poisson distribution since, when q→ 1−, the Poisson distribution
with parameter λ is recovered. It is an important q-distribution, see [4, Section 2.3].

If X ∼ Heine(λ), the distribution of Y = aX, a > 0, a , 1 is called log-Heine. It is not difficult to see that the Heine
distribution possesses finite moments of all orders and, moreover, it is moment-determinate as its moment-generating
function exists for all real numbers. The same is true for log-Heine distribution with a ∈ (0, 1) since it has a bounded
support. Now, let X ∼ Heine(λ) and a > 1. Taking into account that (q; q)∞ < (q; q) j < 1, one obtains, using (10),

C1 · [λ(1 − q)] j(qa) j( j−1)/2 6
p j

a− j( j−1)/2
6 C2 · [λ(1 − q)] j(qa) j( j−1)/2.

By virtue of Theorems 2.1 and 2.5, the last estimate implies that Stieltjes classes for the log-Heine distribution exist if
and only if either a > 1/q or a = 1/q and λ(1 − q) > 1.



S. Ostrovska, M. Turan / Filomat 34:8 (2020), 2533–2540 2538

The next statement deals with discrete log-concave distributions. By definition, a discrete distribution
on integers is said to be log-concave if its probability mass function satisfies the condition:

p2
j > p j−1p j+1 > 0, j ∈N. (11)

Such distributions have been studied by many authors from different angles and have been found interesting
for applications. See, for example, [1, 5], and [10].

Log-concave sequences are also of importance in the theory of entire functions. Assume that the
probability generating function f (z) =

∑
∞

j=0 p jz j is entire. Then, for each r > 0,
∑
∞

j=0 p jr j < ∞, whence
{p jr j
} → 0. Thence, the sequence has, for every r > 0, a maximal term which is not necessarily unique.

Now, fix k ∈ N0 and look for r > 0 such that pkrk is a maximal term of the sequence {p jr j
}
∞

j=0. In general,
for an arbitrary sequence {p jr j

}
∞

j=0 such r may not exist, for example, if pk = 0. Nevertheless, condition (11)

guarantees that each term pkrk is a maximal term for some r = rk, see, for example, [9, Part IV, Ch. 1, problem
43]. This property is crucial for the proof of part (ii) in the next theorem.

Theorem 2.7. Let X be a random variable whose probability generating function f (z) is entire and Y = aX, a > 1.
(i) If

0 < lim sup
r→∞

ln f (r)

ln2 r
=: β < ∞ (12)

and a < exp{1/(2β)}, then the probability mass function of Y has no Stieltjes classes.
(ii) Additionally, assume that X has a log-concave distribution. If

0 < lim
r→∞

ln f (r)

ln2 r
=: β < ∞ (13)

and a > exp{1/(2β)}, then the probability mass function of Y has Stieltjes classes, and, thus, its distribution is
moment-indeterminate.

Proof. (i) Since the coefficients of f are positive, one has M(r; f ) = f (r) and the Cauchy estimates for the
coefficients of f imply that p j 6 f (r)r− j. By virtue of (12), if ε > 0, then

ln p j 6 ln f (r) − j ln r 6 (β + ε) ln2 r − j ln r, r > r0 = r0(ε).

Taking the minimum with respect to r, one obtains ln p j 6 −
j2

4(β+ε) for j > j0(ε). Hence,

lim sup
j→∞

ln p j

j2
6 −

1
4β
.

The latter inequality implies that if a < exp{1/(2β)}, then the upper estimate for p j gives p j = o
(
a− j( j−1)/2

)
, j→

∞, and Theorem 2.5 is applicable.
(ii) It is commonly known that, in general, it is impossible to obtain lower estimates for the coefficients of

an entire function from its growth estimate. Below, under the additional condition that {p j} is log-concave,
such estimates will be derived using the result by V. Boicuk and A. Eremenko about the Dirichlet series ([3,
Theorem 3]). A version of their proof is presented showing that if the conditions of (ii) are satisfied, then
ln p j > − j2/(4β) + α j, where α j = o( j2) as j→∞.

Assume that there exists a subsequence {pk}, k ∈ K ⊂N0 such that

ln pk 6 −
k2

4γ
, 0 < γ < β, k ∈ K.
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It follows from (11) that each term pkrk is a maximal term for some r = rk. That is, µ(rk) := max
j

p jr
j
k = pkrk

k.

Then, since ln M(rk)/ lnµ(rk)→ 1 as k → ∞ (we refer to [9, Part IV, Ch. 1, problem 54], for every δ > 1 and
k large enough, there holds: ln M(rk; f ) 6 δ lnµ(rk). Select δ > 1 in such a way that δγ < β. Therefore, for
k ∈ K, one derives

ln M(rk; f ) 6 δ
(
ln pk + k ln rk

)
6 δ

(
−

k2

4γ
+ k ln rk

)
6 δmax

t

(
−

t2

4γ
+ t ln rk

)
= δγ ln2 rk, k > k0.

Hence,

lim sup
k→∞

ln M(rk; f )

ln2 rk
6 δγ < β,

contrary to (13). The contradiction shows that

lim inf
j→∞

ln p j

j2
> −

1
4β
,

whence

p j > exp{− j2/(4β) + o( j2)}, j→∞. (14)

Now, if a > exp{1/(2β)}, one has:

p ja j( j−1)/2 > exp
{
−

j2

4β
+

j( j − 1)
2

ln a + o( j2)
}

= exp
{

j2

2

(
ln a −

1
2β

)
+ o( j2)

}
→ +∞ as j→ +∞

because ln a > 1/(2β). Since all p j > 0, it follows that p j > Ca− j( j−1)/2 for some C > 0 and all j ∈ N0. By
Theorem 2.1, the Stieltjes classes for the probability mass function of Y = aX exist.

Remark 2.8. It has to be pointed out that for a = exp{1/(2β)} the existence of Stieltjes classes has to be investigated
in more detail, as the following examples demonstrate. If p j = C exp{− j( j − 1)/(4β)}, then Stieltjes classes exist by
Theorem 2.1, while for p j = C exp{− j( j + 1)/(4β)}, there are no Stieltjes classes due to Theorem 2.5.

Another example is presented by the log-Heine distribution, see (10). If X ∼ Heine(λ), then β = 1/[2 log(1/q)]
and exp{1/(2β)} = 1/q. Example 2.6 shows that the log-Heine distribution (1/q)X has Stieltjes classes if and only if
λ > 1/(1 − q).

Notice that in all these cases the distributions of X are log-concave.
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