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Abstract. In this paper we have considered one model, namely the bivariate discrete inverse Weibull
distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete
analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are
studied. Maximum likelihood and Bayesian mmethods are used to estimate the model parameters. A
detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood
and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the
proposed model.

1. Introduction

The Weibull (W) distribution and its inverse model have the ability to model failure rates which are
quite common in reliability and biological studies. Therefore, more modifications and extensions of W
distribution and its inverse model have been presented in the statistical literature to describe various
phenomena in different fields, see for example, Silva et al. (2010), Almalki and Yuan (2013), Jehhan et al.
(2018), El-Morshedy and Eliwa (2019), Shakhatreh et al. (2019), Salah el al. (2020), Tahir et al. (2020),
El-Morshedy et al. (2020a), and references cited therein.

In many practical situations, it is important to consider different bivariate distributions that could be
used to model bivariate data. Therefore, many bivariate distributions have been reported in the literature to
discuss and analyze such these data. For instance, Olkin and Liu (2003), Wang and Rennolls (2007), Erdem
and Shi (2011), Li et al. (2012), Eliwa and El-Morshedy (2019, 2020), Eliwa et al. (2020a), El-Morshedy et al.
(2020b), and references cited therein.

While continuous random quantities are commonly observed in practice, discrete random variables can
also be encountered frequently for many different practical reasons. For example, in lifetime modeling,
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field failures are often collected and listed daily, weekly, and so forth, Jazi et al. (2010), Nekoukhou and
Bidram (2015), Eliwa et al. (2020b), El-Morshedy et al. (2020c), and references cited therein. Moreover,
discrete bivariate models can also be useful for many other disciplines. Thus, several bivariate discrete
distributions have been proposed and studied in the literature mainly to analyze bivariate discrete data.
See for example, Wu et al. (2003), Yuen et al. (2006), Morata (2009), Lee and Cha (2015), Nekoukhou and
Kundu (2017), Kundu and Nekoukhou (2018), Jia et al. (2019), El-Morshedy et al. (2020d), and references
cited therein.

In this regard, we propose a flexible bivariate discrete distribution, in the so-called the bivariate discrete
inverse Weibull (BDsIW) distribution. This model can be usefully applied not only by statisticians, but also
by data analysis in many different disciplines, such as sports, engineering and medical applications. The
BDsIW distribution can be obtained from 3-independent discrete inverse Weibull (DsIW) distributions by
using the maximization method as suggested by Lee and Cha (2015).

The BDsIW model can be considered as a natural discrete analogue of the Marshall-Olkin bivariate
inverse Weibull distribution. The bivariate discrete inverse exponential (BDsIE) and bivariate discrete
inverse Rayleigh (BDsIR) distributions can be obtained as special cases. Since the joint cumulative distribu-
tion function (CDF), joint reliability function (RF), and joint probability mass function (PMF) of the BDsIW
model can be expressed as closed forms, it is recommended to utilize the BDsIW model instead of all other
competitive models. In the applied fields, especially in the field of modeling, the BDsIW model could be
useful in the following cases:

1. Maintenance model or stress model as proposed by Kundu and Gupta (2009).

2. Modeling skewed data sets, especially the right skewed heavy tail data sets.

3. In physics and reliability analysis, the BDsIW model can be applied in modeling the failure time data.
As shown in Table 6, the BDsIW model showed its superiority against the bivariate Poisson (BPo),
bivariate binomial (BBi), bivariate Poisson Holgate (BPoH), independent bivariate Poisson (IBPo),
BDsIE and BDsIR distributions.

4. In sports field, the BDsIW model can be applied in modeling the football data. As shown in Table 10,
the BDsIW model provides better fits than other many well-known competitive models.

5. In the medicine field, the BDsIW model can be applied in modeling the nasal drainage severity data.
As shown in Table 14, the BDsIW model showed its superiority against many well-known competitive
models.

2. The BDsIW Distribution

Jazi et al. (2010) introduced the DsIW distribution. The PMF of the DsIW distribution can be written as

π(x;θ, ζ) = θ(x+1)−ζ − θx−ζ ; x ∈N0, (1)

where 0 < θ < 1 and ζ > 0. Clearly, the discrete exponential (DsE) and discrete Rayleigh (DsR) distributions
can be obtained as special cases for ζ = 1 and ζ = 2, respectively. Suppose W1 ∼ DsIW(θ1, ζ), W2 ∼
DsIW(θ2, ζ) and W3 ∼ DsIW(θ3, ζ) and they are independently distributed. If Xd = max(Wd,W3); d = 1, 2,
then we can say that the bivariate vector X = (X1,X2) has a BDsIW distribution with the parameter vector

Ψ = (θ1, θ2, θ3, ζ)
T. We will denote this discrete bivariate distribution by BDsIW(θ1, θ2, θ3, ζ). If X ∼

BDsIW(θ1, θ2, θ3, ζ), then the joint CDF of X is given by

FX1,X2
(x1, x2;Ψ) = θ(x1+1)−ζ

1
θ(x2+1)−ζ

2
θ(x3+1)−ζ

3

= FDsIW (x1;θ1, ζ) FDsIW (x2;θ2, ζ) FDsIW (x3;θ3, ζ)

=



FDsIW (x1;θ1θ3, ζ) FDsIW (x2;θ2, ζ) ; 0 < x1 < x2 < ∞
FDsIW (x1;θ1, ζ) FDsIW (x2;θ2θ3, ζ) ; 0 < x2 < x1 < ∞
FDsIW (x;θ1θ2θ3, ζ) ; 0 < x1 = x2 = x < ∞,

(2)
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where x1 ∈ N0, x2 ∈ N0 and x3 = min{x1, x2}. The marginal CDFs of the BDsIW distribution can be
represented as

FXd
(xd;θd, θ3, ζ) = P[max(Wd,W3) ≤ xd] = FDsIW (xd;θdθ3, ζ) ‘; d = 1, 2. (3)

The corresponding joint PMF to Equation (2) is given by

fX1 ,X2
(x1, x2;Ψ) =



f1(x1, x2;Ψ) ; 0 < x1 < x2 < ∞
f2(x1, x2;Ψ) ; 0 < x2 < x1 < ∞
f3(x;Ψ) ; 0 < x1 = x2 = x < ∞,

(4)

where

f1(x1, x2;Ψ) = fDsIW (x1;θ1θ3, ζ) fDsIW (x2;θ2, ζ) ,

f2(x1, x2;Ψ) = fDsIW (x1;θ1, ζ) fDsIW (x2;θ2θ3, ζ)

and

f3(x;Ψ) = FDsIW (x;θ2, ζ) fDsIW (x;θ1θ3, ζ) − FDsIW (x − 1;θ2θ3, ζ) fDsIW (x;θ1, ζ) .

