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Abstract. In this paper our aim is to deduce some sufficient conditions for integral operators involving
normalized Dini functions to be univalent in the open unit disc. The key tools in our proofs are the
generalized versions of the well-known Ahlfor’s and Becker’s univalence criteria and some inequalities for
the normalized Dini functions.

1. Introduction

Let A be the class of functions f of the form

f@)=z+) ad, (1)
k=2

analytic in the open unit disc U = {z : |z| < 1} and S denote the class of all functions in A which are univalent
in U. Geometric properties of special functions such as Hypergeometric functions, Bessel functions, Struve
functions, Mittag Leffler functions, Wright functions and some other related functions is an ongoing part
of research in geometric function theory. We refer for some geometric properties of special functions like
Hypergeometric functions [8], Bessel functions [1, 2, 13, 15, 26], Struve functions [18, 20, 33], Lommel
functions [9, 32], Mittag-Leffler function [29] and Wright function [24, 25] and references therein. Recently,
many mathematicians have set the univalence criteria of several those integral operators which preserve
the class S. By using a variety of different analytic techniques, operators and special functions, several
authors have studied univalence criterion, a few of them are as mentioned below. Kanas and Srivastava
[16], and Deniz and Orhan [10-12] studied univalence criteria for analytic functions defined in U by
using the Loewner chains method. Kiryakova, Saigo and Srivastava [17] obtained some univalence criteria
for certain generalized fractional integral and derivatives, accompanying all the linear integro-differential
operators. Frasin [15] studied the univalence criteria of some integral operators defined by Bessel functions
of first kind. Geometric properties of these integral operators were discussed in [2, 15]. Deniz et al. [13]
introduced certain integral operators by using Generalized Bessel functions and studied their univalence
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criteria. Further, Raza et al [26] discussed the convexity, starlikeness and uniformly convexity of these
integral operators. Recently Al Kharsani et al. [1] investigated the sufficient conditions for linear fractional
differential operators involving the normalized forms of the generalized Bessel functions of the first kind
to be univalent. For further details of these univalence criterion, we refer the readers to [4-7, 19, 21-
23,27,28, 30, 31].

The Bessel functions of the first kind J, is defined by

o]

(_1)m 2m+v
KO- Y e misla) @

m=1

where I stands for Euler gamma function. Itis a particular solution of the second order linear homogeneous
differential equation

22w (2) + zw' (2) + (2% — vH)w(z) = 0

where v € C. It is important to study their properties in many aspects. We consider the normalized Dini
function g, : YU — C defined by

g, (z) = 27 T(v+1)zl2 ((z_v)]v(\/g)+ \/2];(\/2))

_ = ()" m+ DT w+1) ,,
) Z+m=1 M +m+1) - U (zeU). o

Recently Baricz et al [3] studied the close-to-convexity of Dini functions. Further some geometric properties
for the Dini functions are discussed in [14]. In this paper, we are mainly interested in the univalence of
integral operators involving the normalized Dini functions of the form (3) defined by

RTIC
_ qvit i
Fur,vman (@) = 1B f tf 11_[(7) dte 4)
0 =1
z 1/(na+1)
Gurron@ = {0 1) [T @@ ) ary ©
0 i=1
and
5 1/A
Qv,/\ (z) = Aft/\_l (eq"(t))A dt . (6)
0

More precisely, we would like to show that by using some inequalities for the normalized Dini functions
the univalence of these integral operators involving normalized Dini functions can be derived easily via
some well-known univalence criteria. In particular, we obtain simple sufficient conditions for some integral
operators which involve the sin and cos functions. At the last section of this paper, we find the univalence
of some integral operators for the bounds of normalized Dini functions.

2. Preliminary Results

In order to derive our results, we need the following lemmas.
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Lemma 2.1. [22] Let B and c be the complex numbers such that R(B) > 0and |c| < 1, ¢ # —1. If the function f € A
satisfies the inequality

clf? + (1 - 2P) 2];((27.))

