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Abstract. Multigranulation rough set (MGRS) theory has attracted much attention. However, with the
advent of big data era, the attribute values may often change dynamically, which leads to high computa-
tional complexity when handling large and complex data. How to effectively obtain useful knowledge from
the dynamic information system becomes an important issue in MGRS. Motivated by this requirement, in
this paper, we propose relative relation matrix approaches for computing approximations in MGRS and
updating them dynamically. A simplified relative relation matrix is used to calculate approximations in
MGRS, it is showed that the space and time complexities are no more than that of the original method. Fur-
thermore, relative relation matrix-based approaches for updating approximations in MGRS while refining
or coarsening attribute values are proposed. Several incremental algorithms for updating approximations
in MGRS are designed. Finally, experiments are conducted to evaluate the efficiency and validity of the
proposed methods.

1. Introduction

Rough sets theory, which was proposed by Pawlak in 1982 [19], has become an important mathematical
tool for effectively processing uncertain and ambiguous information. It has been widely used in machine
learning [12, 17, 18, 23, 30, 31], pattern recognition [2, 8, 11, 15, 26, 27, 39], decision making [43, 44], image
processing [19, 20], data mining and etc. With respect to various requirements, many extensions have been
proposed to overcome its limitation, such as covering based rough sets [10, 40], neighborhood rough sets
[13, 33], variable precision rough sets [9, 46], fuzzy rough sets [7, 29, 32, 34–36], multigranulation rough sets
[24] and etc.

Pawlak’s rough sets (PRS) are constructed by a single equivalence relation, which is regarded as a
single granular structure. Therefore, PRS is too restrictive to apply in other information systems. For
example, it is difficult to extract decision rules from multi-source information system. To overcome this
problem, Qian et al. [24] proposed the MGRS theory, in which the lower and upper approximations are
no longer composed of a single relation, but are approximated by multiple binary relations. What’s more,
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MGRS theory includes optimistic multigranulation rough sets (OMGRS) and pessimistic multigranulation
rough sets (PMGRS). Based on the PMGRS model, Qian et al. [21] studied the attribute reduction from a
decision table. Based on the MGRS theory, many models have been proposed to apply MGRS into a broader
area, such as variable multigranulation rough sets [45], neighborhood multigranulation rough sets [14, 16],
incomplete multigranulation rough sets [22], variable precision multigranulation decision-theoretic fuzzy
rough sets [3] and local multigranulation decision-theoretic rough sets [25].

The incremental updating method can effectively acquire new knowledge on the basis of the previous
knowledge, which has received a lot of attention. Hu et al. [6] investigated a matrix-based incremental
method to update knowledge in neighborhood multigranulation rough sets while adding or deleting
granular structures. Using the dominant rough set method, Sang et al. [28] studied the incremental attribute
reduction approach when adding a single object to the data, and proposed an incremental algorithm to
updating the dominant conditional entropy. Based on the matrix-based incremental knowledge updating
method, Xu et al. [37] proposed incremental algorithms of positive domain, negative domain and boundary
domain to update the neighborhood multigranulation rough set knowledge. Before applying MGRS in real
life situation, we must calculate the approximations. However, in an information explosion era, the
structures of data sets become more and more complex, the attributes often increase or decrease, attribute
values may change, and the objects may often change. At this time, computing the approximations of
MGRS by dynamic method is an effective way to solve these problems. Yang et al. [38] proposed a dynamic
update method when the granular structures increase. Yu et al. [41, 42] proposed vector-based and matrix-
based approaches to compute the approximations in MGRS, respectively. Hu et al. [4] paid attention to
the dynamic updating approximations in MGRS while refining or coarsening attribute values. Hu et al.
[5] proposed the matrix-based approaches to dynamically update approximations in MGRS when a single
granular structure changes.

In real world applications, attribute values are variable during the knowledge update process. For
example, some attribute values in the information system will be out of date, so they need to be updated
in time. Therefore, some new attribute values are added in the domain to improve the timeliness of the
data. When the attribute values are coarsened or refined, the knowledge granular may change. In order
to improve the efficiency of knowledge acquisition, it is important to update the approximations in MGRS
while refining or coarsening attribute values. In this paper, we propose relative relation matrix approaches
for computing approximations in the context of MGRS while refining or coarsening attribute values. By
reducing the calculation of elements that are not related to the target concept, we obtain a relative relation
matrix, which reduces the dimension of the equivalence relation matrix. Its calculation time and storage
space are no more than the original matrix. In other words, the relative relation matrix is obtained by
simplifying the equivalence relation matrix proposed in [5]. Finally, experiments are conducted to evaluate
the efficiency and validity of the proposed methods. From the experimental results, the relative relation
matrix-based approaches have a better performance than matrix-based approaches.

The rest of this paper is organized as follows. In Section 2, some basic concepts about MGRS are
reviewed. In Section 3, the relative relation matrix-based approaches are proposed, and we design a static
algorithm to calculate lower and upper approximations in MGRS. In Section 4, dynamic approaches for
updating approximations in MGRS while refining or coarsening attribute values are proposed. In Section 5,
several dynamic algorithms are designed for updating approximations in MGRS. In Section 6, experiments
are conducted to show the efficiency and validity of the proposed methods. Finally, some conclusions are
given in Section 7.

2. Preliminaries

In this section, some basic concepts about MGRS are briefly reviewed.

Definition 2.1. ([19]) Let IS =
(
U,AT,VAT, f

)
be an information system, where U = {x1, x2, · · · , xn} is a

nonempty finite set of objects called the universe. AT = {A1,A2, · · · ,Am} is a nonempty finite family of
attribute sets, the element Ak ∈ AT is called an attribute set, for any k ∈ {1, 2, · · · ,m}. VAT =

⋃
A∈AT

VA is a
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domain of attributes values, where VA is the domain of attribute set A. f : U × AT → VAT is a decision
function such that ∀A ∈ AT, x ∈ U, f (x,A) ∈ VA.

Definition 2.2. ([24]) Let IS =
(
U,AT,VAT, f

)
be an information system. ∀X ⊆ U, the optimistic multigran-

ulation lower and upper approximations of X are denoted by
∑m

k=1 Ak
O (X) and

∑m
k=1 Ak

O
(X), respectively.

m∑
k=1

Ak

O

(X) =
{

x ∈ U|[x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X
}
,

m∑
k=1

Ak

O

(X) =∼

m∑
k=1

Ak

O

(∼ X) ,

where [x]Ak is the equivalence class containing x in terms of the attribute set Ak and ∼ X is the complement
of the given X.

