Filomat 34:7 (2020), 2425–2437 https://doi.org/10.2298/FIL2007425M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

(m,q)-Isometric and (m,∞) -Isometric Tuples of Commutative Mappings on a Metric Space

O. A. Mahmoud Sid Ahmed^a, Muneo Chō^b, Ji Eun Lee^{*c}

^a Department of Mathematics, College of Science, Jouf University, Sakaka P.O.Box 2014. Saudi Arabia. ^b Department of Pure Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan ^cDepartment of Mathematics and Statistics, Sejong University, Seoul 05006, Korea

Abstract. In this paper, we introduce new concepts of (m, q)-isometries and (m, ∞) -isometries tuples of commutative mappings on metrics spaces. We discuss the most interesting results concerning this class of mappings obtained form the idea of generalizing the (m, q)-isometries and (m, ∞) -isometries for single mappings. In particular, we prove that if $\mathbf{T} = (T_1, \dots, T_n)$ is an (m, q)-isometric commutative and power bounded tuple, then **T** is a (1, q)-isometric tuple. Moreover, we show that if $\mathbf{T} = (T_1, \dots, T_d)$ is an (m, ∞) -isometric commutative tuple of mappings on a metric space (E, d), then there exists a metric d_{∞} on E such that **T** is a $(1, \infty)$ -isometric tuple on (E, d_{∞}) .

1. Introduction and preliminaries

Let X (resp. \mathcal{H}) denote a complex Banach (resp. Hilbert) space and let $\mathcal{B}(X)$ (resp. $\mathcal{B}(\mathcal{H})$) be the algebra of all bounded linear operators on X (resp. on \mathcal{H}). An operator T acting on a Hilbert space \mathcal{H} is said to be *m*-isometric if

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} T^{*k} T^k = 0$$

or equivalently if

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} ||T^k x||^2 = 0, \quad \forall \ x \in \mathcal{H}.$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be a *strict m-isometric* operator if *T* is *m*-isometric but it is not (m - 1)-isometric. Such *m*-isometric operators were introduced by J. Agler back in the early nineties and were studied in great detail by J. Agler and M. Stankus in a series of three papers, including analytic and spectral

jieunlee7@sejong.ac.kr;jieun7@ewhain.net(Ji Eun Lee*)

²⁰¹⁰ Mathematics Subject Classification. Primary 54E40, 62H86

Keywords. *m*-isometric mapping, (m, ∞) -isometries, and *m*-isometric tuples, metric spaces

Received: 17 July 2019; Accepted: 07 February 2020

Communicated by Dragan S. Djordjević

Corresponding author: Ji Eun Lee

This research is partially supported by Grant-in-Aid Scientific Research No.15K04910. The second author supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(2019R1A2C1002653).

Email addresses: sidahmed@ju.edu.sa (O. A. Mahmoud Sid Ahmed), chiyom@1@kanagawa-u.ac.jp (Muneo Chō),

properties (see [1]). Several algebraic properties have been studied products, tensor products and nilpotent perturbations of such operators (see [2] and [3] for more details).

In recent work, T. Bermúdez, A. Martinôn and V. Müller introduced and studied the concept of (m, q)isometric maps on metric spaces (see [4]). Let *E* be a metric space and $m \ge 1$ be integer and q > 0. A map $T : E \rightarrow E$ is called an (m, q)-isometry if for all $x, y \in E$,

$$\sum_{0 \le k \le m} (-1)^k \binom{m}{k} d \left(T^{m-k} x, T^{m-k} y \right)^q = 0.$$
⁽¹⁾

For $m \ge 2$, a mapping T is a strict (m, q)-isometry if it is an (m, q)-isometry, but is not an (m - 1, q)-isometry.

For any q > 0, (1, q)-isometry coincides with isometry, that is, d(Tx, Ty) = d(x, y) for all $x, y \in E$. Every isometry is an (m, q)-isometry for all $m \ge 1$ and q > 0. An (m, q)-isometry is an (m + 1, q)-isometry and any power of (m, q)-isometry is again an (m, q)-isometry (see [4]).

Let $T : E \to E$ be an (m, q)-isometry. In [4], the authors defined $f_T(h, q; x, y)$ for a positive integer h, a positive real number q, and $x, y \in E$ by :

$$f_T(h,q; x,y) = \sum_{0 \le k \le h} (-1)^{h-k} {h \choose k} d(T^k x, T^k y)^q.$$
⁽²⁾

We derive from (2) that

$$d(T^{n}x, T^{n}y)^{q} = \sum_{0 \le k \le n} {\binom{n}{k}} f_{T}(k, q; x, y)$$
(3)

for all $n \ge 1$ and $x, y \in E$ (see [4, Lemma 2.4]).

Very recently, the author in [9] has introduced the notion of (m, ∞) -isometric mapping on a metric space as follows: for $m \ge 1$, a mapping *T* acting on a metric space *E* is called an (m, ∞) -isometry if for all $x, y \in E$

$$\max_{\substack{0 \le k \le m \\ k \text{ even}}} d(T^k x, T^k y) = \max_{\substack{0 \le k \le m \\ k \text{ odd}}} d(T^k x, T^k y).$$
(4)

It is natural to seek extensions of (m, q)-isometric mappings and (m, ∞) -isometric mappings classes to multivariable mappings in a metric space.

Let *E* be a metric space and T_1, T_2, \dots, T_n be commutative mappings from *E* to *E*, i.e., $T_j : E \to E$ and for all $x \in E$, $T_jT_ix = T_iT_jx$ for $1 \le i, j \le n$. By an *n*-tuple of commutative mappings, it means the *n*-component **T** = (T_1, \dots, T_n) .