<1

forall z € U, then
1
;

Fy(2) = {ﬁ f tﬁ‘lf’a)dt} (7)
0

is in the class S.

Lemma 2.2. [21] Let « € C, such that R(a) > 0. If f € A satisfies the inequality

Zfl/(z)
f'@)
for all z € U, then for all B € C such that R(B) > R(a), the function Fg defined by (7) is in the class S.

1 _ |Z|2‘R(a)

R <1

Lemma 2.3. [23] Let A € Cand o € Rsuch that R(A) = 1, a > 1and 2a|A| < 3V3.If f € A satisfies the inequality
(zf’(z)| < a forall z € U, then the function Q, : U — C, defined by

. 1/A
Q. (2) = {/\ft/\l (ef(t)))\ dt}

0

is in the class S.

3. Inequalities Involving In The Main Results

Lemma 3.1. Let v € R and consider the normalized Dini function q,(z) : U — C, defined by (3) . Then the following
inequalities hold for all z € U

(i)
, qV(Z)‘ 4v+9
- < > -1),
©@ - S @y V7Y
(ii)
412 +9v+3 < 7.(2) < 42 +13v+11 > 1),
42 +11v+7 z 42 +11lv+7
(iii)
zq,,(z) ‘ 4v+9 -9+ /33
e —T7 [y 222
qv(2) 242 +9v +3) 8
(iv)
+v-1 12 +3v+3
— < |zq < —F -1).
vrip SEels e 02D
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Proof. To prove the assertion (i) of the Lemma 3.1, we use the well-known triangle inequality

|z1 + 22| < |z1] + |z

e+ 1

TwrmeD = oo, M€ IN and the result

with the equality

4m =DV + 2 = (m+1) (v +2)"", me N\ {1}.
Thus, we obtain

= (— 1)’"m(m+1)1"(v+1)
4mml(v+m+1)

v()_qV_(Z)

i (m+1)
4mm -1 v+1),

=1

+i m+1
v+1 2 4(m — )41y + 2)1

=2

1|1 v 1
(v+1)[§+m2_2(4(v+2)) }

4v+9
= Y@riigy GE€W-

In order to prove the assertion (ii) of the Lemma 3.1, we use the triangle inequality and the following result:
2m!(v+2)q = (m+1) (v +2)"1 (meN). (8)
We thus find that

2.)

z

D" m+1DT (v +1) o (m+1)
Z 4mm!T (v +m+1) 1+Z:4*"m' v+1),

(m+1 1 m—1
v+1)22m'4"’1(v+2) <1+2(v+1)m2=1(4(v+2))

492 +13v + 11
= - eU).
ity CGE€W

Similarly, by using the reverse triangle inequality:

|21 + 22| > [lz1] = |22l
and the inequality (8) we have,

2.)
zZ

(-1)"™ (m +1) F(v+1)m>1 = (m+1)
Z 4mmT (v +m + 1) = _mzzl4mm!(v+1)m

(m+1 1 0o 1 m—1
1/+1)Z 2mi4m=1 (v +2), 4 21_2(1/+1)7112_1(4(1/+2))

412 +9v+3
= iy €W
Now, by combining (i) and (ii), we get the assertion (iii) of Lemma 3.1.

To prove the assertion (iv) of the Lemma 3.1, we use the well-known triangle inequality

|z1 + zo| < |z1| + |22]
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T+ 1

T = wrn, M € IN and the result

with the equality ¢
4" >2m+1), 2m! >m+1, m e N. )
Thus, we get

> (—1)" (m + 1)? F(v+1 Z (m+1)%
4mmT (v+m+1) 4mm! (v + 1),

1 2(m+1) ( )’"1
1+v+1mZ=l(4’”2m'(v+2)m1) v+1Z VT2

|zq1’,(z)) = |z+

Similarly, by using the reverse triangle inequality
|21 + 22| 2 |z = |22l

and the inequalities used in (9), we have

o]

, 3 (=1)" (m + 1) T(v+1 (m + 1)
.| = Z+Z T v+ m+1) Z mm'(v+1)m
_ 1y 2(m+1)?
=1 v+1m:14m2m!(v+2)ml_ v+1Z(v+2)
4y —1
= m (ZE(LI).