Theorem 2.3. ([24]) Let IS =
(
U,AT,VAT, f

)
be an information system. ∀X ⊆ U, then

m∑
k=1

Ak

O

(X) =
{

x ∈ U|[x]A1 ∩ X , ∅ ∧ [x]A2 ∩ X , ∅ ∧ · · · ∧ [x]Am ∩ X , ∅
}
.

Definition 2.4. ([24]) Let IS =
(
U,AT,VAT, f

)
be an information system. ∀X ⊆ U, the pessimistic multigran-

ulation lower and upper approximations of X are denoted by
∑m

k=1 Ak
P (X) and

∑m
k=1 Ak

P
(X), respectively.

m∑
k=1

Ak

P

(X) =
{

x ∈ U|[x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X
}
,

m∑
k=1

Ak

P

(X) =∼

m∑
k=1

Ak

P

(∼ X) .

Theorem 2.5. ([24]) Let IS =
(
U,AT,VAT, f

)
be an information system. ∀X ⊆ U, then

m∑
k=1

Ak

P

(X) =
{

x ∈ U|[x]A1 ∩ X , ∅ ∨ [x]A2 ∩ X , ∅ · · · ∨ [x]Am ∩ X , ∅
}
.

Definition 2.6. ([1]) Let IS =
(
U,AT,VAT, f

)
be an information system, where Ak ∈ AT for any k ∈

{1, 2, · · · ,m}. f (xi,Ak) is the value of xi with respect to the attribute set Ak. Then UAk =
{

xi∗ | f (xi∗ ,Ak) = f (xi,Ak)
}

.
Suppose f (xi∗ ,Ak) = V, where V < VAk and xi∗ ∈ UAk . Then the attribute value set f (xi∗ ,Ak) of object xi∗ is
refined to V.

Definition 2.7. ([1]) Let IS =
(
U,AT,VAT, f

)
be an information system, where Ak ∈ AT for any k ∈

{1, 2, · · · ,m}. f (xi,Ak) is the value of xi with respect to the attribute set Ak, f (x j,Ak) is the value of x j

with respect to the attribute set Ak, and f (xi,Ak) , f (x j,Ak). Then UAk =
{

xi∗ | f (xi∗ ,Ak) = f (xi,Ak)
}

. Suppose
f (xi∗ ,Ak) = f (x j,Ak), ∀xi∗ ∈ UAk . Then the attribute value set f (xi,Ak) of object xi is coarsened to f (x j,Ak).

3. On computation of approximations in MGRS based on the relative relation matrix

In this section, a static approach is proposed to calculate the approximations in MGRS, which is based
on the relative relation matrix.
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Definition 3.1. ([5]) Let U = {x1, x2, · · · , xn} be an universe, the boolean column matrix of X ⊆ U is denoted
as GU (X) = [χU

X (x1), χU
X (x2), · · · , χU

X (xn)]T, and GU
−1

(
GU (X))

)
= X, where “T” denotes the transpose operation

and χU
X (x) is known as the characteristic function:

χU
X (x) =

{
1 x ∈ X
0 x < X

.

Definition 3.2. Let IS =
(
U,AT,VAT, f

)
be an information system. [x]Ak denotes the equivalence class

containing x with respect to the granular structure Ak on U. The relative approximation space with respect
to X is defined as Wk =

⋃
x∈X

[x]Ak . Then RIS =
(
Ω,AT,VAT, f

)
is called a relative information system such

that Ω = {W1,W2, · · · ,Wm}.

Definition 3.3. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U and given the granular

structure Ak, the boolean column matrix of X in Wk and U are denoted by GWk (X) and GU(X), respectively.
L : U→ Wk is a bijective mapping and L−1 is an inverse mapping of L satisfies that L(GU(X)) = GWk (X) and
L−1(GWk (X)) = GU(X).

Definition 3.3 shows that the two information systems IS =
(
U,AT,VAT, f

)
and RIS =

(
Ω,AT,VAT, f

)
can be converted to each other via the mapping.

Definition 3.4. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U and given the granular

structure Ak, denote Wk =
{

w1,w2, · · · ,wrk

}
and rk = |Wk|, then we call MAk = (mi j)rk×rk the relative relation

matrix of Ak with respect to X, where

mi j =

{
1 wi ∈ [w j]Ak

0 wi < [w j]Ak

i, j ∈ {1, 2, · · · , rk} .

Table 1. A decision information system.

U a1 a2 a3 d

x1 2 2 1 1
x2 1 3 3 2
x3 2 2 1 1
x4 1 1 3 2
x5 2 1 2 1
x6 3 3 3 1

Example 3.5. Let IS =
(
U,AT,VAT, f

)
be an information system with U = {x1, x2, x3, x4, x5, x6}, A1 = {a1, a3}

and A2 = {a2, a3} (see Table 1). Let X = {x1, x4, x5}, according to Definition 3.2, W1 = {x1, x2, x3, x4, x5} =
{w1,w2,w3,w4,w5} ,W2 = {x1, x3, x4, x5} = {w1,w2,w3,w4}. By Definition 3.3, GU(X) = [1, 0, 0, 1, 1, 0]T,
GW1 (X) = [1, 0, 0, 1, 1]T, GW2 (X) = [1, 0, 1, 1]T, L−1(GW1 (X)) = L−1(GW2 (X)) = GU(X). From Definition 3.4,
we have that for any k ∈ {1, 2}, the relative relation matrix can be calculated as follows:

MA1 =


1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

 ,MA2 =


1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .
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According to [5], the relation matrix can be calculated as follows:

M∗A1
=


1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,M
∗

A2
=


1 0 1 0 0 0
0 1 0 0 0 1
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

 .

It shows that the dimension of the relative relation matrix is not higher than that of the equivalence
relation matrix. Therefore, M∗A1

and M∗A2
occupy more storage space than MA1 and MA2 . Reducing the

calculation of elements unrelated to X can simplify the relation matrix proposed in [5].

Definition 3.6. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. The diagonal matrix DAk of

granular structure Ak induced by the relative relation matrix MAk can be defined as follows.

DAk = dia1(
1
λ1
,

1
λ2
, · · · ,

1
λrk

),

where λi =
rk∑

j=1
mi j for any i ∈ {1, 2, · · · , rk}.