Let \mathbb{N} be the set of positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $\mathbb{N}_0^n := \mathbb{N}_0 \times \cdots \times \mathbb{N}_0$ (*n*-times). For $\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbb{N}_0^n$ and $\beta = (\beta_1, \cdots, \beta_n) \in \mathbb{N}_0^n$, we write

$$|\alpha| := \alpha_1 + \dots + \alpha_n = \sum_{1 \le k \le n} \alpha_k$$
 and $\alpha \le \beta$ if $\alpha_k \le \beta_k$ for $k = 1, \dots, n$.

For $\alpha \leq \beta$, we let

$$\binom{\beta}{\alpha} := \prod_{1 \le k \le n} \binom{\beta_k}{\alpha_k}.$$

Let **T** = (T_1, \dots, T_n) be an *n*-tuple of commutative mappings on a metric space *E*. Define

$$\mathbf{T}^{\alpha} := T_1^{\alpha_1} T_2^{\alpha_2} \cdots T_n^{\alpha_n}, \quad \text{where} \quad T_k^{\alpha_k} = \underbrace{T_k \circ T_k \circ \cdots \circ T_k}_{k} = \underbrace{T_k \cdot T_k \cdots T_k}_{k}.$$

 α_k -times

```
\alpha_k-times
```

In higher dimensions ($n \ge 1$), J. Gleason and S. Richter in [7] extended the notion of *m*-isometric operators to the case of commuting *n*-tuples of bounded linear operators on a Hilbert space. A tuple $\mathbf{T} = (T_1, \dots, T_n) \in \mathcal{B}(\mathcal{H})^n$ is said to be an *m*-isometric tuple if

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} \mathbf{T}^{*\alpha} \mathbf{T}^{\alpha} \right) = 0,$$
(5)

or equivalently,

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} \|\mathbf{T}^{\alpha} x\|^2 \right) = 0 \text{ for all } x \in \mathcal{H}.$$
(6)

More recently, P. H. W. Hoffmann and M. Mackey ([6]) introduced the concept of (m, p)-isometric tuples on a normed space. A tuple of commuting linear operators $\mathbf{T} := (T_1, \dots, T_n)$ with $T_j : X \to X$ (normed space) is called an (m, p)-isometry (or an (m, p)-isometric tuple) if and only if for given $m \in \mathbb{N}$ and $p \in (0, \infty)$,

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} \|\mathbf{T}^{\alpha} x\|^p \right) = 0 \quad \text{for all} \quad x \in \mathcal{X}.$$

$$\tag{7}$$

An extension of (7) to include the case $p = \infty$ was introduced in [6] as the following; For $m \in \mathbb{N}$, a tuple $\mathbf{T} = (T_1, \dots, T_d) \in \mathcal{B}(X)^d$ of commuting operators is called (m, ∞) -*isometry* (or (m, ∞) -*isometric tuple*) if and only if

$$\max_{\substack{|\beta| \in \{0, \cdots, m\} \\ |\beta| \text{ even}}} \|\mathbf{T}^{\beta} x\| = \max_{\substack{|\beta| \in \{0, \cdots, m\} \\ |\beta| \text{ odd}}} \|\mathbf{T}^{\beta} x\|.$$
(8)

The goal of our paper is to introduce and study parallel results for commutative tuples of mappings in a metric space. Specifically, we seek analogous characterizations of the classes of mappings introduced in section 2 and section 3, respectively.

2. (*m*, *q*)-isometric commutative mappings

In this section, we give definitions of certain classes of mappings and investigate their basic properties of such tuples. Let (E, d) be a metric space and let $\mathbf{T} = (T_1, \dots, T_n)$ be a commutative mappings where $T_j : E \to E$ for $j = 1, \dots, n$. For $x, y \in E$, we write

$$\mathcal{H}_{l}^{(q)}(\mathbf{T}; x, y) := \sum_{0 \le k \le l} (-1)^{l-k} \binom{l}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} \right).$$
(9)

Definition 2.1. A tuple $\mathbf{T} = (T_1, \dots, T_n)$ of commutative mappings on a metric space E is said to be an (m, q)isometric commutative tuple of mappings if for all $x, y \in E$,

$$\sum_{0 \le k \le m} (-1)^{m-k} \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} \right) = 0.$$
(10)

Remark 2.2. (i) When n = 1, this definition coincides with the definition of an (m, q)-isometry in a single variable mapping introduced by T. Bermúdez et al in ([4]).

(ii) Observe that if *E* is a Banach space and each T_j is a bounded linear operator on *E*, then (10) is equivalent to (7).

Remark 2.3. (i) Let $\mathbf{T} = (T_1, T_2)$ be a commuting 2-tuple of mappings on a metric space *E*. Then **T** is a (1, q)-isometric pair if

$$d(T_1x, T_1y)^q + d(T_2x, T_2y)^q = d(x, y)^q$$
 for all $x, y \in E$

and **T** is a (2, q)-isometric pair if

$$d(T_1^2x, T_1^2y)^q + d(T_2^2x, T_2^2y)^q + 2d(T_1T_2x, T_1T_2y)^q - 2d(T_1x, T_1y)^q - 2d(T_2x, T_2y)^q + d(x, y)^q = 0$$

for all $x, y \in E$.

(ii) Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commutative mappings on a metric space *E*. Then **T** is a (1, q)-isometric commutative mappings if

$$\sum_{1 \le k \le n} d(T_k x, T_k y)^q - d(x, y)^q = 0 \text{ for all } x, y \in E$$

and **T** is a (2, q)-isometric commutative mappings if for all $x, y \in E$,

$$\sum_{1 \le k \le n} d(T_k^2 x, T_k^2 y)^q + 2 \sum_{1 \le i < k \le n} d(T_i T_k x, T_i T_k y)^q - 2 \sum_{1 \le k \le n} d(T_k x, T_k y)^q + d(x, y)^q = 0.$$

(iii) $\mathbf{T} = (T_1, \dots, T_n)$ is a (3, *q*)-isometric commutative tuple of mappings of a metric space *E* if

$$\sum_{1 \le j \le n} d(T_j^3 x, T_j^3 y)^q + 3 \sum_{1 \le i \ne j \le n} d(T_i T_j^2 x, T_i T_j^2 y)^q$$