The expressions f1(x1, x2;Ψ), f2(x1, x2;Ψ) and f3(x;Ψ) for x1, x2 ∈ N0 can be easily obtained by using the
relation

fX1 ,X2
(x1, x2;Ψ) = F(x1, x2;Ψ) − F(x1 − 1, x2;Ψ) − F(x1, x2 − 1;Ψ) + F(x1 − 1, x2 − 1;Ψ). (5)

The plots of the joint PMF are displayed in Figure 1.

θ1 = 0.05, θ2 = 0.05, θ3 = 0.05, ξ = 2.3

 0  5 10 150
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

 0

 5

10

15

X1

X
2

Jo
in

t 
P

M
F

θ1 = 0.4, θ2 = 0.1, θ3 = 0.8, ξ = 1.2

 0  5 10 150
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

 0

 5

10

15

X1

X
2Jo

in
t 
P

M
F

θ1 = 0.05, θ2 = 0.05, θ3 = 0.05, ξ = 1.5

 0  5 10 150.
00

0.
01

0.
02

0.
03

0.
04

0.
05

 0

 5

10

15

X1

X
2

Jo
in

t P
M

F

θ1 = 0.3, θ2 = 0.2, θ3 = 0.8, ξ = 0.5

 0  5 10 150.
00

0.
01

0.
02

0.
03

0.
04

0.
05

 0

 5

10

15

X1

X
2

Jo
in

t P
M

F

Figure 1. The scatter plots of the joint PMF.
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From the plots, it is seen that the joint PMF has a long right tail as compared to its left tail. Thus, it can be
used to model skewed data set.

3. Statistical Properties

3.1. The joint RF and joint hazard rate function (HRF)

Assume X ∼ BDsIW(θ1, θ2, θ3, ζ), then the joint RF of X can be expressed as

RX1,X2
(x1, x2;Ψ) = 1 − FX1

(x1;θ1θ3, ζ) − FX2
(x2;θ2θ3, ζ) + FX1,X2

(x1, x2;Ψ)

=



R1(x1, x2;Ψ) ; 0 < x1 < x2 < ∞
R2(x1, x2;Ψ) ; 0 < x2 < x1 < ∞
R3(x;Ψ) ; 0 < x1 = x2 = x < ∞,

(6)

where

R1(x1, x2;Ψ) = 1 − FDsIW(x1;θ1θ3, ζ) − FDsIW(x2;θ2θ3, ζ) + FDsIW (x1;θ1θ3, ζ) FDsIW (x2;θ2, ζ) ,

R2(x1, x2;Ψ) = 1 − FDsIW(x1;θ1θ3, ζ) − FDsIW(x2;θ2θ3, ζ) + FDsIW (x1;θ1, ζ) FDsIW (x2;θ2θ3, ζ)

and

R3(x;Ψ) = 1 − FDsIW(x;θ1θ3, ζ) − FDsIW(x;θ2θ3, ζ) + FDsIW (x;θ1θ2θ3, ζ) .

The plots of the joint RF are displayed in Figure 2.
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Figure 2. The scatter plots of the joint RF.
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The plots indicate that the joint RF decreases in value when the values of θ1, θ2, θ3 and ζ increase. The joint
HRF of X is given by

rX1,X2
(x1, x2;Ψ) =



r1(x1, x2;Ψ) ; 0 < x1 < x2 < ∞
r2(x1, x2;Ψ) ; 0 < x2 < x1 < ∞
r3(x;Ψ) ; 0 < x1 = x2 = x < ∞,

(7)

where r j(x1, x2;Ψ) =
f j(x1,x2;Ψ)

R j(x1−1,x2−1;Ψ) ; j = 1, 2, 3. Figure 3 shows the joint HRF plots of the BDsIW distribution

for different parameter values.

θ1 = 0.05, θ2 = 0.1, θ3 = 0.5, ξ = 1.2

 0  5 10 150.
00

0.
02

0.
04

0.
06

0.
08

 0

 5

10

15

X1

X
2Jo

in
t H

R
F

θ1 = 0.3, θ2 = 0.3, θ3 = 0.3, ξ = 0.9

 0  5 10 150.
00

0.
01

0.
02

0.
03

0.
04

0.
05

 0

 5

10

15

X1

X
2

Jo
in

t H
R

F

θ1 = 0.2, θ2 = 0.8, θ3 = 0.1, ξ = 1.4

 0  5 10 150.
00

0.
05

0.
10

0.
15

0.
20

 0

 5

10

15

X1

X
2Jo

in
t H

R
F

θ1 = 0.5, θ2 = 0.5, θ3 = 0.9, ξ = 0.5

 0  5 10 150.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

 0
 5

10
15

X1

X
2

Jo
in

t H
R

F

Figure 3. The scatter plots of the joint HRF.

From the plots, it is clear that the joint HRF can take different shapes depending on the parameter values,
which make it convenient to discuss different shapes of hazard rate in practice.

3.1.1. The conditional HRF

Assume X ∼ BDsIW(θ1, θ2, θ3, ζ) and X1 < X2. Then, the HRF of the conditional distribution X1 given
X2 > x2 is given by

r∗(X1|X2 > x2) =
ζ (x1 + 1)−ζ−1

R1(x1, x2;Ψ)
{FDsIW (x2;θ2, ζ) − 1}FDsIW (x1;θ1θ3, ζ) ln (θ1θ3) , (8)
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while the HRF of the conditional distribution X2 given X1 > x1 is given by

r∗(X2|X1 > x1) =
ζ (x2 + 1)−ζ−1 FDsIW (x2;θ2, ζ)

R1(x1, x2;Ψ)
{FDsIW (x1;θ1θ3, ζ) ln (θ2) − FDsIW (x2;θ3, ζ) ln (θ2θ3)} . (9)

Similarly, when X2 < X1, then

r∗∗(X1|X2 > x2) =
ζ (x1 + 1)−ζ−1 FDsIW (x1;θ1, ζ)

R2(x1, x2;Ψ)
{FDsIW (x2;θ2θ3, ζ) ln (θ1) − FDsIW (x1;θ3, ζ) ln (θ1θ3)} (10)

and

r∗∗(X2|X1 > x1) =
ζ (x2 + 1)−ζ−1

R2(x1, x2;Ψ)
{FDsIW (x1;θ1, ζ) − 1}FDsIW (x2;θ2θ3, ζ) ln (θ2θ3) . (11)

3.1.2. The joint HRF of a parallel system

Consider a parallel system consists of 2-component. Then, we can defined the joint HRF as a vector
which is useful to measure the total life span of a 2-component as follows

r(x) = (r(x), r12(x1|x2), r21(x2|x1)), (12)

where r(x) gives the HRF of the system using the information that the 2-component has survived beyond
x, r12(x1|x2) gives the HRF span of the first component given that it has survived to an age x1 and the other
has failed at x1. Similar argument holds for r21(x2|x1) (see Cox, 1972). Thus, if X ∼ BDsIW(θ1, θ2, θ3, ζ), then

r(x)|X=min(X1,X2) =
FDsIW (x − 1;θ3, ζ)

R3(x;Ψ)
[−FDsIW (x − 1;θ1, ζ) − FDsIW (x − 1;θ2, ζ) + FDsIW (x − 1;θ1θ2, ζ)]

+
FDsIW (x;θ3, ζ)

R3(x;Ψ)
[FDsIW (x;θ1, ζ) + FDsIW (x;θ2, ζ) − FDsIW (x;θ1θ2, ζ)] ,

r12(x1|x2)|X1>X2
= −ζ (x1 + 1)−ζ−1 [1 − FDsIW (x1;θ1, ζ)]

−1 ln (θ1)

and

r21(x2|x1)|X1<X2
= −ζ (x2 + 1)−ζ−1 [1 − FDsIW (x2;θ2, ζ)]

−1 ln (θ2) .