From the viewpoint of probabilistic rough sets, the definition of inclusion degree can be introduced. Let
Pi =

|[wi]Ak∩X|
|λi |

, Pi is the degree of equivalence class [wi]Ak included in X, where 0 ≤ Pi ≤ 1(1 ≤ i ≤ rk). If
Pi = 1, then wi belongs to the element in the lower approximation; if Pi>0, then wi belongs to the element
in the upper approximation.

Definition 3.7. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U, GWk (X) represents the

boolean column matrix of X in Wk, MAk = (mi j)rk×rk denotes the relative relation matrix of Ak, DAk denotes
the diagonal matrix of granular structure Ak induced by the relative relation matrix. The column matrix
HAk (X) of the granular structure Ak can be calculated as follows.

HAk (X) = DAk · (MAk · G
Wk (X)),

where “ · ” denotes the product of matrix.

Through the matrix multiplication, HAk (X)) can induce the upper and the lower approximations.

Example 3.8. (Continuation of Example 3.5) By Definition 3.7, the column matrix HA1 (X) and HA2 (X) can be
calculated as follows.

HA1 (X) = DA1 · (MA1 · G
W1 (X)) = [1/2, 1/2, 1/2, 1/2, 1]T ,

HA2 (X) = DA2 · (MA2 · G
W2 (X)) = [1/2, 1/2, 1, 1]T .

In order to further describe the approximations in MGRS, the column matrix HAk (X) = [h1
Ak
, h2

Ak
, · · · , hrk

Ak
]T

is used to define two types of cut matrices.

Definition 3.9. ([5]) Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U and 0 ≤ α ≤ β ≤ 1,

HAk (X) = [h1
Ak
, h2

Ak
, · · · , hrk

Ak
]T denotes the column matrix of Ak. The two cut matrices of Ak can be denoted as

follows.

1. H[α,β]
Ak

(X) = (hi↓
Ak

)rk×1, where

hi↓
Ak

=

{
1 α ≤ hi

Ak
≤ β

0 otherwise
i ∈ {1, 2, · · · , rk} .
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2. H(α,β]
Ak

(X) = (hi↑
Ak

)rk×1,where

hi↑
Ak

=

{
1 α < hi

Ak
≤ β

0 otherwise
i ∈ {1, 2, · · · , rk} .

Definition 3.10. Let P = [p1, p2, ..., pn]T is an n-dimensional column matrix. Cγ(P) = [c1, c2, ..., cn]T is a
boolean column matrix called the γ-cut of P, where

ci =

{
1 pi ≥ γ

0 pi<γ
i ∈ {1, 2, · · · ,n} .

Theorem 3.11. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U, the following results hold.

GU(
m∑

k=1

Ak

O

(X)) = C1(
m∑

k=1

L−1(H[1,1]
Ak

(X))),GU(
m∑

k=1

Ak

O

(X)) = Cm(
m∑

k=1

L−1(H(0,1]
Ak

(X))).

Proof. Suppose that

GWk (
m∑

k=1

Ak

O

(X)) = [χWk∑m
k=1 Ak

O(X)
(w1), χWk∑m

k=1 Ak
O(X)

(w2), · · · , χWk∑m
k=1 Ak

O(X)
(wrk )].

∀s ∈ {1, 2, · · · , rk}, we have

χWk∑m
k=1 Ak

O(X)
(ws) = 1⇔ ws ∈

m∑
k=1

Ak

O

(X)

⇔ ∃k ∈ {1, 2, · · · ,m} , [ws]Ak ⊆ X
⇔ ∀wt ∈ [ws]Ak , (wt,ws) ∈ Rk,wt ∈ X

⇔ mst = 1, χWk
X (wt) = 1

⇔ hs↓
Ak

=

∑rk
t=1 mst × χ

Wk
X (wt)∑rk

t=1 mst
= 1

⇔ cs
1(

m∑
k=1

hs↓
Ak

) = 1.

Therefore, GU(
∑m

k=1 Ak
O (X)) = C1(

m∑
k=1

L−1(H[1,1]
Ak

(X))). Similarly, we can also have that GU(
∑m

k=1 Ak
O

(X)) =

Cm(
m∑

k=1
L−1(H(0,1]

Ak
(X))). �

Theorem 3.12. Let RIS =
(
Ω,AT,VAT, f

)
be a relative information system. ∀X ⊆ U, the following results hold.

GU(
m∑

k=1

Ak

P

(X)) = Cm(
m∑

k=1

L−1(H[1,1]
Ak

(X))),GU(
m∑

k=1

Ak

P

(X)) = C1(
m∑

k=1

L−1(H(0,1]
Ak

(X))).

Proof. The proof is similar to that of Theorem 3.11. �
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Example 3.13. (Continuation of Example 3.8) The boolean column matrix of lower and upper approximations
in OMGRS can be computed as follows.

GU(
2∑

k=1

Ak

O

(X)) = C1(
2∑

k=1

L−1(H[1,1]
Ak

(X))) = C1([0, 0, 0, 1, 2, 0]T) = [0, 0, 0, 1, 1, 0]T .

Similarly, we have

GU(
2∑

k=1

Ak

O

(X)) = C2(
2∑

k=1

L−1(H(0,1]
Ak

(X))) = [1, 0, 1, 1, 1, 0]T .

The boolean column matrix of lower and upper approximations in PMGRS can be computed as follows.

GU(
2∑

k=1

Ak

P

(X)) = C2(
2∑

k=1

L−1(H[1,1]
Ak

(X))) = [0, 0, 0, 0, 1, 0]T ,

GU(
2∑

k=1

Ak

P

(X)) = C1(
2∑

k=1

L−1(H(0,1]
Ak

(X))) = [1, 1, 1, 1, 1, 0]T .

Thus, according to Definition 3.1, we can obtain that

2∑
k=1

Ak

O

(X) = {x4, x5} ,
2∑

k=1

Ak

O

(X) = {x1, x3, x4, x5} ,
2∑

k=1

Ak

P

(X) = {x5} ,
2∑

k=1

Ak

P

(X) = {x1, x2, x3, x4, x5} .

Based on the above results, we design a static algorithm to compute the lower and upper approximations
in MGRS.

