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Abstract.
The power graphP(G) of a group G is the graph with vertex set G and two distinct vertices are adjacent

if one is a power of the other. Two finite groups are said to be conformal, if they contain the same number
of elements of each order. Let Y be a family of all non-isomorphic odd order finite nilpotent groups of class
two or p-groups of class less than p. In this paper, we prove that the power graph of each group in Y is
isomorphic to the power graph of an abelian group and two groups in Y have isomorphic power graphs if
they are conformal. We determine the number of maximal cyclic subgroups of a generalized extraspecial
p-group (p odd) by determining the power graph of this group. We also determine the power graph of a
p-group of order p4 (p odd).

1. Introduction

Given a group, there are different methods to associate a graph with the group. Recently, the power
graph associated with a group has deserved a lot of attention. The term “power graph” was first considered
and introduced by Kelarev and Quinn [12]. Let G be a group. The undirected power graph P(G) has the
vertex set G and two distinct vertices x and y are adjacent if x = ym or y = xm for some positive integer m.
Because this paper deals only with undirected graphs, for convenience throughout we use the term “power
graph” to refer to an undirected power graph defined as above, see also [1, Section 3].

Recently, a lot of interesting results on the power graphs have been obtained, see for examples [3–
5, 8, 18]. A detailed list of open problems and results about power graphs can be found in [1]. Cameron
and Ghosh [4] showed that for two finite abelian groups A1 and A2, P(A1) � P(A2) if and only if A1 � A2.
They also showed that two finite groups which have isomorphic power graphs are conformal [3, 4]. In
general, converse of above result is false (see Remark 4.17). In Section 4 of this paper, we find a family
of non-abelian groups in which converse holds, that is, if two finite groups are conformal, then they have
isomorphic power graphs.

In [15], Mehranian, Gholami and Ashrafi gave the structure of the power graphs of cyclic groups, dicyclic
groups, semidihedral groups and Mathieu group M11 or the Janko group J1. In [10], Ghorbani and Barfaraz
obtained the structure of power graphs of groups of order a product of three primes. The structure of the
power graphs of elementary abelian p-groups and dihedral groups are also known [7, 18].
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In this paper, we find the structure of the power graphs of generalized extraspecial p-groups and p-
groups of order p4 (p odd) and as an application, we find the number of maximal cyclic subgroups (a cyclic
subgroup that is not a proper subgroup of any another proper cyclic subgroup) of generalized extraspecial
p-groups. Let Z(G) denote the center of the group G. A finite p-group G is called extraspecial p-group if
Z(G) and γ2(G) coincide and have order p, where γ2(G) is the commutator subgroup of G. If Z(G) of a finite
p-group G is cyclic and γ2(G) has order p, then G is said to be a generalized extraspecial p-group. For more
details see [19].

2. Notations and Basic Definitions

Throughout the paper all groups considered are finite and p denotes a prime. Let C(G) denote the set
of all distinct cyclic subgroups of the group G. Further, let ck(G) denote the number of cyclic subgroups of
order pk (k is a non-negative integer) in the group G. Cardinality of a set X is denoted by |X|, o(x) denotes
the order of the element x in the group G and identity element of the group G is denoted by 1.

Let Γ be a graph. A set of pairwise non-adjacent vertices of Γ is called an independent set. The
independence number of a graph Γ is the cardinality of the largest independent set and is denoted by β(Γ).
Let Γ1 and Γ2 be the graphs with disjoint vertex sets V1 and V2 and edge sets E1 and E2 respectively. Then
their union Γ1 ∪ Γ2 is the graph with vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2. The join of Γ1 and Γ2
is denoted by Γ1 + Γ2 and it consists of graph Γ1 ∪ Γ2 and all edges joining V1 with V2. For any graph Γ, let
∪

s
i=1Γ denote the graph obtain by union of s copies of Γ.

Definition 2.1. Let G be a group. For elements u and v in G, define a relation R such that uRv if 〈u〉 = 〈v〉. It is
evident that R is an equivalence relation.

Let [u] denote the equivalence class containing u ∈ G under the relation R and let C′(G) denote the set of all
equivalence classes G/R. Following [9], write

C
′(G) = {[u] | u ∈ G} = {[u00], [u11], · · · , [u1i], · · · , [u21], · · · , [umn]}, (1)

where [u00] = {1} and [uit] = {uit,1, · · · ,uit,ri }.