3.2. Stress-strength probability

Assume X ∼ BDsIW(θ1, θ2, θ3, ζ). Then, the stress-strength probability can be expressed as

P[X1 < X2] =

∞∑

x=0

(θ1θ3)(x+1)−ζ
[
(θ2θ3)(x+1)−ζ − (θ2θ3)x−ζ

]
(13)

and

P[X1 > X2] =

∞∑

x=0

(θ2θ3)(x+1)−ζ
[
(θ1θ3)(x+1)−ζ − (θ1θ3)x−ζ

]
. (14)

Unfortunately, the stress-strength probability does not have a closed-form expression, but it can be easily
computed numerically in any symbolic software (e.g. Maple, Matlab or Mathematica). Table 1 reports
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some numerical values of P[X1 < X2] as an example for different values of the parameters θ1, θ2 and θ3.

Table 1. Some numerical values of P[X1 < X2] at ζ = 0.5.

θ1 θ2 ↓ θ3 → 0.2 0.4 0.6 0.8 0.99

0.3 0.3 0.5025 0.5131 0.5248 0.5387 0.5543
0.6 0.4382 0.4286 0.4245 0.4257 0.4322
0.9 0.3916 0.3641 0.3451 0.3340 0.3311

0.6 0.3 0.5752 0.6157 0.6586 0.7068 0.7585
0.6 0.5131 0.5387 0.5746 0.6231 0.6818
0.9 0.4671 0.4782 0.5063 0.5532 0.6164

0.9 0.3 0.6275 0.6943 0.7663 0.8476 0.9351
0.6 0.5689 0.6278 0.7041 0.8014 0.9150
0.9 0.5248 0.5746 0.6524 0.7619 0.8972

Regarding Table 1, it is clear that:

1. For fixed values of θ1, θ3 and ζwith θ2 → 1, P[X1 < X2] decreases.

2. For fixed values of θ2, θ3 and ζwith θ1 → 1, P[X1 < X2] increases.

3.3. The coefficient of median correlation

Since the median of X1 and X2 can be expressed as

MXd
=

{
log
θdθ3

U

} 1
ζ

− 1; d = 1, 2, (15)

where U has a uniform U(0, 1) distribution, the coefficient of median correlation between X1 and X2 can be
proposed as

MX1,X2
=

{
4FDsIW

(
MX1

;θ1θ3, ζ
)

FDsIW
(
MX2

;θ2, ζ
) − 1 ; x1 < x2

4FDsIW
(
MX1

;θ1, ζ
)

FDsIW
(
MX2

;θ2θ3, ζ
) − 1 ; x2 ≤ x1,

(16)

where MX1,X2
= 4FX1,X2

(MX1
,MX2

) − 1 (see Domma, 2009).

3.4. The joint probability generating function (PGF), bivariate skewness and kurtosis

If the bivariate vector X ∼ BDsIW(θ1, θ2, θ3, ζ), then the PGF of X1 and X2 can be written as infinite
mixtures,

GX1,X2

(
y1, y2

)
=

∞∑

j,i=0

P
[
X1 = i,X2 = j

]
yi

1y
j

2

=

∞∑

j=0

j−1∑

i=0

[
(θ1θ3)(i+1)−ζ − (θ1θ3)i−ζ

] [
θ

( j+1)
−ζ

2
− θ j−ζ

2

]
yi

1y
j

2

+

∞∑

j=0

∞∑

i= j+1

[
θ(i+1)−ζ

1
− θi−ζ

1

] [
(θ2θ3)( j+1)

−ζ

− (θ2θ3) j−ζ
]

yi
1y

j

2

+

∞∑

i=0

θ(i+1)−ζ

2

[
(θ1θ3)(i+1)−ζ − (θ1θ3)i−ζ

]
yi

1yi
2

−
∞∑

i=0

(θ2θ3)(i+1)−ζ
[
θ(i+1)−ζ

1
− θi−ζ

1

]
yi

1yi
2;

∣∣∣y1

∣∣∣ ,
∣∣∣y2

∣∣∣ < 1. (17)
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Hence, different moments and product moments of the BDsIW distribution can be obtained, as infinite
series, using the joint PGF. The correlation of X1 and X2 is the number defined by

ρX1,X2
=

E(X1X2) − E(X1)E(X2)√
Var(X1)Var(X2)

; 0 ≤ ρX1,X2
≤ 1, (18)

where E(Xi) =
∑∞

xi=0 xi π(xi;θiθ3, ζ) and Var(Xi) =
∑∞

xi=0 x2
i
π(xi;θiθ3, ζ)− [E(Xi)]

2 for i = 1, 2. Using Mardia’s
(1970) measures of bivariate skewness and kurtosis, we get

Skewness =
1

(1 − ρ2)3
[Υ2

30 + Υ
2
03 + 3

(
1 + 2ρ2

) (
Υ2

12 + Υ
2
21

)
− 2ρ3Υ30Υ03

+ 6ρ{Υ30
(
ρΥ12 − Υ21

)
+ Υ03

(
ρΥ21 − Υ12

) − (2 + ρ2)Υ21Υ12}] (19)

and

Kurtosis =
Υ40 + Υ04 + 2Υ22 + 4ρ

(
ρΥ22 − Υ13 − Υ31

)

(1 − ρ2)2
, (20)

whereΥwq =
E(Xw

1
X

q

2
)[√

Var(X1)
]w[√

Var(X2)
]q .Unfortunately, we cannot get closed-form expressions, but it can be easily

computed numerically in any symbolic software (e.g. Maple, Matlab and Mathematica). Table 2 lists some
numerical values for both skewness and kurtosis based on different values of the parameters θ1, θ2 and θ3.

Table 2. Some numerical values of skewness (kurtosis) at ζ = 1.5.

θ1 θ2 ↓ θ3 → 0.3 0.6 0.9

0.3 0.3 0.2568(1.3680) 0.2499(1.3909) 0.2523(1.3998)
0.6 0.2549(1.2697) 0.3204(1.2378) 0.4019(1.4967)
0.9 0.2639(2.0010) 0.2631(1.9975) 0.2398(1.0093)

0.9 0.3 0.3690(0.9997) 0.3297(1.6667) 0.4331(1.9761)
0.6 0.4778(2.3336) 0.2997(1.9987) 0.2368(1.9999)
0.9 0.0969(1.3251) 0.0984(1.2369) 0.1069(1.1230)

Regarding to Table 2, it is clear that the BDsIW distribution can be used to model skewed data with
platykurtic.