Algorithm 1 Relative relation matrix-based static algorithm for approximations in MGRS (RRMS).
Input: IS = (U,AT,VAT, f ) and X ⊆ U.
Output: Approximations in MGRS.

1: for each k ∈ |AT| do
2: Compute Wk =

⋃
x∈X

[x]Ak ;

3: Let rk = |Wk|;
4: for each i, j ∈ rk do
5: if χWK

[w j]Ak
(wi) = 1 and χWK

X (w j) = 1 then mi j = 1
6: end if
7: end for
8: Compute the diagonal matrix DAk ;
9: Let GWk (X) = L(GU(X)), HAk (X) = DAk · (MAk · G

Wk (X)).
10: end for
11: GU(

∑m
k=1 Ak

O (X)) = C1(
m∑

k=1
L−1(H[1,1]

Ak
(X))); GU(

∑m
k=1 Ak

O
(X)) = Cm(

m∑
k=1

L−1(H(0,1]
Ak

(X))).

12: GU(
∑m

k=1 Ak
P (X)) = Cm(

m∑
k=1

L−1(H[1,1]
Ak

(X))); GU(
∑m

k=1 Ak
P

(X)) = C1(
m∑

k=1
L−1(H(0,1]

Ak
(X))).

Suppose that |R(X)| = max{|Wk|}. The time complexity of Step 2 is O(|AT||X|| ∼ X|)). Steps 4-7 are
to calculate MAk with time complexity O(|AT||R(X)|2)). Step 9 is to calculate HAk (X) with time complexity
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O(|AT||R(X)|2)). Steps 11-12 are to compute the approximations of MGRS with time complexity O(|AT||U|).
The total time complexity of Algorithm 1 is O(|AT||R(X)|2). Similarly, the total space complexity of Algorithm
1 is S(|R(X)|2). The total time and space complexities of the static algorithm in [5] are O(|AT||U|2) and S(|U|2),
respectively. Based on the relative relation matrix approach, it shows that the time and space complexities
of Algorithm 1 are no more than that of the static algorithm in [5].

4. Relative relation matrix-based dynamic approaches for updating approximations in MGRS while
refining or coarsening attribute values

4.1. Relative relation matrix-based approaches for updating approximations while refining attribute values
In this subsection, we present the relative relation matrix-based theorems for dynamic updating ap-

proximations in MGRS while attribute values refining. For convenience of description, for any X ⊆ U, a list
of symbols are shown in Table 2 at times t and t + 1. For all VAt

k
∈ VATt (k ≤ m), ∃VAt+1

k
∈ VATt+1 such that

VAt
k
⊆ VAt+1

k
for any k ∈ {1, 2, · · · ,m}. When the attribute values of xi with respect to granular structure Ak

are refined, there exists equivalence class [xi]t
Ak

is divided into [xi]t+1
Ak

and [x j]t+1
Ak

such that [xi]t+1
Ak

⋂
[x j]t+1

Ak
= ∅

and [xi]t
Ak

= [xi]t+1
Ak
∪ [x j]t+1

Ak
. What’s more, according to [4], we have the following results.

Table 2. A list of symbols.

Variable Implication Time t Time t + 1

Information system
(
U,AT,VATt , f t

) (
U,AT,VATt+1 , f t+1

)
Attribute values VAt

k
VAt+1

k

Equivalence class of x [x]t
Ak

[x]t+1
Ak

Lower approximations of OMGRS
∑m

k=1 At
k

O(X)
∑m

k=1 At+1
k

O(X)

Upper approximations of OMGRS
∑m

k=1 At
k

O
(X)

∑m
k=1 At+1

k

O
(X)

Lower approximations of PMGRS
∑m

k=1 At
k

P(X)
∑m

k=1 At+1
k

P(X)

Upper approximations of PMGRS
∑m

k=1 At
k

P
(X)

∑m
k=1 At+1

k

P
(X)

Lemma 4.1. ([4]) Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times

t and t + 1, respectively. For any X ⊆ U, the following results hold.

m∑
k=1

At
k

O

(X) ⊆
m∑

k=1

At+1
k

O

(X),
m∑

k=1

At
k

O

(X) ⊇
m∑

k=1

At+1
k

O

(X);

m∑
k=1

At
k

P

(X) ⊆
m∑

k=1

At+1
k

P

(X),
m∑

k=1

At
k

P

(X) ⊇
m∑

k=1

At+1
k

P

(X).

We can find that Lemma 4.1 represents the relations of lower and upper approximations in MGRS
between times t and t + 1. The lower approximations of MGRS at time t are included in the lower approx-
imations at time t + 1, and the upper approximations of MGRS at time t include the upper approximation
at time t + 1, which means that the lower approximations of MGRS become larger, and the upper approxi-
mations of MGRS become smaller. However, if we use Lemma 4.1 for updating approximations in MGRS
directly, the search region is too large. When the attribute values are refined, the searching region will

be BNP(X) =
∑m

k=1 At
k

P
(X)−

∑m
k=1 At

k
P(X), which is out of the smallest approximation and is in the biggest

approximation. Therefore, we only need to find the lower approximations increasing elements and the
upper approximations decreasing elements in BNP(X). By the following theorem, we can further reduce
the search region which makes the algorithm more efficient.
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Theorem 4.2. Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times t

and t + 1, respectively. For any X ∈ U, if BNP(X) =
∑m

k=1 At
k

P
(X)−

∑m
k=1 At

k
P(X), the following results hold.

GU(
m∑

k=1

At+1
k

O

(X)) = GU(
m∑

k=1

At
k

O

(X)) ∧ (1 − C1(
m∑

k=1

L−1(H[0,0]
At+1

k
(BNP(X))))),

GU(
m∑

k=1

At+1
k

P

(X)) = GU(
m∑

k=1

At
k

P

(X)) ∧ (1 − Cm(
m∑

k=1

L−1(H[0,0]
At+1

k
(BNP(X))))),

where 1 − GU (X) = [1 − χU
X (x1), 1 − χU

X (x2), · · · , 1 − χU
X (xn)]T.