Definition 2.2. Let G be a group. For u and v in G, we say u ≺ v if one of the following holds.
(i) for some i and t, u = uit,l1 , v = vit,l2 , and l1 < l2.

(ii) 〈u〉 $ 〈v〉.

Define u � v if u ≺ v or u = v.

Definition 2.3. [9] An ordered pair (S,�S), where S is a finite set, is said to be a partially ordered set or poset if the
binary relation �S is reflexive, antisymmetric and transitive. For u, v ∈ S, if u �S v or v �s u, then u and v are said
to be comparable otherwise u and v are incomparable.

Definition 2.4. [9] Let (S,�S) be a poset. Then the comparability graph of S is the graph with vertex set S, where
two distinct elements are joined if they are comparable and it is denoted by TS.

Let G be a group. It is immediate from Definition 2.2, (G,�) is a poset. For rest of this paper, let us
denote this poset by LG. Clearly, the comparability graph of LG is the power graph of a group G, that is,
P(G) = TLG ([9, Example 1]).

Definition 2.5. [9] A subset S′ of S in a poset (S,�S) is said to be chain, if all elements in S′ are pairwise comparable.
A subset W of S is said to be homogeneous if one of the following condition holds, for any v ∈ S\W.

• for all u ∈W, u �S v.

• for all u ∈W, v �S u.

• for all u ∈W, u and v are incomparable.

Definition 2.6. [9] A chain in a poset (S,�S) that is also homogeneous is called a homogeneous chain.

Remark 2.7. [9, Example 2] Let G be group. Then each element [x] ∈ C′(G) is a homogeneous chain in LG.
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3. Basic Results

In this section, we state some results that will be used later. Let G � Zpα1 × Zpα2 × · · · × Zpαs �

〈x1〉 × 〈x2〉 × · · · × 〈xs〉 such that xpαi

i = 1 for i ∈ {1, 2, · · · , s} and α1, ..., αs ≥ 1. Then we have the following
result.

Lemma 3.1. If 1 , 1 ∈ G, where 1 = xpk1β1

1 xpk2β2

2 · · · xpksβs
s such that 0 < ki and p - βi ∀ i, then there are ps−1 cyclic

subgroups of order o(1)p containing 〈1〉. Further, if for some i = io, kio = 0, βio , 0, then there doesn’t exist any cyclic
subgroup of order o(1)p containing 〈1〉.

Proof. Let 1 ∈ G such that 1 = xpk1β1

1 xpk2β2

2 · · · xpksβs
s where p - βi. First, we count the number of elements h ∈ G

such that hp = 1. Consider h = xr1
1 xr2

2 · · · x
rs
s . Now, hp = 1 implies xpr1

1 xpr2

2 · · · x
prs
s = xpk1β1

1 xpk2β2

2 · · · xpksβs
s . So

pkiβi = pri mod pαi ∀ i ∈ {1, 2, · · · , s}. For fixed i, latter equation has integer solution ri if and only if p | pkiβi.
Thus, if for some i = io, kio = 0 and βio , 0, then there doesn’t exist any h ∈ G such that hp = 1.

Now, assume ki > 0, ∀ i. So, if pkiβi ≡ pri mod pαi , then pki−1βi ≡ ri mod pαi−1. Thus, the latter equation
has p distinct solutions for each fixed i and that are ri = pki−1βi + kpαi−1, where 0 ≤ k ≤ p − 1. Thus, for given

1 = xpk1β1

1 xpk2β2

2 · · · xpksβs
s , where p - βi and ki > 0, there are ps elements h ∈ G such that hp = 1 and o(h) = o(1)p.

Now, let 〈h〉 be a cyclic subgroup of order o(1)p such that 〈1〉 ⊂ 〈h〉 and hp = 1. Suppose w ∈ 〈h〉 such
that wp = 1, then w = hr and hrp = wp = 1. This implies that rp ≡ p mod o(h). Thus, r = 1 + k o(h)

p , where
1 ≤ k ≤ p. Thus, each cyclic subgroup 〈h〉 of order o(1)p contains p distinct elements w ∈ 〈h〉 such that wp = 1.
Hence that, there are ps

p = ps−1 cyclic subgroups of order o(1)p containing 1 for ki > 0 ∀ i. This completes the
proof.

Lemma 3.2. Let G be a finite abelian group such that G � Zpm × Zp × · · · ×Zp︸          ︷︷          ︸
n factors

. Then the number of elements of

order pt in G is
1, t = 0
pn+1
− 1, t = 1

pn+t
− pn+t−1 2 ≤ t ≤ m.