O

4. Univalence Of Integral Operators Involving Normalized Dini Functions

Our first main result is an application of Lemma 2.1 and contains sufficient conditions for an integral
operator defined in (4) when the g,, are the normalized Dini functions with parameters.

Theorem 4.1. Let vq,...,v, > _9%@, where n € N and q,, : U — C be defined in (3). Suppose v =
min {vq,vy, ..., vu}, B € Cwith R(B) > 0,c € Cwithc # 1 and o;, (i = 1,...,n) be nonzero complex num-
bers and these numbers satisfy the relation

4v+9 =1
+ <1, 10
|C| 2(4v2 +9v +3) ; ‘ﬁai| - (10)

then the function F,,,_ ., a,,..a,p * U — C defined by (4) is in the class S.

Proof. We consider the function

0 - Vi(t) i
)=f11[(”’7) dt.
J b

First of all, since q,, € A (i = 1,2,...,n) then, we have that f(z) € A, thatis,

fO)=f(0)-1=0.
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On the other hand, it is easy to see that

ra=1(*2) an

L z
i=1
and
2f"@) N 1 (Zq;,.(Z) ~ 1)
f@ ~a\g@ )
By using assertion (iii) of Lemma 3.1, for each v; (i = 1,2, ..., n1), we obtain
z2f"(2) =1 |z,2) 1'
f/(z) i=1 |al| Elvi(z)

Z”: 1 4vi+9
=1l 2 (402 + 9v; + 3)
Now as it is clear that the function

(-9+ V33
Pv): (T,OO)

defined by

- R,

4v+9
) = m
is decreasing function. Therefore
4v;+9 < 4v+9
2(42+9v;+3) " 242 +9v+3)

and consequently

'@ 4v+9 ii
f@ 17 2(42 +9v +3) Hlai|

Finally, by using the triangle inequality and the assertion of Theorem 4.1, we get

clz + (1 - |z|2ﬁ) %

4v+9 !
< + <1,
< ld 2<4v2+9v+3);|ﬁa1.) -

which, in view of Lemma 2.1, implies thatF,, ., a,....a, € S. This evidently completes the proof of Theorem
41. O

Choosing @1 = @, = - - - = @, = a in Theorem 4.1, we have the following results.

Corollary 4.2. Let vq,...,v, > %373, where n € N and q,, : U — C be defined in (3). Suppose v =

min {vy,vy,...,vs}, p € Cwith R(B) > 0, c € Cwith c # 1 and o be a nonzero complex number and these
numbers satisfy the relation

4v +9 n

= <
At @z rov+3) pa] =

1,

then the function F,,, ., op : U — C defined by (4) is in the class S.
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It is observe that

q1y2(2) = g\/i(sin Vz+ Vzcos Vz)

and
ga)2(2) = ((z —1)sin Vz + Vzcos \/_)
\/-
Thus, taking #n = 1 in Corollary 4.2, we immediately obtain the following result.
Corollary 4.3. Letvy,...,v, > =+ \F ,B € CwithR (B) >0, c € Cwithc # 1and a be a nonzero complex number

and these numbers satisfy the relatzon

4v+9 1

T A S
g 2 (42 +9v +3) |‘3a| -

then the function F, . p : U — C defined by

0

is in the class S. In particular, if |c| + 5

1/p

7| ] <1, then the function F, , s - U — C defined by

z 3 (o %
0

1/p

Vi

is in the class S. Moreover, if |c| + <1, then the function Fs , s - U — C defined by

51|ﬁ |
1/p

Fred@ ﬁftﬁl (% ((t —1)sin Vt + Vtcos ‘/Z))l dt
0

is in the class S.

The following results contains another sufficient conditions for an integral operator defined in (5) . The
key tool in the proof is the assertion (iii) of Lemma 3.1.