Proof. Suppose that H[0,0]
At+1

k
(BNP(X)) = [h1↓

Ak
, h2↓

Ak
, ..., hn↓

Ak
]. For any xs ∈

∑m
k=1 At+1

k

O
(X), by Lemma 4.1,∑m

k=1 At+1
k

O
(X) ⊆

∑m
k=1 At

k
O

(X), then xs ∈
∑m

k=1 At
k

O
(X). What’s more, if xs ∈ GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))),

then cs
1(

m∑
k=1

hs↓
Ak

) =
∑n

t=1 mst×χU
X (xt)∑n

t=1 mst
= 0, and [xs]t+1

Ak
∩ X = ∅. Therefore, GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))) ⊆

U−
∑m

k=1 At+1
k

O
(X). Thus, we can conclude that

∑m
k=1 At+1

k

O
(X) ⊆ U−GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))). Hence,∑m
k=1 At+1

k

O
(X) ⊆

∑m
k=1 At

k
O

(X)∩ (U−GU
−1(C1(

m∑
k=1

L−1(H[0,0]
At+1

k
(BNP(X)))))). If xs ∈ GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))),

for any s ∈ {1, 2, ...,n}, ∃k ∈ {1, 2, ...,m}, then cs
1(

m∑
k=1

hs↓
Ak

) =
∑n

t=1 mst×χU
X (xt)∑n

t=1 mst
= 0, [xs]t+1

Ak
∩ X = ∅. In other words,

if xs ∈ U − GU
−1(C1(

m∑
k=1

L−1(H[0,0]
At+1

k
(BNP(X))))), then [xs]t+1

Ak
∩ X , ∅, for any k ∈ {1, 2, ...,m}. Thus, we have

that xs ∈
∑m

k=1 At+1
k

O
(X). Therefore, U − GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))) ⊆
∑m

k=1 At+1
k

O
(X). This implies

that
∑m

k=1 At
k

O
(X) ∩ (U − GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X)))))) ⊆
∑m

k=1 At+1
k

O
(X). Form above,

∑m
k=1 At+1

k

O
(X) =∑m

k=1 At
k

O
(X) ∩ (U − GU

−1(C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X)))))). Thus, the result holds. Similarly, we have

GU(
∑m

k=1 At+1
k

P
(X)) = GU(

∑m
k=1 At

k
P
(X)) ∧ (1 − Cm(

m∑
k=1

L−1(H[0,0]
At+1

k
(BNP(X))))). �

Theorem 4.3. Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times t

and t + 1, respectively. For any X ∈ U, if BNP(X) =
∑m

k=1 At
k

P
(X) −

∑m
k=1 At

k
P(X), the following results hold.

GU(
m∑

k=1

At+1
k

O

(X)) = GU(
m∑

k=1

At
k

O

(X)) ∨ C1(
m∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))),

GU(
m∑

k=1

At+1
k

P

(X)) = GU(
m∑

k=1

At
k

P

(X)) ∨ Cm(
m∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))).

Proof. Suppose that H[1,1]
At+1

k
(BNP(X)) = [h1↓

Ak
, h2↓

Ak
, ..., hn↓

Ak
]. For any s ∈ {1, 2, ...,n}, it is easy to see that

xs ∈

m∑
k=1

At+1
k

O

(X)⇔ [xs]t+1
Ak
⊆ X, [xs]t

Ak
⊆ X, or [xs]t+1

Ak
⊆ X, [xs]t

Ak
* X.
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By Lemma 4.1, xs ∈
∑m

k=1 At
k

O(X)⇔ [xs]t+1
Ak
⊆ X and [xs]t

Ak
⊆ X. From the definition of BNP(X), we can obtain

that [xs]t
Ak
* X ⇒ xs ∈ BNP(X). If xs ∈ GU

−1(C1(
m∑

k=1
L−1(H[1,1]

At+1
k

(BNP(X))))), then cs
1(

m∑
k=1

hs↓
Ak

) =
∑n

t=1 mst×χU
X (xt)∑n

t=1 mst
= 1,

and [xs]t+1
Ak
⊆ X. Thus, we have

xs ∈ GU
−1(C1(

m∑
k=1

L−1(H[1,1]
At+1

k
(BNP(X)))))⇔ [xs]t+1

Ak
⊆ X and [xs]t

Ak
* X.

Therefore, we can conclude that

xs ∈

m∑
k=1

At+1
k

O

(X)⇔xs ∈

m∑
k=1

At
k

O

(X) or xs ∈ GU
−1(C1(

m∑
k=1

L−1(H[1,1]
At+1

k
(BNP(X)))))

⇔xs ∈

m∑
k=1

At
k

O

(X) ∪ GU
−1(C1(

m∑
k=1

L−1(H[1,1]
At+1

k
(BNP(X))))).

Form above, one can see that

m∑
k=1

At+1
k

O

(X) =

m∑
k=1

At
k

O

(X) ∪ GU
−1(C1(

m∑
k=1

L−1(H[1,1]
At+1

k
(BNP(X))))).

Hence, we have

GU(
m∑

k=1

At+1
k

O

(X)) = GU(
m∑

k=1

At
k

O

(X)) ∨ C1(
m∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))),

Similarly, we can prove that

GU(
m∑

k=1

At+1
k

P

(X)) = GU(
m∑

k=1

At
k

P

(X)) ∨ Cm(
m∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))).�

Table 3. A refined decision information system.

U a1 a2 a3 d

x1 2 2 1 1
x2 1 3 3 2
x3 4 4 1 1
x4 1 1 3 2
x5 2 1 2 1
x6 3 3 3 1

Example 4.4. (Continuation of Example 3.5) The refined information system is show in Table 3. We denote
WP

k =
⋃

x∈BNP(X)
[x]Ak as the relative approximation space with respect to BNP(X). Then we can obtain that

[x1]t+1
A1

= [x1]t+1
A2

= {x1} , [x3]t+1
A1

= [x3]t+1
A2

= {x3} ,BNP(X) = {x1, x2, x3, x4} ,

WP
1 = {x1, x2, x3, x4} ,WP

2 = {x1, x2, x3, x4, x6} .



Z.L. Xian et al. / Filomat 34:7 (2020), 2253–2272 2263

By Definition 3.7, the column matrix HAt+1
1

(BNP(X)) and HAt+1
2

(BNP(X)) can be calculated as follows.

HAt+1
1

(BNP(X)) = DA1 · (MA1 · G
WP

1 (X)) = [1, 1/2, 0, 1/2]T ,

HAt+1
2

(BNP(X)) = DA2 · (MA2 · G
WP

2 (X)) = [1, 0, 0, 1, 0]T .