+6
$$\sum_{1 \le i \ne j \ne r \le n} d(T_i T_j T_r x, T_i T_j T_r y)^q$$

-3
$$\sum_{1 \le j \le n} d(T_j^2 x, T_j^2 y)^q - 6 \sum_{1 \le i \ne j \le n} d(T_j T_i x, T_j T_i y)^q$$

+3
$$\sum_{1 \le j \le n} d(T_j x, T_j y)^q - d(x, y)^q = 0 \text{ for all } x, y \in E.$$

Example 2.4. Let (\mathbb{R}, d_0) be the metric space where d_0 is the Euclidean metric and let $T_0 : \mathbb{R} \to \mathbb{R}$ be an (m, q)isometric on a metric space (X, d_0) such that the distance d_0 satisfies $d_0(tx, ty) = td_0(x, y)$ for all $x, y \in X$ and for
all t > 0. Then $\mathbf{T} = (T_1, \dots, T_n)$, where $T_j = \frac{1}{\sqrt[q]{n}} T_0$ $(j = 1, \dots, n)$ is an (m, q)-isometric commutative tuple of
mappings. Indeed, clearly $T_i T_j = T_j T_i$ for all $i, j = 1, \dots, n$ and

$$\sum_{0 \le k \le m} (-1)^{m-k} {m \choose k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d_0 (\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)^q = \sum_{0 \le k \le m} (-1)^{m-k} {m \choose k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d_0 (T^{|\alpha|} x, T^{|\alpha|} y)^q$$
$$= \sum_{0 \le k \le m} (-1)^{m-k} {m \choose k} n^k d_0 (T^k x, T^k y)^q$$
$$= \sum_{0 \le k \le m} (-1)^{m-k} {m \choose k} n^k |T^k x - T^k y|^q$$
$$= \sum_{0 \le k \le m} (-1)^{m-k} {m \choose k} d_0 (T_0^k x, T_0^k y)^q = 0.$$

In [4, Proposition 1.4], it was proved that if *T* is a bijective (m, q)-isometric mapping on a metric space *E*, then T^{-1} is also an (m, q)-isometric mapping. However, this result is not true for commutative tuple of mappings as show in the following example.

Example 2.5. Let $T_j : (\mathbb{R}, d) \longrightarrow (\mathbb{R}, d)$ be defined by $T_j x = \frac{1}{\sqrt[q]{n}} x$ for q > 0, $j = 1, \dots, n$, where d(x, y) = |x - y|. Clearly, each T_j $(j = 1, \dots, n)$ is bijective and

$$\sum_{1 \le j \le n} d(T_j x, T_j y)^q = \sum_{1 \le j \le n} \left(\frac{1}{\sqrt[q]{n}}\right)^q |x - y|^q = |x - y|^q = d(x, y)^q.$$

Thus $\mathbf{T} = (T_1, \dots, T_n)$ is a (1, q)-isometric commutative tuple. Furthermore, $\mathbf{T}^{-1} := (T_1^{-1} \dots, T_n^{-1})$ where $T_j^{-1}x = \sqrt[4]{n}x$ $(j = 1, \dots, n)$. A simple computation shows that

$$\sum_{1 \le j \le n} d(T_j^{-1}x, T_j^{-1}y)^q = \sum_{1 \le j \le n} \left(\sqrt[q]{n}\right)^q |x - y|^q = n^2 |x - y|^q \neq d(x, y)^q.$$

Consequently, $\mathbf{T}^{-1} := (T_1^{-1} \cdots, T_n^{-1})$ is not a (1, q)-isometric tuple.

Proposition 2.6. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commutative mappings on a metric space E. Then for all positive integer m, a positive real number q and $x, y \in (E, d)$, we have

$$\mathcal{H}_{m+1}^{(q)}(\mathbf{T}; x, y) = \sum_{1 \le k \le n} \mathcal{H}_m^{(q)}(\mathbf{T}; T_k x, T_k y) - \mathcal{H}_m^{(q)}(\mathbf{T}; x, y).$$
(11)

In particular, if **T** is an (m,q)-isometric commutative tuple, then **T** is a (k,q)-isometric commutative tuple for all $k \ge m$.

Proof. By taking into account Equation (9), a straightforward calculation shows that

$$\begin{aligned} \mathcal{H}_{m+1}^{(q)}(\mathbf{T};x,y) &= \sum_{0 \le k \le m+1} (-1)^{m+1-k} \binom{m+1}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} \\ &= (-1)^{m+1} d(x,y)^{q} - \sum_{1 \le k \le m} (-1)^{m-k} \left[\binom{m}{k} + \binom{m}{k-1} \right] \sum_{|\alpha|=k} \frac{k!}{\alpha!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} + \sum_{|\alpha|=m+1} \frac{(m+1)!}{\alpha!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} \\ &= -\mathcal{H}_{m}^{(q)}(\mathbf{T};x,y) + \sum_{0 \le k \le m-1} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k+1} \frac{(k+1)!}{\alpha!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} + \sum_{|\alpha|=m+1} \frac{(m+1)!}{\alpha!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} \\ &= -\mathcal{H}_{m}^{(q)}(\mathbf{T};x,y) + \sum_{0 \le k \le m-1} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k+1} \frac{k! (\alpha_{1} + \dots + \alpha_{n})}{\alpha_{1}! \cdot \alpha_{2}! \cdots \alpha_{n}!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} \\ &+ \sum_{|\alpha|=m+1} \frac{m! (\alpha_{1} + \dots + \alpha_{n})}{\alpha_{1}! \cdot \alpha_{2}! \cdots \alpha_{n}!} d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q} \end{aligned}$$