Theorem 4.4. Let vy,...,v, > 9+8\F’ where n € N and q,, : U — C be defined in (3). Suppose v =
min {vy, vy, ..., v}, @ € Cwith R(a) > 0, and suppose that these numbers satisfy the following inequality

Then the function Gy, ,. v,.an : U — C defined by (5) is in the class S.

Proof. Consider the auxiliary function g(z) : « — C defined by

Z - Vi(t) ¢
):fl_l[(”’T) dt.
J b
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We observe that g(z) € A, that is
9(0)=¢'(0) -
On the other hand, by using the assertion (iii) of Lemma 3.1, the assertion of Theorem 4.4 and the fact that

4v; +9 < 4v+9
2(42 +9v;+3) ~ 2042 +9v +3)

Zg”(Z)
9'(2)

2] z(,(z)
R (a) Z 7,(2) '

we have
1 - [zPR@
)
n|a| 4v+9
R@)2@EB?2+9v+3)

Now, since R (na + 1) > R (@) and the function Gy, ,, a.x(z) can be rewritten in the form:

(@) = [(mﬂ) f th(q”' t)) dt

Lemma 2.2 would imply that G,,, v, an(z) € S, which completes the proof of Theorem 4.4. [

(nx+1)

By setting 7 = 1 in Theorem 4.4, we get the required result.

Corollary 4.5. Letv > _9%@, wheren € N and q, : U — C be defined in (3) . Suppose o € C with R(a) > 0, and

suppose that these numbers satisfy the following inequality

2(4v2 +9v +3)
4v +9

Then the function G, : U — C defined by

R (a).

la| <

1/(a+1)

Gv,a (2)=1(a+1) (qy (t))a dt
!

is in the class S.
In particular, if || < (%) R (), then the function Gy, : YU — C defined by

1/(a+1)

Gij2,a (2) = (a + 1)[(; \/Z(sin Vt+ Vtcos \/E))a dt
0

is in the class S. Moreover, if |a| < (%) R(«@), then the function G5, : U — C defined by

1/(a+1)

z 3 o
G3joa (z) =4 (@ +1) (— ((t —1)sin Vt+ Vtcos \/Z)) dt

is in the class S.
Next, by applying the Lemma 2.3 and the assertion (iv) of Lemma 3.1, we easily get the required result.
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Theorem 4.6. Let A € C,v > —1and q, is the normalized Dini function. If R (A) > 1 and

3V3(v +1)?
< 2B
2+ 3v+3
Then the function Qy, (z) : U — C defined by (6) is in the class S.
Choosing v = 1/2 and v = 3/2 in the above Theorem, we obtain the following particular cases.
Corollary 4.7. If A € C such that R(A) > 1 and |A| < % V3, then Q121 (z) : U — C, defined by

. 1/A

Qi (2) = /\ftA‘l (g% Vi(sin Vi+ Vi cos \ﬁ))A it
0
is in the class S.
Corollary 4.8. If A € C such that R(A) > Land |A| < & VB, then Qsjr (2) : U > C, defined by

. 1/4

, , A
Q321 (2) = /\ftA‘1 (eﬁ((t_l)sm Ve VEcos W)) dt
0

is in the class S.

The univalence of the integral operators defined in Theorem 4.1, 4.4 and 4.6, can be improved by using
the inequality (see [? ])

k), > k(k + ap)™!, m € N\ {1,2}, (12)
where

ap = 1.302775637 - - -
is the greatest root of the following quadratic equation

a*+a—3=0.

Thus, by using the inequality defined in (12) and the same steps used in Lemma 3.1, we will get some
improved versions of Lemma 3.1 and Theorem 4.1, 4.4, 4.6.