According to Theorems 4.2 and 4.3, we have

GU(
2∑

k=1

At+1
k

O

(X)) = GU(
2∑

k=1

At
k

O

(X)) ∧ (1 − C1(
2∑

k=1

L−1(H[0,0]
At+1

k
(BNP(X))))).

= [1, 0, 1, 1, 1, 0]T
∧ (1 − C1([0, 1, 2, 0, 0, 2]T))

= [1, 0, 1, 1, 1, 0]T
∧ [1, 0, 0, 1, 1, 0]T

= [1, 0, 0, 1, 1, 0]T .

Similarly, we have

GU(
2∑

k=1

At+1
k

P

(X)) = GU(
2∑

k=1

At
k

P

(X)) ∧ (1 − C2(
2∑

k=1

L−1(H[0,0]
At+1

k
(BNP(X))))) = [1, 1, 0, 1, 1, 0]T .

GU(
2∑

k=1

At+1
k

O

(X)) = GU(
2∑

k=1

At
k

O

(X)) ∨ C1(
2∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))) = [1, 0, 0, 1, 1, 0]T .

GU(
2∑

k=1

At+1
k

P

(X)) = GU(
2∑

k=1

At
k

P

(X)) ∨ C2(
2∑

k=1

L−1(H[1,1]
At+1

k
(BNP(X)))) = [1, 0, 0, 0, 0, 0]T .

Thus, by Definition 3.1, we can obtain that

2∑
k=1

At+1
k

O

(X) = {x1, x4, x5} ,
2∑

k=1

At+1
k

O

(X) = {x1, x4, x5} ,

2∑
k=1

At+1
k

P

(X) = {x1, x5} ,
2∑

k=1

At+1
k

P

(X) = {x1, x2, x4, x5} .

4.2. Relative relation matrix-based approaches for updating approximations while coarsening attribute values

In this section, we present the relative relation matrix-based theorems for dynamic updating approxi-
mations in MGRS while coarsening attribute values. For convenience of description, for any X ⊆ U, a list
of symbols are also shown in Table 2 at times t and t + 1. For all VAt

k
∈ VATt (k ≤ m), ∃VAt+1

k
∈ VATt+1 such

that VAt+1
k
⊆ VAt

k
for any k ∈ {1, 2, · · · ,m}. When the attribute values of xi with respect to granular structure

Ak are coarsened, [xi]t+1
Ak

is the equivalence class after coarsening. Namely, [xi]t
Ak
∪ [x j]t

Ak
= [xi]t+1

Ak
. What’s

more, according to [4], we have the following results.
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Lemma 4.5. ([4]) Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times

t and t + 1, respectively. For any X ⊆ U, the following results hold.

m∑
k=1

At+1
k

O

(X) ⊆
m∑

k=1

At
k

O

(X),
m∑

k=1

At
k

O

(X) ⊆
m∑

k=1

At+1
k

O

(X);

m∑
k=1

At+1
k

P

(X) ⊆
m∑

k=1

At
k

P

(X),
m∑

k=1

At
k

P

(X) ⊆
m∑

k=1

At+1
k

P

(X).

Similar to that of Lemmas 4.1, Lemmas 4.5 shows that the lower approximations of MGRS at time
t include the lower approximations at time t + 1, and the upper approximations of MGRS at time t are
included in the upper approximation at time t + 1. It reveals that the lower approximations of MGRS
become smaller, and the upper approximations of MGRS become larger. We find the optimistic boundary

region BNO(X) =
∑m

k=1 At
k

O(X) ∪ (U −
∑m

k=1 At
k

O
(X), the searching region will be the union of the biggest

lower approximation and the complement set of the smallest upper approximation. Therefore, we only
need to find the elements that decrease and increase in the lower and upper approximations, respectively.
The following theorems provide a more effective method to update the approximates of MGRS while the
attribute values are coarsened.

Theorem 4.6. Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times t

and t + 1, respectively. For any X ∈ U, if BNO(X) =
∑m

k=1 At
k

O(X) ∪ (U −
∑m

k=1 At
k

O
(X), the following results hold.

GU(
m∑

k=1

At+1
k

O

(X)) = GU(
m∑

k=1

At
k

O

(X)) ∨ Cm(
m∑

k=1

L−1(H(0,1]
At+1

k
(BNO(X)))),

GU(
m∑

k=1

At+1
k

P

(X)) = GU(
m∑

k=1

At
k

P

(X)) ∨ C1(
m∑

k=1

L−1(H(0,1]
At+1

k
(BNO(X)))).

Proof. The proof is similar to that of Theorem 4.3. �

Theorem 4.7. Let ISt =
(
U,AT,VATt , f t

)
and ISt+1 =

(
U,AT,VATt+1 , f t+1

)
be the information systems at times t

and t + 1, respectively. For any X ∈ U, if BNO(X) =
∑m

k=1 At
k

O(X) ∪ (U −
∑m

k=1 At
k

O
(X), the following results hold.

GU(
m∑

k=1

At+1
k

O

(X)) = GU(
m∑

k=1

At
k

O

(X)) ∧ (1 − Cm(
m∑

k=1

L−1(H[0,1)
At+1

k
(BNO(X))))),

GU(
m∑

k=1

At+1
k

P

(X)) = GU(
m∑

k=1

At
k

P

(X)) ∧ (1 − C1(
m∑

k=1

L−1(H[0,1)
At+1

k
(BNO(X))))).

Proof. The proof is similar to that of Theorem 4.2. �

Example 4.8. (Continuation of Example 3.5) The coarsened information system is showed in Table 3. We
denote WO

k =
⋃

x∈BNO(X)
[x]Ak as the relative approximation space with respect to BNO(X). Then we have

[x5]t+1
A1

= [x6]t+1
A1

= {x5, x6} , [x2]t+1
A2

= [x5]t+1
A2

= [x6]t+1
A2

= {x2, x5, x6} ,

BNO(X) = {x2, x4, x5, x6} ,WO
1 = WO

2 = {x2, x4, x5, x6} .
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Table 4. A coarsened decision information system.

U a1 a2 a3 d

x1 2 2 1 1
x2 1 3 3 2
x3 2 2 1 1
x4 1 1 3 2
x5 3 3 3 1
x6 3 3 3 1

According to Definition 3.7, the column matrix HAt+1
1

(BNO(X)) and HAt+1
2

(BNO(X)) can be calculated as
follows.