2429

$$= -\mathcal{H}_{m}^{(q)}(\mathbf{T}; x, y)$$

$$+ \sum_{1 \leq j \leq n} \sum_{0 \leq k \leq m-1} (-1)^{m-k} {m \choose k} \sum_{|\alpha|=k+1} \frac{k! \alpha_{j}}{\alpha_{1}! \cdot \alpha_{2}! \cdots \alpha_{n}!}$$

$$\cdot d \Big(T_{j} \Big(T_{1}^{\alpha_{1}} \cdots T_{j}^{\alpha_{j}-1} T_{j+1}^{\alpha_{j+1}} \cdots T_{n}^{\alpha_{n}} x \Big), \Big(T_{1}^{\alpha_{1}} \cdots T_{j}^{\alpha_{j}-1} T_{j+1}^{\alpha_{j+1}} \cdots T_{n}^{\alpha_{n}} \Big) T_{j} y \Big)^{q}$$

$$+ \sum_{1 \leq j \leq n} \sum_{|\alpha|=m+1} \frac{m! \alpha_{j}}{\alpha_{1}! \cdot \alpha_{2}! \cdots \alpha_{n}!}$$

$$\cdot d \Big(T_{j} T_{1}^{\alpha_{1}} \cdots T_{j}^{\alpha_{j}-1} T_{j+1}^{\alpha_{j+1}} \cdots T_{n}^{\alpha_{n}} x, T_{1}^{\alpha_{1}} \cdots T_{j}^{\alpha_{j}-1} T_{j+1}^{\alpha_{j+1}} \cdots T_{n}^{\alpha_{n}} T_{j} y \Big)^{q}$$

$$= -\mathcal{H}_{m}^{(q)}(\mathbf{T}; x, y)$$

$$+ \sum_{1 \leq j \leq n} \sum_{0 \leq k \leq m-1} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d \Big(\mathbf{T}^{\alpha} T_{j} x, \mathbf{T}^{\alpha} T_{j} y \Big)^{q} + \sum_{1 \leq j \leq n} \sum_{|\alpha|=m} \frac{m!}{\alpha!} d \Big(\mathbf{T}^{\alpha} T_{j} x, \mathbf{T}^{\alpha} T_{j} y \Big)^{q}$$

$$= -\mathcal{H}_{m}^{(q)}(\mathbf{T}; x, y) + \sum_{1 \leq j \leq n} \Big(\sum_{0 \leq k \leq m} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d \Big(\mathbf{T}^{\alpha} T_{j} x, \mathbf{T}^{\alpha} T_{j} y \Big)^{q} \Big)$$

$$= -\mathcal{H}_{m}^{(q)}(\mathbf{T}; x, y) + \sum_{1 \leq j \leq n} \int_{0 \leq k \leq m} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d \Big(\mathbf{T}^{\alpha} T_{j} x, \mathbf{T}^{\alpha} T_{j} y \Big)^{q} \Big)$$

and so Equality (11) is satisfied on a metric space (*E*, *d*). From the fact that **T** is a (*k*, *q*)-isometric tuple of mappings when **T** is an (*m*, *q*)-isometric tuple of mappings for $k \ge m$, the proof follows immediately from Equation (11). \Box

The following theorem is a generalization of [8, Theorem 2.1] into the structure of metric.

Theorem 2.7. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commutative mappings on a metric space *E*. Then the following statements hold:

(i)

$$\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} = \sum_{0 \le j \le k} {\binom{k}{j}} \mathcal{H}_{j}^{(q)}(\mathbf{T}; x, y)$$
(12)

for every integer $k \ge 1, q > 0$ and $\forall x, y \in E$.

(ii) **T** *is an* (*m*, *q*)*-isometric tuple of commutative mappings if and only if*

$$\sum_{|\alpha|=n} \frac{n!}{\alpha!} d\left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y\right)^{q} = \sum_{0 \le j \le m-1} {\binom{n}{j}} \mathcal{H}_{j}^{(q)}(\mathbf{T}; x, y)$$
(13)

for all $n \in \mathbb{N}$, q > 0 and $\forall x, y \in E$.

(iii) If \mathbf{T} is an (m, q)-isometric tuple of mappings, then

$$\mathcal{H}_{m-1}^{(q)}(\mathbf{T};x,y) = \lim_{k \to \infty} \frac{1}{\binom{k}{m-1}} \sum_{|\alpha|=k} \frac{k!}{\alpha!} d\left(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y\right)^{q}.$$
(14)

Proof. (i) We prove (12) by using mathematical induction. The result is true for k = 0, 1. Now we assume that the result is true for k and let us prove it for k + 1.

2430

In this way, applying (9) and (12), we have

$$\begin{split} &\sum_{|\alpha|=k+1} \frac{(k+1)!}{\alpha!} d \big(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \big)^{q} \\ &= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le j \le k} (-1)^{k+1-j} \binom{k+1}{j} \sum_{|\alpha|=j} \frac{j!}{\alpha!} d \big(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \big) \\ &= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le j \le k} (-1)^{k+1-j} \binom{k+1}{j} \sum_{0 \le r \le j} \binom{j}{r} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y) \\ &= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le r \le k} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y) \sum_{r \le j \le k} (-1)^{k+1-j} \binom{k+1}{j} \binom{j}{r} \\ &= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le r \le k} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y) (\sum_{r \le j \le k} (-1)^{k+1-j} \binom{k+1}{r} \binom{k+1-r}{j-r}) \\ &= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le r \le k} \binom{k+1}{r} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y) \Big(\sum_{r \le j \le k} (-1)^{k+1-j} \binom{k+1-r}{j-r} \binom{k+1-r}{j-r} \Big) \end{split}$$

$$= \mathcal{H}_{k+1}^{(q)}(\mathbf{T}; x, y) - \sum_{0 \le r \le k} {\binom{k+1}{r}} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y) \left(-1 + \sum_{\substack{0 \le r \le k+1-j}} (-1)^{k+1-j-r} {\binom{k+1-r}{r}} \right)$$

=
$$\sum_{0 \le r \le k+1} {\binom{k+1}{r}} \mathcal{H}_{r}^{(q)}(\mathbf{T}; x, y).$$

(ii) The only if part of the statement (ii) follows from (12) since an (m, q)-isometric tuple of mappings it is a (k, q)-isometric tuple of mappings for $k \ge m$.