3.5. Other properties

1. Assume (Xi1,Xi2) ∼ BDsIW(θi1, θi2, θi3, ζ) for i = 1, 2, ..., n and they are independently distributed.

If Zs =max (X1s,X2s, ...,Xns); s = 1, 2. Then, (Xi1,Xi2) ∼ BDsIW

(
n∏

i=1
θi1,

n∏
i=1
θi2,

n∏
i=1
θi3, ζ

)
.

2. If the bivariate vector X ∼ BDsIW(θ1, θ2, θ3, ζ). Then,

a) max{X1,X2} ∼ DsIW(θ1θ2θ3, ζ) .

b) The conditional CDF of X1 given X2 ≤ x2, is given by

FX1 |X2=x2
(x1 | x2) =



FDsIW(x1;θ1θ3,ζ)
FDsIW(x2;θ3,ζ)

if 0 < x1 < x2 < ∞
FDsIW (x1;θ1, ζ) if 0 < x2 < x1 < ∞
FDsIW (x;θ1, ζ) if 0 < x1 = x2 = x < ∞.

(21)
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c) The conditional PMF of X1 given X2 = x2, is given by

fX1 |X2=x2
(x1 | x2) =



f
(1)

X1 |X2=x2
(x1 | x2) if 0 < x1 < x2 < ∞

f
(2)

X1 |X2=x2
(x1 | x2) if 0 < x2 < x1 < ∞

f (3)

X1 |X2=x2
(x1 | x) if 0 < x1 = x2 = x < ∞,

(22)

where

f
(1)

X1 |X2=x2
(x1 | x2) =

fDsIW (x1;θ1θ3, ζ) fDsIW (x2;θ2, ζ)

fDsIW (x2;θ2θ3, ζ)
,

f
(2)

X1 |X2=x2
(x1 | x2) = fDsIW (x1;θ1, ζ)

and

f
(3)

X1 |X2=x2
(x1 | x) =

FDsIW (x;θ2, ζ) fDsIW (x;θ1θ3, ζ) − FDsIW (x − 1;θ2θ3, ζ) fDsIW (x;θ1, ζ)

fDsIW (x;θ2θ3, ζ)
.

The proofs for the previous properties are quite standard, and therefore the details are avoided.

4. Estimation Methods

4.1. Maximum likelihood estimation (MLE) and asymptotic confidence intervals

In this section, we use the maximum likelihood method to estimate the unknown parameters θ1, θ2, θ3

andζof the BDsIW distribution. Suppose that, we have a sample of size n, of the form {(x11, x21), (x12, x22), ..., (x1n, x2n)}
from the proposed model. We use the following notations: I1 = {x1 j < x2 j}, I2 = {x2 j < x1 j}, I3 = {x1 j = x2 j =

x j}, I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2, |I3| = n3 and n =
∑3

k=1 nk. Based on the observations, the likelihood
function can be expressed as

l(X1,X2| θ1, θ2, θ3, ζ) =
n1∏

j=1

f1(x1 j, x2 j)

n2∏

j=1

f2(x1 j, x2 j)

n3∏

j=1

f3(x j). (23)

The log-likelihood function becomes

L(X1,X2| θ1, θ2, θ3, ζ) =

n1∑

j=1

ln
(
Φ1(x1 j;θ1θ3, ζ)

)
+

n1∑

j=1

ln
(
Φ1(x2 j;θ2, ζ)

)

+

n2∑

j=1

ln
(
Φ1(x1 j;θ1, ζ)

)
+

n2∑

j=1

ln
(
Φ1(x2 j;θ2θ3, ζ)

)

+

n3∑

j=1

ln
(
[θ2](x j+1)−ζ Φ1(x j;θ1θ3, ζ) − [θ2θ3](x j)

−ζ
Φ1(x j;θ1, ζ)

)
, (24)

where Φ1(x;θ, ζ) = θ(x+1)ζ − θxζ . The first partial derivatives of Equation (24) with respect to θ1, θ2, θ3

and ζ are called the normal equations (see, Appendix), where Φ2(x;θ, ζ) = x−ζθx−ζ−1 and Φ3(x;θ, ζ) =

x−ζθx−ζ−1 ln(x) ln(θ). The MLEs of the parameters θ1, θ2, θ3 and ζ can be obtained by solving the system of
four non-linear equations. These equations cannot be solved analytically; therefore an iterative procedure
like Newton Raphson is required to solve them numerically. For the asymptotic confidence interval (CI),
The normal approximation of the MLE can be used to construct asymptotic CIs for the parameters θ1, θ2, θ3

and ζ, when the sample size is large enough. A two sided (1 − α)100% CIs for θ1, θ2, θ3 and ζ are given

by (θ̂1 ± zα/2

√
Var(θ̂1)), (θ̂2 ± zα/2

√
Var(θ̂2)), (θ̂3 ± zα/2

√
Var(θ̂3)) and (ζ̂ ± zα/2

√
Var(ζ̂)) respectively, where

Var(θ̂1),Var(θ̂2),Var(θ̂3) and Var(ζ̂) are the asymptotic variances of θ̂1, θ̂2, θ̂3 and ζ̂ respectively.
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4.2. Bayesian estimation (BSE) and credible intervals

In order to obtain the Bayesian estimators of the unknown parameters, it is necessary to obtain the
likelihood function for the model. Considering the assumptions in the previous subsection, the likelihood
function under bivariate complete samples in Equation (24). Consider the BSE under the assumption that
the non-negative parameters δ1, δ2, δ3 and ζ are independently distributed, which have the gamma prior

distribution, where θi = e−δi ; i = 1, 2, 3. Thus, π(δi) ∝ δai−1
i

ebiδi and π(ζ) ∝ ζa4−1eb4ζ. All the hyper parameters
ak and bk are assumed to be known and non-negative where k = 1, 2, 3, 4. The posterior distribution can be
expressed as follows

G(δ1, δ2, δ3, ζ| X1,X2) =
π(δ1)π(δ2)π(δ3)π(ζ)L(X1,X2| δ1, δ2, δ3, ζ)∫

ζ

∫

δ3

∫

δ2

∫

δ1

π(δ1)π(δ2)π(δ3)π(ζ)L(X1,X2| δ1, δ2, δ3, ζ) dδ1dδ2dδ3dζ
. (25)

Equation (25) can be expressed in a simple form as

G(δ1, δ2, δ3, ζ| X1,X2) ∝ π(δ1)π(δ2)π(δ3)π(ζ)L(X1,X2| δ1, δ2, δ3, ζ). (26)

Thus, the Bayesian estimators of the parameters δ1, δ2, δ3 and ζ can be expressed as

δ̂1 ∝
∫

δ1

δ1G(δ1, δ2, δ3, ζ| X1,X2) dδ1, δ̂2 ∝
∫

δ2

δ2G(δ1, δ2, δ3, ζ| X1,X2) dδ2,

δ̂3 ∝
∫

δ3

δ3G(δ1, δ2, δ3, ζ| X1,X2) dδ3 and ζ̂ ∝
∫

ζ

ζG(δ1, δ2, δ3, ζ| X1,X2) dζ.