HAt+1
1

(BNO(X)) = DA1 · (MA1 · G
WO

1 (X)) = [1/2, 1/2, 1/2, 1/2]T ,

HAt+1
2

(BNO(X)) = DA2 · (MA2 · G
WO

2 (X)) = [1/3, 1/3, 1, 1/3]T .

From Theorems 4.6 and 4.7, we have

GU(
2∑

k=1

At+1
k

O

(X)) = GU(
2∑

k=1

At
k

O

(X)) ∨ C2(
2∑

k=1

L−1(H(0,1]
At+1

k
(BNO(X)))) = [1, 1, 1, 1, 1, 1]T ,

GU(
2∑

k=1

At+1
k

P

(X)) = GU(
2∑

k=1

At
k

P

(X)) ∨ C1(
2∑

k=1

L−1(H(0,1]
At+1

k
(BNO(X)))) = [1, 1, 1, 1, 1, 1]T ,

GU(
2∑

k=1

At+1
k

O

(X)) = GU(
2∑

k=1

At
k

O

(X)) ∧ (1 − C2(
2∑

k=1

L−1(H[0,1)
At+1

k
(BNO(X))))) = [0, 0, 0, 1, 0, 0]T ,

GU(
2∑

k=1

At+1
k

P

(X)) = GU(
2∑

k=1

At
k

P

(X)) ∧ (1 − C1(
2∑

k=1

L−1(H[0,1)
At+1

k
(BNO(X))))) = [0, 0, 0, 0, 0, 0]T .

Thus, according to Definition 3.1, we can obtain that

2∑
k=1

At+1
k

O

(X) = {x4} ,
2∑

k=1

At+1
k

O

(X) = {x1, x2, x3, x4, x5, x6} ,

2∑
k=1

At+1
k

P

(X) = ∅,
2∑

k=1

At+1
k

P

(X) = {x1, x2, x3, x4, x5, x6} .

5. Relative matrix-based dynamic algorithms for updating approximations while refining or coarsening
attribute values

When the attribute values are refined, the granular structure will change, refining attribute values
can be seen as adding attributes. Based on Theorems 4.2 and 4.3, we propose Algorithm 2 for updating
approximations in MGRS and compare it with the matrix-based dynamic algorithm in [5].
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Algorithm 2 Relative relation matrix-based dynamic algorithm for approximations in MGRS while refining
attribute values (RRMDR).
Input: ISt = (U,AT,VATt , f t), ISt+1 =

(
U,AT,VATt+1 , f t+1

)
and X ⊆ U.

Output:
∑m

k=1 At+1
k

O(X),
∑m

k=1 At+1
k

O
(X),

∑m
k=1 At+1

k
P(X) and

∑m
k=1 At+1

k

P
(X).

1: Let BNP(X) =
∑m

k=1 At
k

P
(X) −

∑m
k=1 At

k
P(X).

2: for each k ∈ |AT| do
3: Compute WP

k ;
4: Let rk = |WP

k |;
5: for each i, j ∈ rk do

6: if χWP
k

[w j]Ak
(wi) = 1 and χWP

k
X (w j) = 1 then mi j = 1

7: end if
8: end for
9: Compute the diagonal matrix DAk ;

10: Let GWP
k (X) = L(GU(X)),HAt+1

k
(BNP(X)) = DAk · (MAk · G

WP
k (X)).

11: end for
12: GU(

∑m
k=1 At+1

k

O
(X)) = GU(

∑m
k=1 At

k
O

(X)) ∧ (1 − C1(
m∑

k=1
L−1(H[0,0]

At+1
k

(BNP(X))))).

13: GU(
∑m

k=1 At+1
k

P
(X)) = GU(

∑m
k=1 At

k
P
(X)) ∧ (1 − Cm(

m∑
k=1

L−1(H[0,0]
At+1

k
(BNP(X))))).

14: GU(
∑m

k=1 At+1
k

O(X)) = GU(
∑m

k=1 At
k

O(X)) ∨ C1(
m∑

k=1
L−1(H[1,1]

At+1
k

(BNP(X)))).

15: GU(
∑m

k=1 At+1
k

P(X)) = GU(
∑m

k=1 At
k

P(X)) ∨ Cm(
m∑

k=1
L−1(H[1,1]

At+1
k

(BNP(X)))).

Suppose that |R(BNP(X))| = max{|WP
k |}. Step 3 needs the time complexity O(|AT||X| ∼ X|). Steps

5-8 are to compute MAk with time complexity O(|AT||R(BNP(X))|2). The time complexity of Step 10 is
O(|AT||R(BNP(X))|2). Steps 12-15 can be done with time complexity O(|AT||U|). The total time complexity
of Algorithm 2 is O(|AT||R(BNP(X))|2).

Similarly, coarsening attribute values can be seen as deleting attributes. Based on Theorems 4.6 and
4.7, we propose Algorithm 3 for updating approximations in MGRS while coarsening attribute values. The
total time complexity of Algorithm 3 is O(|AT||R(BNO(X))|2), where |R(BNO(X))| = max{|WO

k |}.
The space complexities of Algorithms 2 and 3 are S(|R(BNP(X))|2) and S(|R(BNO(X))|2), respectively. The

space complexities of the static and dynamic algorithms based on the relation matrix are both S(|U|2) in [5].
Therefore, the space complexity of the algorithm based on the relative relation matrix is no more than that
of the algorithm based on the relation matrix.
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Algorithm 3 Relative relation matrix-based dynamic algorithm for approximations in MGRS while coars-
ening attribute values (RRMDC).

Input: ISt = (U,AT,VATt , f t), ISt+1 =
(
U,AT,VATt+1 , f t+1

)
and X ⊆ U.

Output:
∑m

k=1 At+1
k

O(X),
∑m

k=1 At+1
k

O
(X),

∑m
k=1 At+1

k
P(X) and

∑m
k=1 At+1

k

P
(X).

1: Let BNO(X) =
∑m

k=1 At
k

O(X) ∪ (U −
∑m

k=1 At
k

O
(X).

2: for each k ∈ |AT| do
3: Compute WO

k ;
4: Let rk = |WO

k |.
5: for each i, j ∈ rk do

6: if χWO
k

[w j]Ak
(wi) = 1 and χWO

k
X (w j) = 1 then mi j = 1

7: end if
8: end for
9: Compute the diagonal matrix DAk ;

10: Let GWO
k (X) = L(GU(X)),HAt+1

k
(BNO(X)) = DAk · (MAk · G

WO
k (X)).