(iii) Under the statement (ii), it is straightforward to see that

$$\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} = \sum_{0 \le j \le m-2} \binom{k}{j} \mathcal{H}_{j}^{(q)}(\mathbf{T}; x, y) + \binom{k}{m-1} \mathcal{H}_{m-1}^{(q)}(\mathbf{T}; x, y).$$

Dividing both sides by $\binom{k}{m-1}$ and using that $\frac{\binom{k}{j}}{\binom{k}{m-1}} \to 0$ for $0 \le j \le m-2$ (as $k \to \infty$), we obtain the required identity and completes the proof. \Box

In the following proposition, we generalize [8, Corollary 1 and Corollary 2] into the structure of metric. Since the proof is very similar, we omit it.

Proposition 2.8. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commutative tuple of mappings on a metric space *E*. Then the following statements hold.

(i) **T** *is an* (*m*, *q*)*-isometric tuple of commutative mappings if and only if*

$$\sum_{|\alpha|=k} \frac{k!}{\alpha!} d\left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y\right)^{q} = \sum_{0 \le j \le m-1} \left(\sum_{j \le p \le m-1} (-1)^{p-j} \binom{k}{p} \binom{p}{j}\right) \sum_{|\alpha|=j} \frac{j!}{\alpha!} d\left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y\right)^{q}.$$
(15)

(ii) If **T** is an (m, q)-isometric tuple of commutative mappings and $k \in \mathbb{N}$, then the following identities hold for $k \ge m$,

$$\sum_{0 \le j \le k} (-1)^j \binom{k}{j} j^p \left(\sum_{|\alpha|=k-j} \frac{(k-j)!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^q \right) = 0$$
(16)

for each $p \in \{0, 1, \dots, k - m\}$.

Corollary 2.9. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commuting mappings in a metric space (E, d). We have: (i) \mathbf{T} is a (2, q)-isometric commutative tuple if and only if \mathbf{T} satisfies

$$\sum_{|\alpha|=k} \frac{k!}{\alpha!} d\left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y\right)^{q} = (1-k)d\left(x, y\right)^{q} + k \sum_{1 \le j \le n} d\left(T_{j} x, T_{j} y\right)^{q}$$
(17)

for all $k \in \mathbb{N}$ and $x, y \in E$.

(ii) If **T** is a (2, q)-isometric commutative tuple of mappings, then the following identities hold:

$$\sum_{1 \le j \le n} d(T_j x, T_j y)^q \ge \frac{k-1}{k} d(x, y)^q \quad (\forall k \in \mathbb{N} \text{ and } \forall x, y \in E),$$
(18)

$$\sum_{1 \le j \le n} d(T_j x, T_j y)^q \ge d(x, y)^q \quad (\forall x, y \in E),$$
(19)

$$\lim_{k \to \infty} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} \right)^{\frac{1}{k}} = 1 \qquad (\forall x, y \in E, \ x \neq y).$$
(20)

Proof. (*i*) Using the statement (ii) of Proposition 2.9 and the statement (ii) of Remark 2.3, we get the desired equivalence.

(*ii*) Inequality (18) follows from (17) and Inequality (19) follows from (18) by taking $k \to \infty$.

To prove (20), take $x, y \in E$ with $x \neq y$. It follows from (17) that

$$\limsup_{k \to \infty} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y \right)^{q} \right)^{\frac{1}{k}} \le 1$$

However, according to (19), the sequence $\left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)^{q}\right)_{k \in \mathbb{N}}$ is monotonically increasing, so

$$\liminf_{k\to\infty} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} d\left(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y\right)^{q}\right)^{\frac{1}{k}} \geq \lim_{k\to\infty} \left(d(x, y)^{q}\right)^{\frac{1}{k}} = 1.$$

Definition 2.10. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commutative mappings on a metric space (E, d). Then \mathbf{T} is said to be a power bounded tuple if

$$\sup\left\{\sum_{|\alpha|=k}\frac{k!}{\alpha!}d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)^{q},\;\forall\;k\in\mathbb{N}\right\}<\infty$$

for all $x, y \in E$.

Theorem 2.11. Let $\mathbf{T} = (T_1, \dots, T_n)$ be an (m, q)-isometric commutative and power bounded tuple. Then

$$\left(\sum_{1\leq i\leq n}d(T_ix,T_iy)^q\right)^{\frac{1}{q}}=d(x,y),$$

i.e., **T** *is a* (1, q)*-isometric tuple.*

Proof. Since **T** is (m, q)-isometric, by Equation (13), for every $k \in \mathbb{N}$ it holds

$$\sum_{|\alpha|=k} \frac{k!}{\alpha!} d \big(\mathbf{T}^{\alpha} x, \ \mathbf{T}^{\alpha} y \big)^{q} = \sum_{0 \le j \le m-1} \binom{k}{j} \mathcal{H}_{j}^{(q)}(\mathbf{T}; x, y).$$

Hence, there exist real numbers $\delta_0(x, y), \delta_1(x, y), ..., \delta_{m-1}(x, y)$ such that

$$\sum_{1 \le i \le n} d\left(T_i^k x, \ T_i^k y\right)^q = \sum_{0 \le j \le m-1} \delta_j(x, y) k^j.$$
(21)

Since **T** is power bounded, we put

$$M = \sup\left\{\sum_{|\alpha|=k} \frac{k!}{\alpha!} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)^{q}, k = 0, 1, 2, \ldots\right\} < \infty$$

for $x, y \in E$. Then we have

$$0 \le \sup \left\{ \sum_{0 \le j \le m-1} \delta_j(x, y) k^j : k = 0, 1, 2, \dots \right\} \le M^q.$$

Since *k* is arbitrary, we have $\delta_1(x, y) = \delta_2(x, y) = \cdots = \delta_{m-1}(x, y) = 0$. Hence

$$\sum_{0\leq i\leq n} d(T_i^k x, \ T_i^k y)^q = d(x, y)^q.$$

Since *k* is arbitrary, letting k = 1 we have a desired equality. \Box

3. (m, ∞) -Isometric commutative mappings

In this section, we focus on (m, ∞) -Isometric commutative mappings.