It is not possible to compute analytically the solution for these equations. So that, Markov Chain Monte
Carlo (MCMC) approach used to approximate these equations. For the credible intervals, using MCMC
techniques, Bayes credible intervals of the parameters θ1, θ2, θ3 and ζ can be obtained as

1. Start with initial values (θ0
1
, θ0

2
, θ0

3
, ζ0).

2. Generate posterior sample for θ1, θ2, θ3 and ζ.

3. Repeat step 2 M times and obtain (θ11, θ21, θ31, ζ1), (θ12, θ22, θ32, ζ2), ..., (θ1M, θ2M, θ3M, ζM).

4. Arrange θ1i, θ2i, θ3i and ζi, in ascending order as

θ1[1], θ1[2], ..., θ1[M], θ2[1], θ2[2], ..., θ2[M], θ3[1], θ3[2], ..., θ3[M] and ζ[1], ζ[2], ..., ζ[M].

5. A two-sided (1 − α)100% credible intervals for the unknown parameters θ1, θ2, θ3 and ζ are given by

(θ1[Mα/2], θ1[M1−α/2]), (θ2[Mα/2], θ2[M1−α/2]), (θ3[Mα/2], θ3[M1−α/2]) and (ζ[Mα/2], ζ[M1−α/2]).

5. Simulation Results

In this section, the MLE and BSE approaches are used to estimate the parameters θ1, θ2, θ3 and ζ of the
BDsIW distribution. The population parameters are generated using software R package. The sampling
distributions are obtained for different sample sizes n = 50, 100, 150, 250, 350, 400from N = 1000 replications.
This study presents an assessment of the properties for both MLE and BSE techniques in terms of bias and
mean square error (MSE). A general form to generate a bivariate vector X from the BDsIW distribution is first
to generate the value Y from the continuous BIW distribution and then to discretize this value to obtain X.
The MLEs and BSEs are reported in Tables 3 and 4 for BDsIW(0.8, 0.4, 0.4, 0.5) and BDsIW(0.6, 0.25, 0.3, 0.9).
For the Bayesian simulation, we assume that all the hyper parameters are equal to 0.01.
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Table 3. The bias and MSE values for the BDsIW(0.8, 0.4, 0.4, 0.5).

Size θ1 θ2 θ3 ζ
Method n bias MSE bias MSE bias MSE bias MSE

50 0.044 0.026 0.066 0.027 0.043 0.028 0.041 0.031
100 0.034 0.024 0.060 0.021 0.036 0.021 0.036 0.026

BSE 150 0.025 0.023 0.049 0.015 0.027 0.016 0.022 0.021
250 0.019 0.022 0.034 0.012 0.020 0.011 0.018 0.013
350 0.012 0.015 0.018 0.008 0.013 0.009 0.009 0.007
400 0.007 0.009 0.008 0.004 0.009 0.005 0.003 0.002

50 0.046 0.029 0.069 0.028 0.045 0.029 0.044 0.036
100 0.035 0.027 0.065 0.024 0.039 0.022 0.038 0.029

MLE 150 0.027 0.022 0.052 0.016 0.036 0.018 0.028 0.024
250 0.017 0.018 0.049 0.015 0.029 0.010 0.019 0.019
350 0.016 0.016 0.033 0.011 0.016 0.009 0.011 0.012
400 0.009 0.013 0.017 0.010 0.012 0.007 0.008 0.008

Table 4. The bias and MSE values for the BDsIW(0.6, 0.25, 0.3, 0.9).

Size θ1 θ2 θ3 ζ
Method n bias MSE bias MSE bias MSE bias MSE

50 0.041 0.034 0.027 0.032 0.029 0.019 0.025 0.017
100 0.036 0.022 0.025 0.021 0.022 0.015 0.018 0.015

MLE 150 0.027 0.017 0.020 0.013 0.018 0.013 0.012 0.013
250 0.013 0.011 0.014 0.009 0.016 0.011 0.009 0.010
350 0.011 0.008 0.012 0.007 0.014 0.010 0.007 0.008
400 0.006 0.005 0.009 0.006 0.012 0.008 0.004 0.003

50 0.039 0.029 0.026 0.033 0.019 0.017 0.021 0.016
100 0.032 0.023 0.025 0.028 0.016 0.015 0.019 0.015

BSE 150 0.028 0.015 0.018 0.022 0.015 0.012 0.011 0.014
250 0.011 0.014 0.017 0.017 0.013 0.011 0.010 0.010
350 0.010 0.012 0.011 0.015 0.010 0.008 0.009 0.003
400 0.009 0.004 0.010 0.004 0.008 0.006 0.003 0.001

From Tables 3 and 4, the following observations can be made:

1. The magnitude of bias always decreases to zero as n→∞.
2. The MSEs always decrease to zero as n→ ∞. This shows the consistency of the estimators.
3. The estimators of θ1, θ2, θ3 and ζ are slightly positive biased.
4. The MLE and BSE can be used quite effectively for data analysis purposes.

6. Data Analysis

In this section, we explain the experimental importance of the BDsIW distribution using three applica-
tions to real data sets. In each data, we shall compare the fits of the BDsIW distribution with some com-
petitive models like: bivariate Poisson (BPo), bivariate binomial (BBi), bivariate Poisson Holgate (BPoH),
independent bivariate Poisson (IBPo), bivariate discrete inverse exponential (BDsIE) and bivariate discrete
inverse Rayleigh (BDsIR) distributions. The tested distributions are compared using some criteria namely,
the maximized log-likelihood (L), Akaike information criterion (AIC), corrected Akaike information cri-
terion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), and
likelihood ratio test statistic (Λ).
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6.1. The first data set (I): Motor data

This data is reported in Relia staff (2002),and it represents the failure times of a parallel system constituted
by two identical motors in days. Figure 4 plots the failure times (x1, x2) of the ith system i = 1, ..., 18.
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Figure 4. Failure times (in days) of motors A and B.

Before trying to analyze the data using the BDsIW distribution, we fit at first the marginals X1 and X2

separately as well as min(X1,X2). The MLEs of the parameters θ and ζ of the corresponding DsIW
distribution for X1, X2 and min(X1,X2) are (0.267, 0.259), (0.011, 0.501) and (0.099, 0.518) respectively. The
−L values are 144.077, 125.633 and 122.330, respectively. Moreover, the p-values ranged from 0.698 to 0.785.
It is clear that the DsIW distribution fits the data for the marginals. Table 5 lists some descriptive statistics
for data set I using the marginals of the BDsIW distribution.

Table 5. Summary statistics relative to data set I using the marginals.