Proof. Let a1, a2, . . . , an, an+1 be the generators of G such that apm

1 = 1, ap
i = 1, for i = 2, 3, . . . ,n + 1. Then each

element of G is uniquely written as
∏n+1

i=1 aβi

i , 0 ≤ β1 < pm, 0 ≤ βi < p for i = 2, 3, · · · ,n + 1.
Take 1 =

∏n+1
i=1 aβi

i . Now, for 1 ≤ t ≤ m,

1pt
=

n+1∏
i=1

aβi

i


pt

= aβ1pt

1 .

Thus, the number of the elements 1 ∈ G such that 1pt
= 1 is pn+t. Hence, the number of elements of order pt

of G is pn+1
− 1, for t = 1 and pn+t

− pn+t−1, for 2 ≤ t ≤ m. This completes the proof.

Corollary 3.3. Let G be a finite abelian group such that G � Zpm ×Zp × · · · ×Zp︸          ︷︷          ︸
n factors

. Then

ct(G) =


1, t = 0
pn+1
−1

p−1 , t = 1

pn 2 ≤ t ≤ m.
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Proof. The number of elements of order pt is equal to ct(G)φ(pt). Thus, the result follows from the Lemma
3.2.

Theorem 3.4. [14] Let A � Zpm ×Zpm × · · · ×Zpm︸                      ︷︷                      ︸
n factors

. Then P(A) is isomorphic to

K1 + ∪l
i=1

(
Kφ(p) + ∪

pn−1

i=1

(
Kφ(p2) + ∪

pn−1

i=1

(
· · · + ∪

pn−1

i=1

(
Kφ(pm−1) + ∪

pn−1

i=1 Kφ(pm)

)
· · ·

)))
,

where l =
pn
−1

p−1 .

Let G be a finite group. Recall that a cyclic subgroup of G that is not a proper subgroup of any other
proper cyclic subgroup of G is called a maximal cyclic subgroup of G. LetMG denote the set of all maximal
cyclic subgroups of G.

Theorem 3.5. [13, Corollary 2.14] Let G be a p-group. Then β(P(G)) = |MG|.

Following [16], two finite groups are said to be conformal if they have same number of elements of each
order.

Theorem 3.6. [16, Page 107] Two finite abelian groups are isomorphic if and only if they are conformal.

4. Power Graph of a Nilpotent Group

In this section, we use Baer’s trick to prove Theorem 4.1 and 4.2.
Let G be a group. Then we may define a binary operation ◦ on G by x◦ y = w(x, y) where w is some fixed

word in x and y. If the set G, with the binary operation ◦, define a group, then we say w to be a group-word
for G, and we write the corresponding group by Gw, that is, as a set Gw = G and operation of Gw is ◦.

Let (H, ·) be an odd order nilpotent group of class two. Then we can define a group-word w as
follows: for x, y ∈ H, w(x, y) := xy[x, y]n (by xy we mean x · y). If γ2(H) the commutator subgroup
of H, has finite exponent m and n = m−1

2 , then corresponding group Hw is an abelian group. Indeed,
x ◦ y = xy[x, y]

m−1
2 = yx[x, y]

m+1
2 = yx[y, x]

m−1
2 = y ◦ x (for more details see [11, p. 142]). This Hw is the

corresponding abelian group to H. It is easy to observe that H and Hw are conformal.

Theorem 4.1. Let H be an odd order nilpotent group of class two. Then P(H) � P(Hw).

Proof. The powers of elements in H and Hw are same. Thus, P(H) � P(Hw). This completes the proof.

Above result is false for an even ordered group. For example, D8 the dihedral group of order 16, is
a nilpotent group of class two but P(D8) is not isomorphic to the power graph of any abelian group [17,
Theorem 15].

Theorem 4.2. Let H1 and H2 be two odd order nilpotent group of class two. If H1 and H2 are conformal, then
P(H1) � P(H2).

Proof. By Theorem 4.1, P(H1) � P(H1
w) and P(H2) � P(H2

w). Also Hi is conformal to Hi
w, i = 1 or 2. Hence,

H1
w and H2

w are conformal. So, by Theorem 3.6, H1
w � H2

w. Thus, P(H1
w) � P(H2

w). Hence, P(H1) � P(H2).
This completes the proof.