Definition 3.1. A tuple $\mathbf{T} = (T_1, \dots, T_n)$ of commutative mappings on a metric space E is said to be an (m, ∞) isometric commutative tuple of mappings if for all $x, y \in E$

$$\max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\}\\ |\alpha| \ even \end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\} = \max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\}\\ |\alpha| \ odd \end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\}.$$
(22)

Remark 3.2. (i) For n = 1, this definition coincides with the definition of an (m, ∞) - isometry in a single variable mapping introduced in [9].

(ii) If n = 2 and $\mathbf{T} = (T_1, T_2)$ is a pair of commutative mappings of a metric space E, then \mathbf{T} is a $(2, \infty)$ -isometric tuple if

$$\max\left\{d(T_1x,T_1y),d(T_2x,T_2y)\right\}$$

$$= \max \left\{ d(x,y), d(T_1^2x, T_1^2y), d(T_2^2x, T_2^2y), d(T_1T_2x, T_1T_2y) \right\}.$$

(iii) A tuple **T** = (T_1, \dots, T_n) of commutative mappings of a metric space *E* is a (1, ∞)- isometric tuple if

$$\max_{|\alpha|=1} \left\{ d(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y) \right\} := \max \left\{ d(T_{j}x, T_{j}y); \quad j = 1, \cdots, n \right\} = d(x, y), \quad \forall \ x, y \in E.$$

Example 3.3. Let T_0 be a mapping on a metric space (E, d) which is (m, ∞) -isometric mapping. Then the ntuple of mappings $\mathbf{T} = (T_0, \dots, T_0)$ is an (m, ∞) -isometric tuple of commutative mappings on E. In fact, since $\mathbf{T} = (T_0, \cdots, T_0)$ and T_0 is an (m, ∞) -isometry, it follows that

$$\max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\} \\ |\alpha| even \end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\} = \max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\} \\ |\alpha| even \end{array}\right)}} \left\{ d\left(T_{0}^{|\alpha|}x, \ T_{0}^{|\alpha|}y\right) \right\}$$

$$= \max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\} \\ |\alpha| odd \end{array}\right)}} \left\{ d\left(T_{0}^{|\alpha|}x, \ T_{0}^{|\alpha|}y\right) \right\}$$

$$= \max_{\substack{\left(\begin{array}{c} |\alpha| \in \{1, \cdots, m\} \\ |\alpha| odd \end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\}.$$

Example 3.4. Let (E, d) be a metric space where $E = \{0, 1, 2\}$ and d(x, y) = |x - y| for $x, y \in E$. Define mappings T_1 and $T_2: E \rightarrow E$ by

$$T_1(0) = 2, \ T_1(1) = T_1(2) = 0 \ and \ T_2(0) = 0, \ T_2(1) = T_2(2) = 2$$

Then a straightforward calculation shows that $T_1T_2 = T_2T_1$ *and*

$$\max \left\{ d(x, y), d(T_1^2 x, T_1^2 y), d(T_2^2 x, T_2^2 y), d(T_1 T_2 x, T_1 T_2 y) \right\}$$

= 2
= max $\left\{ d(T_1 x, T_1 y), d(T_2 x, T_2 y) \right\}$.

Therefore, we conclude that the pair $\mathbf{T} = (T_1, T_2)$ *is a* $(2, \infty)$ *-isometric pair of mappings.*

Example 3.5. Let $E := \mathbb{R}^2$ and $\{e_j\}_{j=1,2}$ be the natural base. For $x = (x_1, x_2), y = (y_1, y_2) \in E$, let d(x, y) := $\max_{j=1,2} |x_j - y_j|. \text{ Define mappings } T_1 \text{ and } T_2 : E \to E \text{ by}$

$$T_1e_1 = e_1, T_1e_2 = 0$$
 and $T_2e_1 = 0, T_2e_2 = e_2,$

that is, T_1 , T_2 are projections. Then $T_1T_2 = T_2T_1 = 0$ and a straightforward calculation shows that

$$\max \left\{ d(x, y), d(T_1^2 x, T_1^2 y), d(T_2^2 x, T_2^2 y), d(T_1 T_2 x, T_1 T_2 y) \right\}$$

= $d(x, y)$
= $\max \left\{ d(T_1 x, T_1 y), d(T_2 x, T_2 y) \right\}.$

=

Therefore, we conclude that the pair $\mathbf{T} = (T_1, T_2)$ *is a* $(2, \infty)$ *-isometric pair of mappings.*

Proposition 3.6. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commutative tuple of mappings acting on a metric space E. Then \mathbf{T} is an (m, ∞) -isometric tuple if and only if for all $l \in \mathbb{N}$ and for all $x, y \in E$,

$$\max_{\substack{\left(\begin{array}{c} |\alpha| \in \{l, \cdots, m+l\}\\ |\alpha| \text{ even}\end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\} = \max_{\substack{\left(\begin{array}{c} |\alpha| \in \{l, \cdots, m+l\}\\ |\alpha| \text{ odd}\end{array}\right)}} \left\{ d\left(\mathbf{T}^{\alpha}x, \ \mathbf{T}^{\alpha}y\right) \right\}.$$
(23)