Mean Variance Skewness Kurtosis
Marginal ↓Measure→ Statistics Std.err Statistics Statistics Std.err Statistics Std.err

X1 199.000 15.116 4113.294 −0.591 0.536 −0.701 1.038
X2 207.944 18.036 5855.585 0.181 0.536 −0.448 1.038

Regarding Table 5, it is clear that the variance is greater than the mean. Hence, this data represents over-
dispersed data. Here, we fit the BDsIW distribution on this data. The MLEs, −L, AIC, CAIC, BIC, and
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HQIC values are reported in Table 6.

Table 6. The MLEs, − L, AIC, CAIC, BIC, and HQIC values for data set I.

Model MLEs −L AIC CAIC BIC HQIC

BPo λ̂1 = 189.1, λ̂2 = 190.4, α̂1 = 0.165, α̂2 = 0.079 472.05 952.11 955.18 955.67 952.59
BBi p̂1 = 0.004, p̂2 = 0.004, n̂1 = 43652, n̂2 = 43985, 473.28 958.56 966.19 963.9 959.29

α̂1 = 0.185, α̂2 = 0.081

BPoH â = 199.01, b̂ = 207.94, d̂ = 81.10 513.96 1033.92 1035.63 1036.59 1034.29

IBPo λ̂1 = 1.876, λ̂2 = 1.365 370.39 744.78 745.58 746.56 745.03

BDsIE θ̂1 = 0.06, θ̂2 = 0.052, θ̂3 = 0.184 378.47 762.94 764.65 765.61 763.31

BDsIR θ̂1 = 0.007, θ̂2 = 0.005, θ̂3 = 0.119 519.61 1045.22 1046.93 1047.89 1045.59

BDsIW θ̂1 = 0.279, θ̂2 = 0.247, θ̂3 = 0.212, ζ̂ = 0.388 329.98 667.96 671.04 671.52 668.45

According to Table 6, it is clear that the BDsIW distribution provides a better fit than other tested dis-
tributions, because it has the smallest values among −L, AIC, CAIC, BIC and HQIC. The profiles of the
log-likelihood function for its parameters are unimodal functions. So, the likelihood equations have a
unique solution. The approximate 95% two sided confidence interval (CI) of the parameters θ1, θ2, θ3 and
ζ are given respectively as [0.200, 0.301], [0.199, 0.322], [0.195, 0.267] and [0.266, 0.420]. Since, the BDsIE
and BDsIR distributions can be obtained as special cases from the BDsIW distribution. Hence, we want to
perform the following two tests:

Test 1: H01 : ζ = 1 (BDsIE) against H11 : ζ , 1 (BDsIW).

Test 2: H02 : ζ = 2 (BDsIR) against H12 : ζ , 2 (BDsIW).

TheΛ, degree of freedom (d.f) and p-values for the BDsIE and BDsIR distributions are reported in Table
7 using data set I.

Table 7. The Λ, d.f and p-values using data set I.

Model H◦ Λ d.f. p-values

BDsIE ζ = 1 96.98 1 < 0.01
BDsIR ζ = 2 379.26 1 < 0.01

Table 7 shows that H02 and H03 are rejected with 5% level of significance. So, we prefer the BDsIW
distribution for analyzing this data. Recall Equations (18), (19) and (20), Table 8 summaries statistics for
data set I using the BDsIW distribution.

Table 8. Summary statistics relative to data set I.

Model ↓Measure→ Correlation Skewness Kurtosis

BDsIW 0.698 0.597 0.633

It is clear that the correlation between X1 and X2 is positive and strong. Also, the skewness and kurtosis
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are positive. Recall Equation (12), Figure 5 shows the hazard rate vector using data set I.
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Figure 5. The hazard rate of min (X1,X2) in (left panel), r12(x1|x2)|X1>X2
in (middle panel) and

r21(x2|x1)|X1<X2
in (right panel) using data set I.

It is clear that the hazard rate of min (X1,X2), r12(x1|x2)|X1>X2
, and r21(x2|x1)|X1<X2

decreases.

6.2. The second data set (II): Football data

This data is reported in Lee and Cha (2015), and it represents a football match score in Italian football
match (Serie A) during 1996 to 2011, between ACF Fiorentina(X1) and Juventus(X2). Figure 6 plots the
football match score data.
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Figure 6. Scatter plot of the football match data.

Here, we fit at first the marginals X1 and X2 separately and the min(X1,X2). The MLEs of the parameters
θ and ζ of the corresponding DsIW distribution for X1, X2 and min(X1,X2) are (0.237, 2.798), (0.095, 2.601)
and (0.310, 3.103) respectively. The −L values are 30.86, 33.73 and 28.02 respectively. Moreover, the p-values
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ranged from 0.674 to 0.873. Figure 7 shows the estimated PMF plots for the marginals X1, X2 and min(X1,X2)
using data set II.
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Figure 7. The estimated PMF for the marginals X1, X2 and min(X1,X2) using data set II.

Depending on Figure 7 and p-values, it is clear that the DsIW distribution fits the data for the marginals.
Table 9 lists some descriptive statistics for data set II using the marginals of the BDsIW distribution.

Table 9. Summary statistics relative to data set II using the marginals of the BDsIW distribution.

Mean Variance Skewness Kurtosis
Marginal ↓Measure→ Statistics Std.err Statistics Statistics Std.err Statistics Std.err

X1 1.500 0.149 0.672 0.000 0.427 −0.347 0.833
X2 1.367 0.162 0.792 0.433 0.427 −0.374 0.833

Regarding Table 9, it is clear that the variance is smaller than the mean. Hence, this data represents under-
dispersed data. Here, we fit the BDsIW distribution on this data. The MLEs, −L, AIC, CAIC, BIC, and
HQIC values for the tested bivariate models are reported in Table 10.

Table 10. The MLEs, − L, AIC, CAIC, BIC, and HQIC values for data set II.

Model MLEs −L AIC CAIC BIC HQIC

BPo λ̂1 = 1.08, λ̂2 = 1.75, α̂1 = 1.01, α̂2 = 4.02 62.52 133.05 134.94 138.07 134.49
BBi p̂1 = 0.012, p̂2 = 0.018, n̂1 = 4325, n̂2 = 4215, 63.72 139.44 143.86 146.99 141.61

α̂1 = 0.174, α̂2 = 0.138

BPoH â = 1.08, b̂ = 1.38, ĉ = 0.70 64.92 135.83 136.93 139.61 136.93

IBPo λ̂1 = 1.08, λ̂2 = 1.38 67.60 139.21 139.72 141.72 139.92

BDsIE θ̂1 = 0.669, θ̂2 = 0.388, θ̂3 = 0.514 78.54 163.07 163.99 167.28 164.42

BDsIR θ̂1 = 0.493, θ̂2 = 0.212, θ̂3 = 0.561 64.10 134.21 135.29 137.98 135.29

BDsIW θ̂1 = 0.420, θ̂2 = 0.141, θ̂3 = 0.587, ζ̂ = 2.738 61.96 131.82 133.82 136.95 133.37

In Table 10, it is observed that the BDsIW distribution provides a better fit than other tested distributions,
because it has the smallest values among −L, AIC, CAIC, BIC and HQIC. The profiles of the log-likelihood
function for its parameters are unimodal functions. The approximate 95% CI of the parameters θ1, θ2, θ3

and ζ are given respectively as [0.171, 0.521], [0, 0.274], [0.181, 0.641] and [1.378, 3.495]. Here, we want to
perform the following two tests:

Test 1: H01 : ζ = 1 (BDsIE) against H11 : ζ , 1 (BDsIW).