Two finite groups with isomorphic power graphs are conformal and two finite abelian groups have
isomorphic power graphs if and only if they are isomorphic (see [3, 4]). Thus, we can easily deduce the
following corollaries.

Corollary 4.3. The power graphs of two odd order nilpotent groups of class at most two are isomorphic if and only if
they are conformal.
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Corollary 4.4. The number of non-isomorphic power graphs for the nilpotent groups of class at most two and order
n (n is odd) is equal to the number of non-isomorphic abelian groups of order n.

For finite p-groups, Theorems 4.1, 4.2 can be generalized for groups of larger class. If the class of a
finite p-group G is less than p, then there exists a group-word w such that Gw is an abelian group [6, p. 446,
Theorem 4.8]. In fact, following [6], group-word w which makes Gw abelian, can be obtained from Lazard’s
inversion of the Baker-Campbell-Hausdorff formula

x ◦ y = xy[x, y]−1/2[[x, y], x]1/12[[x, y], y]−1/12
· · ·

Thus, in similar manner as above, we can easily deduce the following result.

Theorem 4.5. Let X be a class of all finite non-isomorphic p-groups of class less than p. Then for G ∈ X, P(G) �
P(Gw), where Gw is the corresponding abelian group to G and two groups in X have isomorphic power graphs if they
are conformal.

Proposition 4.6. Let G be p-group of class less than p with |G| = pr1+···+rs such that

G = 〈x1, x2, x3, · · · , xs | x
pr1

1 = xpr2

2 = · · · = xprs

s = 1,R〉,

where R is a set of commutator relations. Then the corresponding abelian group Gw is given as

Gw � Zpr1 × · · · ×Zprs .

Proof. Let K = 〈x1, x2, x3, · · · , xs | xpr1

1 = · · · = xprs

s = 1, xix j = x jxi for i, j ∈ {1, · · · , s}〉. Clearly, Gw =

〈x1, x2, x3, · · · , xs〉 and Gw = G as a set. Since powers of each element in G and Gw are same, so xpr1

1 = xpr2

2 =

· · · = xprs

s = 1 in Gw. Also, xi ◦ x j = x j ◦ xi for all i, j. Thus, the generators of Gw satisfy the relations of K, so
by Von Dyck’s Theorem [19, Page 51], there is a surjective homomorphism φ : K −→ Gw with xi → xi for all
i ∈ {1, · · · , s}. Moreover, |Gw| = |G|. So, |Gw| = |K|. Thus, Gw � K. This completes the proof.

4.1. Power Graph of a Generalized Extraspecial p-Group, p Odd
In this subsection, we find the structure of power graph of a generalized extraspecial p-group G (p odd)

and as a consequence, we also find the cardinality of the setMG.
Let G be a generalized extraspecial p-group of order p2n+m, m ≥ 1 and p odd (for m = 1, G will be

extraspecial p-group). Then G has generators a1, a2, · · · , a2n, b which satisfy the following conditions:

Z(G) = 〈b〉, bpm
= 1, ap

i = 1 for i ∈ {2, · · · , 2n}

[a2i−1, a2i] = bpm−1
, i ∈ {1, 2, · · · ,n}

[a2i−1, a j] = 1, j , 2i
[a2i, ak] = 1, k , 2i − 1,

and either ap
1 = 1 (in this case, G is called generalized extraspecial p-group of exponent pm) or ap

1 = b (in this
case, G is called generalized extraspecial p-group of exponent pm+1). For more details see [19].

Proposition 4.7. 1. If G is a generalized extraspecial p-group of order p2n+m with exponent pm and p odd, then
P(G) � P(A), where A � Zpm ×Zp × · · · ×Zp︸          ︷︷          ︸

2n factors

.

2. If G is a generalized extraspecial p-group of order p2n+m with exponent pm+1 and p odd, then P(G) � P(A),
where A � Zpm+1 ×Zp × · · · ×Zp︸          ︷︷          ︸

(2n − 1) factors

.
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Proof. This follows from Theorem 4.5 and Proposition 4.6.

Now the problem reduces to the problem of determining the power graph of the abelian group E �
Zpm ×Zp × · · · ×Zp︸          ︷︷          ︸

n-1 factors

� 〈x1〉 × 〈x2〉 × · · · × 〈xn〉, where o(x1) = pm and o(xi) = p, for 2 ≤ i ≤ n and n > 1.