2434

Proof. Assume that **T** is an (m, ∞) -isometric tuple and $l \in \mathbb{N}$ is an even integer. Then we have

$$\begin{pmatrix} \max \\ |\alpha| \in \{l, \cdots, m+l\} \\ |\alpha| \text{ even} \end{pmatrix} \begin{cases} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) \end{cases} &= \max \{d(\mathbf{T}^{\beta} \mathbf{T}^{\gamma} x, \mathbf{T}^{\alpha} \mathbf{T}^{\gamma} y) \} \\ \begin{pmatrix} |\beta| \in \{0, \cdots, m\} \\ |\gamma| = l \\ \\ |\beta| + |\gamma| \text{ even} \end{pmatrix} \end{cases}$$

$$= \max \{ \begin{pmatrix} \max \\ |\beta| \in \{0, \cdots, m\} \\ |\beta| \text{ even} \end{pmatrix} d(\mathbf{T}^{\beta} \mathbf{T}^{\gamma} x, \mathbf{T}^{\alpha} \mathbf{T}^{\gamma} y) \}$$

$$= \max \{ \begin{pmatrix} \max \\ |\beta| \in \{0, \cdots, m\} \\ |\beta| \text{ odd} \end{pmatrix} d(\mathbf{T}^{\beta} \mathbf{T}^{\gamma} x, \mathbf{T}^{\alpha} \mathbf{T}^{\gamma} y) \}$$

$$= \max \{ \begin{pmatrix} |\beta| \in \{0, \cdots, m\} \\ |\gamma| = l \\ \\ |\beta| + |\gamma| \text{ odd} \end{pmatrix}$$

$$= \max \{ d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) \}$$

$$= \max \{ (\max \\ |\alpha| \in \{l, \cdots, m+l\} \} \}$$

If *l* is an odd integer, we can repeat quite similar arguments as those above to prove that

$$\max_{\substack{\{|\alpha| \in \{l, \cdots, m+l\} \\ |\alpha| \text{ even}}} \{d(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y)\} = \max_{\substack{\{|\alpha| \in \{l, \cdots, m+l\} \\ |\alpha| \text{ odd}}} \{d(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y)\}.$$

This implies that (23) holds for all $l \in \mathbb{N}$. \Box

In the following corollary, we denote by $\pi(k) = k \pmod{2}$ the parity of $k \in \mathbb{N}$.

Corollary 3.7. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commutative tuple of mappings of a metric space E and $m \in \mathbb{N}$. Then \mathbf{T} is an (m, ∞) -isometric commuting tuple if and only if

$$\max_{\alpha \in \mathbb{N}_0^n} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) = \max_{\substack{|\beta| \in \{l, \cdots, m-1+l\}\\ \pi(|\beta|) = \pi(m-1+l)}} d(\mathbf{T}^{\beta} x, \mathbf{T}^{\beta} y)$$

for all $x, y \in E$ and for all $l \in \mathbb{N}_0$.

Proof. For $x, y \in E$, we can consider the sequence $a_{\alpha} := d(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y)$ for $\alpha \in \mathbb{N}_{0}^{n}$. The result follows from [6, Lemma 5.6] by choosing $(a_{\alpha})_{\alpha \in \mathbb{N}_{0}^{n}}$. \Box

Corollary 3.8. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commutative tuple of mappings of a metric space E which is an (m, ∞) isometric tuple. Then for all $\alpha \in \mathbb{N}^n$ and for all $x, y \in E$,

$$d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y) \leq \max_{|\gamma| \in \{0, \cdots, m-1\}} d(\mathbf{T}^{\gamma}x,\mathbf{T}^{\gamma}y) \quad (\forall x, y \in E).$$

In particular, **T** *is power bounded.*

Proof. It is obvious that $d(\mathbf{T}^{\alpha}x, \mathbf{T}^{\alpha}y) \leq \max_{\alpha_0 \in \mathbb{N}_0^n} d(\mathbf{T}^{\alpha_0}x, \mathbf{T}^{\alpha_0}y)$ for $x, y \in E$. Hence, taking into account Corollary 3.7, we obtain

$$d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y) \leq \max_{|\gamma| \in \{0,\cdots,m-1\}} d(\mathbf{T}^{\gamma}x,\mathbf{T}^{\gamma}y) \quad (\forall x,y \in E).$$

Theorem 3.9. Let $\mathbf{T} = (T_1, \dots, T_d)$ be an (m, ∞) -isometric commutative tuple of mappings on a metric space (E, d). Then there exists a metric d_{∞} on E such that \mathbf{T} is a $(1, \infty)$ -isometric tuple on (E, d_{∞}) . Moreover, d_{∞} is given by

$$d_{\infty}(x, y) = \max_{|\alpha| \in \{0, \cdots, m-1\}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y), \quad \forall \ x, y \in E$$

Proof. Working under the assumption described above that **T** is an (m, ∞) -isometric tuple, then as an application of Corollary 3.8 we obtain that

$$\max_{\alpha \in \mathbb{N}_0^n} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) = \max_{|\alpha| \in \{0, \cdots, m-1\}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y), \quad \forall \ x, y \in E.$$

Define the map $d_{\infty} : E \times E \to \mathbb{R}_+$ given by

$$d_{\infty}(x, y) := \max_{|\alpha| \in \{0, \cdots, m-1\}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y), \quad \forall \ x, y \in E.$$

One can easily see that the map d_{∞} is a metric on *E*. On the other hand, we have

$$d_{\infty}(x, y) = \max_{\substack{|\alpha| \in \{0, \dots, m-1\}}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)$$

$$= \max_{\alpha \in \mathbb{N}_{0}^{n}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)$$

$$= \max_{\substack{|\alpha| \in \{l, \dots, m-1+l\}}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y)$$

$$= \max_{\substack{|\beta| \in \{0, \dots, m-1\}}} d(\mathbf{T}^{\beta+\gamma} x, \mathbf{T}^{\beta+\gamma} y)$$

$$= \max_{\substack{|\gamma|=l}} \max_{\substack{|\beta| \in \{0, \dots, m-1\}}} d(\mathbf{T}^{\beta+\gamma} x, \mathbf{T}^{\beta+\gamma} y), \forall l \in \mathbb{N}_{0}.$$