Lemma 4.9. Let v > —1 and consider the normalized Dini function q,(z) : ‘U — C, defined in (3). Then the
following inequalities hold for all z € U

(i)
702 - qviz) 3+ 16§v6(4; i)(lv)(ti)e;(v +1)
(i1)
S+ D)W +2){1-dw+1} -1 [|4.E)] 1+8v+1)v+2){1+dWv+1)}
8(v+1)(v+2) z 8v+1)(v+2) !
(iii)

zq,(z) B ‘ < 3+16(v+1)(v +2)P(v + 1)
qv(2) 28w+ 1w +2){1 —dv +1)} 1]
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(iv)
v+ +ag)—@+1+ag)
v+ 1D+ ag)

where (v + 1) is defined by

v+ +ag)+@V+1+ag)
v+ 1D+ ag)

< |z.(2)| <

7

1

1
R Al y v+ Ry s 7y v prame s T £

Proof. To prove the assertion (i) of the Lemma 4.9, we use the well-known triangle inequality

|z1 + 22| < |z1| + |22]

with the equality r(i (:;li)l) = i +1 ,m € N and the results
+1
m! > M and (v+1), >@+1)v+1+ap)™ !, meN\({1,2}.

2
Thus, we obtain

' (2) qV(Z)

v

Z( ™ m(m+1)F(v+1)

4mmT(v+m+1)

Z m(m + 1)
4mml (v + 1),

1 3 m(m +1)
2w+l 16+ v+2) +mZ:34’”m!(v+l)m

S S 3 1 "
2+ 1) 16(v+1)(1/+2)+2(v+1)m:3(4(v+1+a0)

1 3 1 1
T2+ 16+ )v+2) 2w+ DAv+ltan Ao+ 1+ ag) -

3
“ernwey TP

_3+16(v+ (v +2)D(v + 1)
a 16(v + 1)(v +2)

In order to prove the assertion (ii) of the Lemma 4.9, we use the triangle inequality and the following results:

v>-1).

1> M, meNand (v+1),>v+1)(v+1+a)" !, meN\({1,2}. (13)
We thus find that
w(z)| = (-1)" (m+1)r(v+1)
P el S e Y 1+Z4m(v+1)m

1 1
:1+2(v+1)+8(1/+1)(v+2)+mzz34’”(v+1)m

. 1 1 1 1 "
ST+ T8N+ +2(v+1)mz_§(4(v+1+a0))

.. 1 1 1 1
T BN+ 204D 2w+ A rlran B+l ra) -1
1

_ 148w+ 1) +2){1+ D+ 1)}
a 8(v+1)(v+2)

v>-1).
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Similarly, by using the reverse triangle inequality:
|21 + 22| 2 [lz1] = |22l

and the results (13) we have

qv(z) = ()" (m+1)T(v+1) o - 2
1+Z{ T v +m+1) 21_Z4m(v+1)m
1
=1- {2(1/+1) Sw+1)(v+2) Z4m(v+1)m}
1 1 m—1
=1- {2(v+1) Bw+1)(v+2) 2(v+1)2(4(1/+1+040)) }

1 1 1
(1/+1)(v+2) [2(v+1) +2(v+1)4(v+1+a0){4(v+1+a0)—1}]
1
:1_m—®(v+1)
B+ D +2) {1 -+ 1)) -1

80+ (v +2) v>-1).

Now, by combining (i) and (ii), we get the assertion (iii) of Lemma 4.9

zq,(2) B | 3+16(v+1)(v+2)dv +1)
gv(2) T2+ DV +2){1 -dv+ 1)} —-1]

v>-1).

To prove the assertion (iv) of the Lemma 4.9 we will use the well-known triangle inequality
|21 + 22| < |z1] + |22

r(l;g;i)l) = i +1) ,m € IN and the results

with the equality

4" > 2m+1),2m>2m+1, meNN, (14)
w+1), > @+D)E+1+a)™!, meN\{1,2}.