Theorem 4.8. The power graph P(E) is isomorphic to the graph

K1 +
[
Γ1 ∪

(
Kφ(p) +

[
Γ2 ∪

(
Kφ(p2) +

[
Γ3 ∪

(
Kφ(p3) +

[
· · · +

[
Γm−1 ∪

(
Kφ(pm−1) +

[
Γm ∪ Kφ(pm)

])]
· · ·

])])])]
,

where Γ j = ∪
pn−1
−1

i=1 Kφ(p j), for j ∈ {2, 3, · · · ,m} and Γ1 = ∪
pn
−1

p−1 −1

i=1 Kφ(p).

Proof. Let us identify E with 〈x1〉 × 〈x2〉 × · · · × 〈xn〉, where o(x1) = pm and o(xi) = p, for 2 ≤ i ≤ n. Then by
Corollary 3.3, E has pn

−1
p−1 cyclic subgroups of order p and these cyclic subgroups are given as:

〈xpm−1

1 〉, 〈xα1pm−1

1 x2〉, 〈x
α1pm−1

1 xα2
2 x3〉, · · · , 〈x

α1pm−1

1 xα2
2 . . . xαn−1

n−1 xn〉,

where αi ∈ {1, 2, . . . , p} for 1 ≤ i ≤ n − 1. For m = 1, these are the only non-trivial cyclic subgroups of E.
Assume m ≥ 2.

By Lemma 3.1, except the cyclic subgroup 〈xpm−1

1 〉, none of the other cyclic subgroups of order p are

contained in cyclic subgroups of a higher order. Moreover, cyclic subgroup 〈xpm−t+1

1 〉 of order pt−1, t > 1 is
contained in pn−1 cyclic subgroups of order pt. Since, the number of all cyclic subgroups of order pt, t > 1
in the group E is pn−1 (Corollary 3.3), the cyclic subgroup 〈xpm−t+1

〉 of order pt−1 is contained in all cyclic
subgroups of order pt.

Recall that C′(E) = {[x] | 〈x〉 ∈ C(G)}, where [x] = {y ∈ G | 〈y〉 = 〈x〉}. Thus, the set C′(E) has pn−1

equivalence classes of cardinality φ(pt) for 1 < t ≤ m, pn
−1

p−1 equivalence classes of cardinality φ(p) and one
equivalence class of cardinality one.

Following (1), we write
C
′(E) =

{
[V00], [Vit] | i ∈ {1, · · · ,m} and 1 ≤ t ≤ pn

−1
p−1 , for i=1 and 1 ≤ t ≤ pn−1, for i > 1

}
, where [Vit]

denotes the equivalence class of cardinality φ(pi). Moreover, [V00] = {1} and [Vit] = {xit,1, · · · , xit,φ(pi)}. By
Remark 2.7, each element [Vit] gives a chain

xit,1 � · · · � xit,φ(pi)

of lengthφ(pi) in the posetLE.Clearly, the identity element of the group E is comparable with every element
of E in LE. Now, collecting all arguments, we draw the Hasse diagram of the poset LE in Figure 1.

In Figure 1, Vit denotes the chain

xit,1

xit,2

xit,φ(pi)−1

xit,φ(pi)

corresponding to the elements of [Vit]. Here xit,1 is called the minimal element and xit,φ(pi) is called the
maximal element of the chain. In Figure 1, edge between Vit and Vi′t′ (i < i′) means there is an edge between
the maximal element of Vit and minimal element of Vi′t′ .
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V00

V11

V21

V31

V(m−1)1

Vm1

Vm2

Vmpn−1

V3pn−1

V32

V12
V1 pn−1

p−1

V22

V2pn−1

Figure 1: Hasse Diagram of LE

We know that the comparability graph TLE of the poset LE is equal to the power graph of E. Now we
deduce theP(E) with the help of Figure 1. Each [Vi j] is a chain of length φ(pi), so the vertices corresponding
to the elements of [Vi j] give a complete graph Kφ(pi) in P(E). Moreover, each [Vi j] is a homogeneous chain.
Therefore if xi j,m � xi′ j′,m′ or xi′ j′,m′ � xi j,m for some xi j,m ∈ [Vi j] and xi′ j′,m′ ∈ [Vi′ j′ ], then we get Kφ(pi) + Kφ(pi′ ) in
P(E) corresponding the vertex subset [Vi j]∪ [Vi′ j′ ], otherwise vertices corresponding to subset [Vi j]∪ [Vi′ j′ ]
give union of graphs Kφ(pi) and Kφ(pi′ ) in P(E). Now by Figure 1, we can conclude the result.