In particular, we get that

$$d_{\infty}(x, y) = \max_{|\gamma|=1} \left(\max_{|\beta| \in \{0, \cdots, m-1\}} d(\mathbf{T}^{\beta} \mathbf{T}^{\gamma} x, \mathbf{T}^{\beta} \mathbf{T}^{\gamma} y) \right)$$
$$= \max_{|\gamma|=1} \left(d_{\infty} (\mathbf{T}^{\gamma} x, \mathbf{T}^{\gamma} y) \right).$$

Consequently, *T* is a $(1, \infty)$ -isometric tuple on (E, d_{∞}) and the proof is complete. \Box

Proposition 3.10. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a tuple of commutative mappings on a metric space E. If \mathbf{T} is an (m, ∞) -isometric tuple, then \mathbf{T} is an $(m + 1, \infty)$ -isometric tuple.

Proof. Under the assumption that **T** is an (m, ∞) -isometric tuple, it follows that

$$\max_{k \in \mathbb{N}_0^n} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) = \max_{\substack{|\alpha| \in \{l, \cdots, m-1+l\}\\ \pi(|\alpha|) = \pi(m-1+l)}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) \quad \forall \ x, y \in E, \ \forall \ l \in \mathbb{N}_0.$$

Hence we get, for all $x, y \in E$ and $\forall l \in \mathbb{N}_0$,

$$\max_{|\alpha|\in\mathbb{N}_{0}^{n}} \{d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)\} = \max_{\substack{|\alpha|\in\{l,\cdots,m-1+l\}\\\pi(|\alpha|)=\pi(m-1+l)}} \{d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)\}$$

$$\leq \max_{\substack{|\alpha|\in\{l,\cdots,m+l\}\\\pi(|\alpha|)=\pi(m+l)}} \{d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)\}$$

$$\leq \max_{\alpha\in\mathbb{N}_{0}^{n}} \{d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y)\}.$$

From which we obtain

$$\max_{\alpha \in \mathbb{N}_0^n} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) = \max_{\substack{|\alpha| \in \{l, \cdots, m+l\}\\ \pi(|\alpha|) = \pi(m+l)}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y).$$

We are able to deduce that **T** is an $(m + 1, \infty)$ -isometric tuple. \Box

Proposition 3.11. Let **T** be a commutative mappings acting on a metric space *E*. Assume that there exists $p = (p_1, \dots, p_n) \in \mathbb{N}^n$ with |p| is an odd integer such that $\mathbf{T}^p := T_1^{p_1} \cdots T_n^{p_n}$ is an isometric. Then **T** is an (m, ∞) -isometric tuple for $m \ge 2|p| - 1$.

Proof. Due to Proposition 3.10 it suffices to prove that **T** is a $(2|p|-1, \infty)$ -isometric tuple. From the hypothesis, **T**^{*p*} is isometric and we have

$$d(\mathbf{T}^{\alpha+p}x,\mathbf{T}^{\alpha+p}y) = d(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y), \quad \forall \ x,y \in E, \ \forall \ \alpha \in \mathbb{N}_0^n.$$

On the other hand, since |p| is an odd integer, we observe that for all $\alpha \in \mathbb{N}_0^n$, $|\alpha|$ is even if and only if $|\alpha| + |p|$ is odd. Moreover, since \mathbf{T}^p is isometric, it follows that

$$\left\{d\left(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y\right), |\alpha| \in \{0,\cdots,2|p|-1\}, |\alpha| \text{ even }\right\} = \left\{d\left(\mathbf{T}^{\alpha}x,\mathbf{T}^{\alpha}y\right), |\alpha| \in \{0,1,\cdots,2|p|-1\}, |\alpha| \text{ odd }\right\}$$

Taking the max over $\{0, \dots, 2|p| - 1\}$, we obtain

$$\max_{\substack{|\alpha| \in \{0, 1, \cdots, 2|p| - 1\} \\ |\alpha| \text{ odd}}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y) = \max_{\substack{|\alpha| \in \{0, 1, \cdots, 2|p| - 1\} \\ |\alpha| \text{ even}}} d(\mathbf{T}^{\alpha} x, \mathbf{T}^{\alpha} y).$$

Consequently, we are in a position to conclude that **T** is a $(2|p| - 1, \infty)$ -isometric tuple. \Box

References

- [1] J. Agler and M. Stankus, *m-Isometric transformations of Hilbert space. I*, Integr. Equat. Oper. Theory, 21(1995), 383-429.
- [2] T. Bermúdez, A. Martinón and J. Noda, Products of m-isometries, Linear Algebra App., 438(2013), 80-86.
- [3] _____, An isometry plus an nilpotent operator is an m-isometry, J. Math. Anal. Appl., 407(2013), 505-512.
- [4] T. Bermúdez, A. Martinón and V. Müller, (*m*, *q*)-isometries on metric spaces, J. Operator Theory, **72**(2)(2014), 313-329.
- [5] M. Chō, S. Ota and K. Tanahashi, Invertible weighted shift operators which are m-isometry, Proc. Amer. Math. Soc., 141(2013), 4241-4247.
- [6] P. H. W. Hoffmann and M. Mackey, (m, p)-and (m, ∞) -isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8(2)(2015).
- [7] J. Gleason and S. Richter, *m-Isometric commuting tuples of operators on a Hilbert space*, Integr. Equat. Oper. Theory, 56(2)(2006), 181-196.
- [8] O. A. Mahmoud Sid Ahmed, M. Chō and J. E. Lee, On (m, C)-Isometric commuting tuples of operators on a Hilbert Space, Results Math., (2018), 73:51.
- [9] O. A. M. Sid Ahmed, On (m, p)-(Hyper)expansive and (m, p)-(Hyper) contractive mappings on a metric space. J. Inequalities and Special Funct. 7(3)(2016), 73-87.