11: end for
12: GU(

∑m
k=1 At+1

k

O
(X)) = GU(

∑m
k=1 At

k
O

(X)) ∨ Cm(
m∑

k=1
L−1(H(0,1]

At+1
k

(BNO(X)))).

13: GU(
∑m

k=1 At+1
k

P
(X)) = GU(

∑m
k=1 At

k
P
(X)) ∨ C1(

m∑
k=1

L−1(H(0,1]
At+1

k
(BNO(X)))).

14: GU(
∑m

k=1 At+1
k

O(X)) = GU(
∑m

k=1 At
k

O(X)) ∧ (1 − Cm(
m∑

k=1
L−1(H[0,1)

At+1
k

(BNO(X))))).

15: GU(
∑m

k=1 At+1
k

P(X)) = GU(
∑m

k=1 At
k

P(X)) ∧ (1 − C1(
m∑

k=1
L−1(H[0,1)

At+1
k

(BNO(X))))).

6. Experimental results

In this section, we conduct several experiments to show the validity of the proposed algorithms. We
compare the performance of the relative relation matrix-based static algorithm (RRMS), the relative relation
matrix-based dynamic algorithms (RRMDR and RRMDC), the matrix-based static algorithm (MBS) and
the matrix-based dynamic algorithms (MBDA and MBDD) [5]. In order to verify the efficiency of RRMS,
RRMDR and RRMDC, eight data sets are chosen from UCI. They are Las Vegas Trip Advisor Reviews Data
(LVTAR), BS, Whole Sale Customers Data (WSC), Blood Transfusion (BT), Facebook Metrics (FM), Student
Mat (SM), Solar Flare (SF) and German Credit Data (GCD). The details of data sets are described in Table
5. All the experiments are carried out on a personal computer with 64-bit windows 10, AMD A10-7300
Radeon R6, 10 Compute Cores 4C+6G, and 8GB memory. The program lauguage is Matlab R2015b.

Table 5. Data sets used in the experiments.

No. Data sets Samples Attributes

1 LVTAR 504 20
2 BS 625 4
3 WSC 440 8
4 BT 748 5
5 FM 500 19
6 SM 396 33
7 SF 1398 13
8 GCD 1000 21
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6.1. The comparison of static and dynamic updating algorithms with different size of data sets
When the size of data set increases gradually, computational times are compared among RRMS, RRMDR,

MBS and MBDA in MGRS while refining attribute values, and computational times are compared among
RRMS, RRMDC, MBS and MBDD in MGRS while coarsening attribute values. Firstly, when refining the
attribute values, one attribute value is randomly added into an attribute set Ak. When coarsening attribute
values, one attribute value is randomly deleted from an attribute set Ak. Secondly, every data set U is
randomly divided into ten subsets, which is denoted by {U1,U2, · · · ,U10}. Then, selecting U1 as the first
temporary data set, the combination of the first part and the second part is regarded as the second temporary
data set. Namely, U1∪U2 is the second temporary data set, and so on. The composition of the target concept
X is randomly selected from each temporary data set, and its size is approximately 0.95 times the temporary
data set. We calculate the lower and upper approximations in MGRS by RRMS, RRMDR, RRMDC, MBS,
MBDA and MBDD ten times and compare these averages.

Experimental results of RRMS, RRMDR (RRMDC), MBS and MBDA (MBDD) while refining and coars-
ening attribute values in MGRS are shown in Figs.1 and 2, respectively. The x-coordinate represents the
size of data sets, while the y-coordinate represents the computational time. In each figure, by comparing
the computational times of the static and dynamic updating algorithms, in general, we can see that RRMS
and RRMDR (or RRMDC) have a better performance on MBS and MBDA (or MBDD), respectively. In each
sub-figure of Fig.1, RRMDR is faster than RRMS on updating approximations in most situation, especially
when the data set increases to a large size, the computational time difference between RRMS and RRMDR
based on the relative relation matrix approach becomes more obvious. What’s more, we have that the
computational time of RRMDR is less than or equal to any other algorithms in most situation. In Fig.2,
the computational times of RRMS and RRMDC stay close, in general, these results show the superior
computational efficiency of the RRMS and RRMDC over the MBS and MBDD, respectively.
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Fig 1. Computational times of RRMS, RRMDR, MBS and MBDA when the size of U increases gradually
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Fig 2. Computational times of RRMS, RRMDC, MBS and MBDD when the size of U increases gradually

6.2. The comparison of static and dynamic updating algorithms with different size of target concept X
When the size of target concepts X increases gradually, the computational times are compared among

RRMS, RRMDR (RRMDC), MBS and MBDA (MBDD) in MGRS. The process of constructing temporary
target concepts X is similar to that of subsection 6.1. When the size of target concept X gradually increases,
we choose U1 as the first temporary target concept, U1 ∪ U2 is the second temporary target concept, and
so on. Experimental results are shown in Figs.3 and 4, which show more detailed change trend lines of
RRMS, RRMDR (RRMDC), MBS and MBDA (MBDD) with the increasing size of target concepts while
refining or coarsening attribute values, the x-coordinate represents the size of target concepts, while the
y-coordinate represents the computational time. We can find that the computational times of RRMS and
RRMDR (RRMDC)) are more efficient in comparison with MBS and MBDA (MBDD), respectively. In Fig.3,
the computational time of RRMDR is the lowest among the four algorithms. In Fig.4, the computational
times of RRMS and RRMDC stay close, but the performance of the relative relation matrix-based algorithms
is better than that of the matrix-based algorithms.
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Fig 3. Computational times of RRMS, RRMDR, MBS and MBDA when the size of X increases gradually
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Fig 4. Computational times of RRMS, RRMDC, MBS and MBDD when the size of X increases gradually
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7. Conclusion

In this paper, we discussed the problem of updating approximations in MGRS while refining or coars-
ening attribute values. Relative relation matrix-based approaches for updating approximations were pro-
posed. The results indicated that the storage and time complexities of the relative relation matrix are less
than that of the relation matrix. Furthermore, we designed two types of dynamic algorithms RRMDR and
RRMDC. The experimental results demonstrated that the computational times of RRMDR (RRMDC) are
no more than that of RRMS, MBS, and MBDA (MBDD) in most situations. In our future studies, we plan
to investigate updating approximations with the variation of objects based on the proposed approaches in
this paper.
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