Test 2: H02 : ζ = 2 (BDsIR) against H12 : ζ , 2 (BDsIW).
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The Λ, d.f and p-values for the BDsIE and BDsIR distributions are reported in Table 11 using data set II.

Table 11. The Λ, d.f and p-values for data set II.

Model H◦ Λ d.f p-values

BDsIE ζ = 1 33.152 1 < 0.01
BDsIR ζ = 2 4.288 1 0.03

We can conclude that H01 and H02 are rejected with 5% level of significance. Hence, the BDsIE and BDsIR
distributions cannot be used for this data set. So, we prefer the BDsIW distribution for analyzing this data.
Figure 8 shows the estimated joint PMF for BDsIW, BDsIE, and BDsIR distributions, which support the
results of Table 11.
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Figure 8. The estimated joint PMF for the BDsIW, BDsIE and BDsIR distributions using data set II.

Table 12 summaries statistics for data set II using the BDsIW distribution.

Table 12. Summary statistics relative to data set II.

Model ↓Measure→ Correlation Skewness Kurtosis

BDsIW 0.524 0.289 0.694

It is clear that the correlation between X1 and X2 is positive and strong. Further, the skewness and kurtosis
are positive.
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6.3. The third data set (III): Nasal drainage severity score data

This data is reported in Davis (2002), and it represents the efficacy of steam inhalation in the treatment
of common cold symptoms. Figure 9 plots the Nasal drainage severity score data.
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Figure 9. Scatter plot of the Nasal drainage severity
score data.

We fit at first the marginals X1 and X2 separately and min(X1,X2). The MLEs of the parameters θ and ζ of
the corresponding DsIW distribution for X1, X2 and min(X1,X2) are (0.065, 2.505), (0.115, 2.524) and (0.181,
2.699) respectively. The −L values are 40.99, 39.83 and 36.68 respectively. Moreover, the p-values ranged
from 0.728 to 0.896. Figure 10 shows the estimated PMF plots for the marginals X1, X2 and min(X1,X2)
using data set III.
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Figure 10. The estimated PMF for the marginals X1, X2 and min(X1,X2) using data set III.
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From Figure 10 and p-values, it is clear that the DsIW distribution fits the data for the marginals. Table 13
lists some descriptive statistics for data set III using the marginals of the BDsIW distribution.

Table 13. Summary statistics relative to data set III using the marginals of the BDsIW distribution.

Mean Variance Skewness Kurtosis
Marginal ↓Measure→ Statistics Std.err Statistics Statistics Std.err Statistics Std.err

X1 1.076 0.183 0.874 1.111 0.456 0.785 0.887
X2 1.384 0.167 0.726 0.390 0.456 −0.238 0.887

Regarding Table 13, it is clear that the variance is smaller than the mean. Hence, this data represents
under-dispersed data. Now, we fit BDsIW distribution on this data. The MLEs, −L, AIC, CAIC, BIC, and
HQIC values for the tested bivariate models are reported in Table 14.

Table 14. The MLEs, − L, AIC, CAIC, BIC and HQIC values for data set III.

Model MLEs −L AIC CAIC BIC HQIC

BPo λ̂1 = 0.262, α̂1 = 0.165, λ̂2 = 0.405, α̂2 = 2.97 77.66 163.33 164.93 168.93 164.66
BBi p̂1 = 0.145, p̂2 = 0.122, n̂1 = 452, n̂2 = 468, 81.14 174.28 177.93 182.69 176.97

α̂1 = 0.396, α̂2 = 0.748

BPoH â = 1.369, b̂ = 2.314, ĉ = 0.396 82.36 170.72 171.64 174.92 172.06

IBPo λ̂1 = 1.499, λ̂2 = 1.367 80.66 165.32 165.76 168.12 166.21

BDsIE θ̂1 = 0.501, θ̂2 = 0.622, θ̂3 = 0.383 92.48 190.96 191.88 195.16 192.30

BDsIR θ̂1 = 0.262, θ̂2 = 0.405, θ̂3 = 0.363 78.66 163.32 164.24 167.52 164.66

BDsIW θ̂1 = 0.192, θ̂2 = 0.337, θ̂3 = 0.360, ζ̂ = 2.453 76.51 161.02 162.62 166.62 162.81

From Table 14, it is clear that BDsIW distribution provides a better fit than other tested distributions. The
profiles of the log-likelihood function for its parameters are unimodal functions. The approximate 95% two
sided CI of the parameters θ1, θ2, θ3 and ζ are given respectively as [0, 0.301], [0.105, 0.492], [0.116, 0.451]
and [1.120, 2.974]. Here, we want to perform the following two tests:

Test 1: H01 : ζ = 1 (BDsIE) against H11 : ζ , 1 (BDsIW).

Test 2: H02 : ζ = 2 (BDsIR) against H12 : ζ , 2 (BDsIW).

Table 15 shows the Λ and p-values for BDsIE and BDsIR distributions using data set III.

Table 15. The Λ, d.f and p-values for data set III.

Model H◦ Λ d.f. p-values

BDIE ζ = 1 31.94 1 < 0.01
BDIR ζ = 2 4.3 1 0.03

From Table 15, we can conclude that H01 and H02 are rejected with 5% level of significance. So, we prefer
the BDsIW distribution for analyzing this data. Figure 11 shows the estimated joint PMF for the BDsIW,
BDsIE and BDsIR distributions, which support the results of Table 15.
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Figure 11. The estimated joint PMF for the BDsIW, BDsIE and BDsIR distributions using data set III.

Table 16 summaries statistics for data set III using the BDsIW distribution.

Table 16. Summary statistics relative to data set III.

Model ↓Measure→ Correlation Skewness Kurtosis

BDsIW 0.403 0.699 0.989

It is clear that the correlation between X1 and X2 is positive and weak. Moreover, the skewness and kurtosis
are positive. In Table 17 the results of BSE for the real data sets are listed.

Table 17. Posterior summaries for real data sets

Data Parameters Mean MSE MC Error Median Credible intervals

I θ1 0.272 0.198 0.0011 0.275 [0.195, 0.299]
θ2 0.248 0.201 0.0009 0.246 [0.183, 0.256]
θ3 0.210 0.199 0.0013 0.212 [0.129, 0.256]
ζ 0.390 0.209 0.0028 0.389 [0.266, 0.453]

II θ1 0.410 0.214 0.0031 0.417 [0.301, 0.502]
θ2 0.140 0.247 0.0011 0.101 [0.056, 0.188]
θ3 0.577 0.176 0.0029 0.566 [0.430, 0.679]
ζ 2.729 0.248 0.0030 2.726 [2.302, 3.168]

III θ1 0.192 0.064 0.0018 0.041 [0.111, 0.231]
θ2 0.339 0.107 0.0024 0.335 [0.301, 0.399]
θ3 0.358 0.105 0.0016 0.355 [0.301, 0.413]
ζ 2.450 0.124 0.0010 2.446 [2.103, 3.127]

The results presented in Table 17 are very similar to the MLE results.