By Propositions 4.7 and Theorem 4.8, we deduce the following corollaries.

Corollary 4.9. Let G be a generalized extraspecial p-group of order p2n+m with exponent pm, p odd. Then P(G) is
isomorphic to the graph

K1 +
[
Γ1 ∪

(
Kφ(p) +

[
Γ2 ∪

(
Kφ(p2) +

[
Γ3 ∪

(
Kφ(p3) +

[
· · · +

[
Γm−1 ∪

(
Kφ(pm−1) +

[
Γm ∪ Kφ(pm)

])]
· · ·

])])])]
,

where Γ j = ∪
p2n
−1

i=1 Kφ(p j), for j ∈ {2, 3, · · · ,m} and Γ1 = ∪
p2n+1

−1
p−1 −1

i=1 Kφ(p).

Corollary 4.10. Let G be a generalized extraspecial p-group of order p2n+m with exponent pm+1, p odd. Then P(G) is
isomorphic to the graph
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K1 +
[
Γ1 ∪

(
Kφ(p) +

[
Γ2 ∪

(
Kφ(p2) +

[
Γ3 ∪

(
Kφ(p3) +

[
· · · +

[
Γm ∪

(
Kφ(pm) +

[
Γm+1 ∪ Kφ(pm+1)

])]
· · ·

])])])]
,

where Γ j = ∪
p2n−1

−1
i=1 Kφ(p j), for j ∈ {2, 3, · · · ,m + 1} and Γ1 = ∪

p2n
−1

p−1 −1

i=1 Kφ(p).

Theorem 4.11. Let G be a generalized extraspecial p-group of order p2n+m, (p odd). Then

|MG| =

pa−1 + (b − 2)(pa−1
− 1) +

( pa
−1

p−1 − 1
)
, b ≥ 2

pa
−1

p−1 , b = 1,

where a = 2n + 1, b = m, when exponent of G is pm and a = 2n, b = m + 1, when exponent of G is pm+1.

Proof. Firstly, we find the number of maximal cyclic subgroup of E � Zpm × Zp × · · · ×Zp︸          ︷︷          ︸
n-1 factors

. By Figure 1, it

is clear that for x ∈ [Vi j] ( j > 1), 〈x〉 is a maximal cyclic subgroup of E. Also for x ∈ [Vm1], 〈x〉 is a maximal
cyclic subgroup of E. Since for x, y ∈ [Vi j], 〈x〉 = 〈y〉. So we need to count Vi j for j > 1 and Vm1. Thus, by
Figure 5.1, we have

|ME| =

pn−1 + (m − 2)(pn−1
− 1) +

( pn
−1

p−1 − 1
)
, m ≥ 2

pn
−1

p−1 , m = 1.
(2)

By Theorem 3.5 and Theorem 4.7, for generalized extraspecial p-group G of exponent pm
|MG| = |MA1 |,

where A1 � Zpm ×Zp × · · · ×Zp︸          ︷︷          ︸
2n factors

and for generalized extraspecial p-group G of exponent pm+1, |MG| = |MA2 |,

where A2 � Zpm+1 ×Zp × · · · ×Zp︸          ︷︷          ︸
(2n − 1) factors

. Thus, by (2), we can complete the proof.

4.2. Power Graph of a Group of Order p4, p Odd

In this subsection, we find the structure of power graph of a group of order p4 (p odd). Following
[2], there are 15 groups of order p4 up to isomorphism. We number them P1 to P15. The groups P1 to
P5 are abelian, P6 to P10 and P14 are of class 2, and P11 to P13 and P15 are of class 3. Here we list the all
non-isomorphic groups of order p4.

1. P1 = Zp4 .
2. P2 = Zp3 ×Zp.
3. P3 = Zp2 ×Zp2 .
4. P4 = Zp2 ×Zp ×Zp.
5. P5 = Zp ×Zp ×Zp ×Zp.

6. P6 = 〈u, v | up3
= vp = 1, v−1uv = u1+p2

〉.
7. P7 = 〈u, v,w | up2

= vp = wp = 1,uv = vu,wu = uw,w−1vw = vup
〉.

8. P8 = 〈u, v | up2
= vp2

= 1, v−1uv = u1+p
〉.