Thus, we get

()" (m+ 1T+, <1+i (m+1)°
4mmT (v+m+1) - — 4mm! (v + 1),

=1

o 2(m+1)? 1 °°( 1 )m—l
SR Y LU, I

;(4m2m!(v+l)m)< v+1mZ=1 v+1+ag

v+ D+ a)+(v+1+ap)
= D0+ ) v>-1,zeU).

zZ+

|2, )|

Similarly, by using the reverse triangle inequality

|z1 + z2| 2 |lz1]| — |zl
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and the inequalities used in (14), we get the required

o (—1)" (m + 1)2 F(V+1)
4mmT(v+m+1)

2(m+1) 1 +« 1 m-1
1= Z(4m2m'(v+l)m)>1_v+1m=1(v+l+ao)

v+ D+ a) -+ 1+ap)
= D0+ ) v>-1,zelU).

|zq;(z)) Z+

L1y _mD)’
i 4mmt (v + 1),

Therefore, the proof of Theorem 4.1 is completed. [

Theorem 4.10. Let vy,,...v, > =1, n € N and q,, : U — C be defined in (3). Suppose v = min {v1, vy, ... vy},
BeCwithR(B)>0,ceCwithc # 1and a;, (i = 1,...,n) be nonzero complex numbers and these numbers satisfy
the relation

3+16(v+ 1DV +2)Pv+1)
Ic] + Z e <

28w+ (v +2){1 - Dd(v + 1)} - 1]
then the function F,,, .y, a,.a,p : U — C defined by (4) is in the class S.
Proof. From proof of theTheorem 4.1 we know that

Zf, @ _ Zl(zqv(z) ~ 1).

f@)  SHai\q2)

By using assertion (iii) of Lemma 4.9, for each v; (i =1,2,...,,n), we obtain
2,(2 ’

Zf”(Z)
Z |cv;] QV(Z)

f(@)
3+16(v; + 1)(v; + 2)D(v; + 1)
Z lail 2[8(v; + D)(v; +2) {1 - D(v; + 1)} = 1]

Now as it is shown that the function
Y():(-1,0) > R,
defined by

B 3+16(v+ 1) +2)D(v+1)
Y0 = RGN+ 21— 0@ + D) — 1]
is decreasing and, consequently, that
3+16(vi + 1)(vi +2)D(v; + 1) < 3+16(v+1)(v+2)D(v+1)
2w+ Vi +2){1 —D(v; + D} =11 ~ 2[8v + (v +2){1 =P + 1)} — 1]

(15)

Finally, by using the triangle inequality and the assertion of Theorem 4.10, we obtain

ol + (1 - 121%) zf"(z)

Bf'(2)
< 1y 3160+ D+ + 1) =1
Y T OV Y Yo Ll =

which, in view of Lemma 2.1, implies that Pw,u.v,z,al,...au,ﬁ € 8. This evidently completes the proof of Theorem
410. O
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Theorem 4.11. Let vy,,...v, > =1, n € N and q,, : U — C be defined in (3). Suppose v = min {v1, vy, ... vy},
a € C with R(a) > 0, and suppose that these numbers satisfy the following inequality

2[80+ D+ {1 - P+ 1) -1]1

3T I60 s DT oe ) n @

lal <

Then the function G,,, v, an : U — C defined by (5) is in the class S.

Proof. We consider the function g(z) : ¢ — C defined in the proof of Theorem 4.4. By using the assertion
(iii) of Lemma 4.9 and the decreasing function (v) : (=1, 00) = R given by (15) we have
1 _ |Z|2‘R(a)
()

n

zg''(z)
g'(z)

2q,(2)
L|0.@ |

nla 3+16(v+1)(v+2)P(v +1)
R@2[Bv+Dr+2){1-dr+1)}-1] ~

Now, since R (na + 1) > R (a) and the function can be rewritten in the form:

z n L ( o
Gm,...v,,,a,n(z) = [(na+1) ftna H (q,_t()) dt
0 i=1

which, in view of Lemma 2.2, implies that G,,, .1, «x(2) € S. This evidently completes the proof of Theorem
411. O

1
(na+1)

Next, by applying the Lemma 2.3 and the inequality (iv) of Lemma 4.9, we easily get the required result.

Theorem 4.12. Let A € C, v > —1 and q, is the normalized Dini function. If R (1) > 1 and

3(v+ 1)V + ag) V3
12430 +3 '

Then the function Q,, (z) : U — C defined by (6) is in the class S.

Al <

Remark 4.13. Similarly, some corollaries can also be obtained by using some particular values as used above.
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