7. Conclusions

In this paper, we have proposed a flexible bivariate discrete distribution, in the so-called BDsIW dis-
tribution. The proposed model has the marginals, which are discrete inverse Weibull distributions. The
joint CDF and joint PMF have simple forms. Therefore, the new bivariate discrete distribution can be easily
used in practice for modeling bivariate discrete data. Some statistical properties have been discussed in
detail. Moreover, the simulation results have indicated that the MLE and BSE work quite satisfactorily
and its can be used to estimate the model parameters. Finally, three real data sets have been analyzed,
and it is observed that the BDsIW distribution is better than the BPo, BBi, BPoH, IBPo, BDsIE and BDsIR
distributions to analyze the data considered herein.
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copula, different estimation methods, applications and validation testing. Mathematics, 8(11), 1949.
[29] Shakhatreh, M. K., Lemonte, A. J., and Moreno-Arenas, G. (2019). The log-normal modified Weibull distribution and its reliability

implications. Reliability engineering and system safety, 188, 6-22.
[30] Silva, G. O., Ortega, E. M., and Cordeiro, G. M. (2010). The beta modified Weibull distribution. Lifetime data analysis, 16(3),

409-430.
[31] Tahir, M. H., Hussain, M. A., Cordeiro, G. M., El-Morshedy, M., and Eliwa, M. S. (2020). A new Kumaraswamy generalized

family of distributions with properties, applications, and bivariate extension. Mathematics, 8(11), 1989.
[32] Wang, M., and Rennolls, K. (2007). Bivariate distribution modeling with tree diameter and height data. Forest science, 53(1),

16-24.
[33] Wu, X., and Yuen, K. C., (2003). A discrete-time risk model with interaction between classes of business. Insurance: mathematics

and economics, 33, 117-133.
[34] Yuen, K. C., Guo, J., and Wu, X., (2006). On the first time of ruin in the bivariate compound Poisson model. Insurance: mathematics

and economics, 38, 298-308.



M. S. Eliwa, M. El-Morshedy / Filomat 34:8 (2020), 2511–2531 2531

Appendix

The normal equations obtaining from likelihood functions can be expressed as follows:

∂L

∂θ1
=

n1∑

j=1

θ3Φ2(x1 j + 1;θ1θ3, ζ) − θ3Φ2(x1 j;θ1θ3, ζ)

Φ1(x1 j;θ1θ3, ζ)
+

n2∑

j=1

Φ2(x1 j + 1;θ, ζ) −Φ2(x1 j;θ, ζ)

Φ1(x1 j;θ1, ζ)
+

n3∑

j=1

θ3θ
(x j+1)−ζ

2

[
Φ2(x j + 1;θ1θ3, ζ) −Φ2(x j;θ1θ3, ζ)

]
− (θ2θ3)(x j)

−ζ [
Φ2(x j + 1;θ1, ζ) −Φ2(x j;θ1, ζ)

]

θ
(x j+1)−ζ

2
Φ1(x j;θ1θ3, ζ) − (θ2θ3)(x j)−ζ Φ1(x j;θ1, ζ)

,

∂L

∂θ2
=

n1∑

j=1

Φ2(x2 j + 1;θ2, ζ) −Φ2(x2 j;θ2, ζ)

Φ1(x2 j;θ2, ζ)
+

n2∑

j=1

θ3Φ2(x2 j + 1;θ2θ3, ζ) − θ3Φ2(x2 j;θ2θ3, ζ)

Φ1(x2 j;θ1, ζ)

n3

+
∑

j=1

Φ2(x j + 1;θ2, ζ)Φ1(x j;θ1θ3, ζ) − θ3Φ2(x j;θ2θ3, ζ)Φ2(x j;θ1, ζ)

θ
(x j+1)−ζ

2
Φ1(x j;θ1θ3, ζ) − (θ2θ3)(x j)−ζ Φ1(x j;θ1, ζ)

,

∂L

∂θ3
=

n1∑

j=1

θ1

[
Φ2(x1 j + 1;θ1θ3, ζ) −Φ2(x1 j;θ1θ3, ζ)

]

Φ1(x1 j;θ1θ3, ζ)
+

n2∑

j=1

θ2

[
Φ2(x2 j + 1;θ2θ3, ζ) −Φ2(x2 j;θ2θ3, ζ)

]

Φ1(x2 j;θ2θ3, ζ)
+

n3∑

j=1

θ1θ
(x j+1)−ζ

2

[
Φ2(x j + 1;θ1θ3, ζ) −Φ2(x j;θ1θ3, ζ)

]
− θ2Φ2(x j;θ2θ3, ζ)Φ1(x j;θ1, ζ)

θ
(x j+1)−ζ

2
Φ1(x j;θ1θ3, ζ) − (θ2θ3)(x j)−ζ Φ1(x j;θ1, ζ)

and

∂L

∂ζ
=

n1∑

j=1

Φ3(x1 j;θ1θ3, ζ) −Φ3(x1 j + 1;θ1θ3, ζ)

Φ1(x1 j;θ1θ3, ζ)
+

n1∑

j=1

Φ3(x2 j;θ2, ζ) −Φ3(x2 j + 1;θ2, ζ)

Φ1(x2 j;θ2, ζ)

+

n2∑

j=1

Φ3(x1 j;θ1, ζ) −Φ3(x1 j + 1;θ1, ζ)

Φ1(x1 j;θ1, ζ)
+

n2∑

j=1

Φ3(x2 j;θ2θ3, ζ) −Φ3(x2 j + 1;θ2θ3, ζ)

Φ1(x2 j;θ2θ3, ζ)

n3

+
∑

j=1

θ
(x j+1)−ζ

2

[
Φ3(x j;θ1θ3, ζ) −Φ3(x j + 1;θ1θ3, ζ)

]
−Φ1(x j;θ1θ3, ζ)Φ3(x j + 1;θ2, ζ)

θ
(x j+1)−ζ

2
Φ1(x j;θ1θ3, ζ) − (θ2θ3)(x j)−ζ Φ1(x j;θ1, ζ)

n3

+
∑

j=1

(θ2θ3)(x j)
−ζ [
Φ3(x j + 1;θ1, ζ) −Φ3(x j;θ1, ζ)

]
−Φ1(x j;θ1, ζ)Φ3(x j;θ2θ3, ζ)

θ
(x j+1)−ζ

2
Φ1(x j;θ1θ3, ζ) − (θ2θ3)(x j)−ζ Φ1(x j;θ1, ζ)

.