9. P9 = 〈u, v,w | up2
= vp = wp = 1,w−1uw = u1+p, vu = uv,wv = vw〉.

10. P10 = 〈u, v,w | up2
= vp = wp = 1,uv = vu,w−1uw = uv, vw = wv〉.

11. P11 = 〈u, v,w | up2
= vp = wp = 1, v−1uv = u1+p,w−1uw = uv, vw = wv〉.

12. (a) P12 = 〈u, v,w | up2
= vp = 1,wp = 1, v−1uv = u1+p,w−1uw = uv,w−1vw = upv〉, p > 3.

(b) P12 = 〈u, v,w | up2
= vp = 1,wp = up, v−1uv = u1+p,w−1uw = uv−1, vw = wv〉, p = 3.
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13. (a) P13 = 〈u, v,w | up2
= vp = wp = 1, v−1uv = u1+p,w−1uw = uv,w−1vw = udpv, p > 3 and d is any non

residue mod p.
(b) P13 = 〈u, v,w | up2

= vp = 1,wp = u−p, v−1uv = u1+p,w−1uw = uv−1, vw = wv〉, p = 3.
14. P14 = 〈u, v,w, x | up = vp = wp = xp = 1, x−1wx = wu, vx = xv,ux = xu, vw = wv,uw = wu,uv = vu〉.
15. (a) P15 = 〈u, v,w, x | up = vp = wp = xp = 1, x−1wx = wv, x−1vx = vu, xu = ux, vw = wv,uw = wu,uv =

vu〉, p > 3.
(b) P15 = 〈u, v,w | up2

= vp = wp = 1,uv = vu,w−1uw = uv,w−1vw = u−pv〉, p = 3.

Lemma 4.12. The following hold in groups of order p4, p > 3.

1. P(P6) � P(P2).
2. P(P8) � P(P3).
3. P(P7) � P(P9) � P(P10) � P(P11) � P(P12)) � P(P13) � P(P4).
4. P(P14) � P(P15) � P(P5).

Proof. This follows from Theorem 4.5 and Proposition 4.6.

Lemma 4.13. The following hold in groups of order p4, p = 3.

1. P(P6) � P(P2).
2. P(P8) � P(P3).
3. P(P7) � P(P9) � P(P10) � P(P4).
4. P(P14) � P(P5).

Proof. P6,P7,P8,P9,P10,P14 are p-groups of class 2 and P2,P3,P4,P5 are abelian. Thus, by Theorem 4.1 and
Proposition 4.6, we can conclude the result.

Lemma 4.14. The following hold in groups of order p4, where p is any prime.

1. P(P1) = Kp4 .

2. P(P2) = K1 +
[
∪

p
i=1Kφ(p) ∪

(
Kφ(p) +

[
∪

p−1
i=1 Kφ(p2) ∪

(
Kφ(p2) + ∪

p
i=1Kφ(p3)

)])]
.

3. P(P3) = K1 + ∪
p+1
i=1

[
Kφ(p) + ∪

p
i=1Kφ(p2)

]
.

4. P(P4) = K1 +
[
∪

p+p2

i=1 Kφ(p) ∪

(
Kφ(p) + ∪

p2

i=1Kφ(p2)

)]
.

5. P(P5) = K1 +

[
∪

p4
−1

p−1

i=1 Kφ(p)

]
.

Proof. Since P1 is a cyclic group of order p4, P(P1) = Kp4 . Now, 2, 4, and 5 are determined by using Theorem
4.8 and 3 from Theorem 3.4.

Now, we find the structure of power graphs of groups P11,P12,P13,P15, for p = 3.

Lemma 4.15. For p = 3, the following hold:

1. P(P12) = K1 +
[
∪

3
i=1K2 ∪

(
K2 + ∪12

i=1K6

)]
.

2. P(P13) = K1 +
[
∪

12
i=1K2 ∪

(
K2 + ∪9

i=1K6

)]
.

3. P(P11) = K1 +
[
∪

21
i=1K2 ∪

(
K2 + ∪6

i=1K6

)]
.

4. P(P15) = K1 +
[
∪

30
i=1K2 ∪

(
K2 + ∪3

i=1K6

)]
.
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V00

V11
V12 V13 V14

V21 V22 V2(12)

Figure 2: Hasse Diagram of LP12

Proof. Let P11,P12,P13, and P15 be the groups of order 81. Further, let T = 〈u, v,w | u9 = v3 = 1,w3 = u3β,uv =
vu4,w−1uw = uv−1, vw = wv〉, β ∈ {1,−1}. Clearly [u,w] = 1 and [u3, v] = u9 = 1. Thus, u3

∈ Z(G). By using
relations wv = vw, wu = uvw, and vu = u7v, we can show that v jui = ui(1+6 j)v j and wkui = ui+3ki(i−1)vikwk,
where 1 ≤ i ≤ 9, 1 ≤ j ≤ 3, and 1 ≤ k ≤ 3. Thus, each element of the group T can be written in the form
uiv jwk for some i, j, k ≥ 1. By using above relations, we can deduce that (uiv jwk)3 = u3(i+2i2k)w3k. Now, for
P12, β = 1. Thus, (uiv jwk)3 = u3(i+2i2k+k). So, (uiv jwk)3 = 1 for k = 3, 1 ≤ j ≤ 3, and i ∈ {3, 6, 9}. Therefore, P12
has 8 elements of order 3 and 81 − 9 = 72 elements of order 9 (exponent of P12 is 9). Hence, P12 has 4 cyclic
subgroups of order 3 and 12 cyclic subgroups of order 9.

For β = −1, T = P13. Thus, (uiv jwk)3 = u3(i+2i2k−k). In similar manner as above, we can obtain that P13 has
13 cyclic subgroups of order 3 and 9 cyclic subgroups of order 9.

Now for P11, [u3, v] = u9 = 1. By using relations wu = uv2w, vu = u7b, and wv = vw, we have
v jui = ui(1+6i)v j and wkui = ui+6ik(i−1)v2kick, where 1 ≤ i ≤ 9, 1 ≤ j ≤ 3, 1 ≤ k ≤ 3. Thus, each element of the
group P11 can be written in the form uiv jwk for some i, j, k ≥ 1. By using above relations, we can obtain that
(uiv jwk)3 = u3(i+ki2). Using this relation, similarly as above, we can obtain that P11 has 22 cyclic subgroups of
order 3 and 6 cyclic subgroups of order 9.

Again for P15, u3
∈ Z(G). Using relations uv = vu,wu = u7v2w, and wv = u3vw, we have wkv j = u3 jkv jck,

wkui = u(1+6k)i+3ik(k−1)v2ikwk, and (uiv jck)3 = u3i(1+2k2). Thus, using last relation, we can deduce that P15 has 31
cyclic subgroups of order 3 and 3 cyclic subgroups of order 9.

In all four groups, observe that the cyclic subgroup 〈u3
〉 is contained in all cyclic subgroups of order

9. Therefore, we obtain the structure of power graph of the group P12 and for remaining groups, power
graphs can be obtained by doing similar process. Now, we find P(P12). Since P12 has 12 cyclic subgroups
of order 9 and 4 cyclic subgroups of order 3, the set C′(P12) has 12 equivalence classes of cardinality 6 and
4 equivalence classes of cardinality 2.

Following (1), we write

C
′(P12) =

{
[V00], [Vit] | i ∈ {1, 2} and 1 ≤ t ≤ 4, for i=1 and 1 ≤ t ≤ 12, for i = 2

}
, where [Vit] denotes the

equivalence class of cardinality φ(3i). Moreover, [V00] = {1} and [Vit] = {xit,1, · · · , xit,φ(3i)}.
The Hasse diagram of the poset LP12 is given in Figure 2 . Since only one cyclic group of order 3 is

contained in all cyclic subgroups of order 9, so only one V1t say V11 is connected to V2t for all t in Hasse
diagram of the poset LP12 .

In Figure 2, recall that Vit denote the a chain of length φ(3i) corresponding to element [Vit] (see proof of
Theorem 4.8). Thus, we get Kφ(3i) in P(P12) corresponding vertex subset [Vit].

We know that the comparability graph TLP12
of the poset LP12 is equal to the power graph of P12. Thus,

by Figure 2, we can determine that P(P12) = K1 +
[
∪

3
i=1K2 ∪

(
K2 + ∪12

i=1K6

)]
. This complete the proof.

Theorem 4.16. For p = 3, there are 8 non-isomorphic power graphs for groups of order 81 and there are 5 non-
isomorphic power graphs for groups of order p4, p > 3.
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Proof. This follows from Lemmas 4.12, 4.13, 4.14, and 4.15.

Remark 4.17. For p = 3, P4 and P13 are conformal and their power graphs are also same and P3,P12 are conformal
but have different power graphs.
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