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Abstract. In this paper, we prove a necessary and sufficient condition for majorization on the summable
sequence space. For this we redefine the notion of majorization on an infinite dimensional space and therein
investigate properties of the majorization. We also prove the infinite dimensional Schur-Horn type and
Hardy-Littlewood-Pólya type theorems.

1. Introduction

The theory of majorization arose while studying a number of apparently different unrelated topics
such as wealth distribution, inequalities involving convex functions etc., around the early part of the
twentieth century. The theory of majorization in finite dimensional space plays a vital role in mathematics
[1, 2, 4, 5, 8, 13], statistics [15], quantum mechanics [7, 16] etc.

Let α↓1 ≥ α↓2 ≥ · · · ≥ α↓n be the non-increasing rearrangement of the components of an element α =
(α1, α2, . . . , αn) in Rn. Suppose x, y ∈ Rn. Then x is said to be majorized by y (we denote it by x � y) if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i for 1 ≤ k ≤ n − 1 and
n∑

i=1

xi =

n∑
i=1

yi.

We recall well-known characterizations of majorization in Rn.

Theorem 1.1. Let x, y ∈ Rn. Then

1. Hardy, Littlewood and Pólya Theorem [10] x � y if and only if x = Dy for some doubly stochastic matrix
D.

2. Schur-Horn Theorem [11] Given a self-adjoint n × n matrix H having eigenvalue list in y, there is a basis for
which H has diagonal entries x if and only if x � y.

3. x � y if and only if
n∑

j=1

1(x j) ≤
n∑

j=1

1(y j) for any convex function 1 on R [10].

By extending the notion of majorization to the space of all absolutely summable real sequences l1,
Markus et. al. [9, 14] proved Hardy-Littlewood-Pólya theorem and Schur-Horn theorem for monotonically
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decreasing sequences in l1. Let α = {α j} and β = {β j} be two sequences in c0, the space of all real sequences
converging to zero. We say that α� β [9] if

sup
k∑

m=1

απ(m) ≤ sup
k∑

m=1

βπ(m) (k = 1, 2, 3, . . . ),

where the supremum is taken over all permutations π onN. Let α = {α j} and β = {β j} be two sequences in
l1. We say that α � β [9] if

α� β, − α� −β and
∞∑
j=1

α j =

∞∑
j=1

β j.

Later in 1999, Nuemann, A [17], proved Horn type of theorems by using the notion of convex hull of
all permutations of an infinite sequence. Recently, Arveson and Kadison [5] and Kaftal and Weiss [12]
established infinite dimensional Schur-Horn theorem for sequences decreasing monotonically to zero.
To avoid having to pass to decreasing sequences monotonically to zero, in this paper we will focus on
sequences in l1 that are neither decreasing nor increasing. In this stand point we redefine majorization to
l1 and investigate the nomenclature of majorization in l1. We give a characterization of majorization in
l1 using convex functions. We also prove infinite dimensional Hardy-Littlewood-Pólya type theorem and
Schur-Horn type theorem for such sequences.

2. MAJORIZATION ON l1

Let a, b ∈ R. Define a ∨ b = max{a, b}. The positive part of a (denoted by a+) is a ∨ 0, and the
negative part of a (denoted by a−) is − a ∨ 0. Let ξ = {ξ j} ∈ l1, the positive part of the sequence ξ is
ξ+ = (ξ+

1 , ξ
+
2 , . . . ) and the negative part of the sequence ξ is ξ− = (ξ−1 , ξ

−

2 , . . . ). Let ξ+↓ = (ξ+↓
1 , ξ

+↓
2 , . . . ) and

ξ−↓ = (ξ−↓1 , ξ
−↓

2 , . . . ), where ξ+↓
1 ≥ ξ

+↓
2 ≥ . . . is the decreasing rearrangement of components of the sequence

ξ+ and ξ−↓1 ≥ ξ
−↓

2 ≥ . . . is the decreasing rearrangement of components of the sequence ξ−. Without loss of
generality, in this paper, we redefine ξ+ by ξ+↓ and ξ− by ξ−↓.

Definition 2.1. Let ξ = {ξ j} and η = {η j} be two sequences in l1. We say that ξ is majorized by η if ξ+
� η+,

ξ− � η− and
∞∑
j=1

ξ j =

∞∑
j=1

η j. We denote it by ξ ≺ η.

Fact 2.2. Let ξ = {ξ j} and η = {η j} be in l1. Then ξ � η ⇒ ξ ≺ η.

Proof. For k ∈N, let us consider N = max{1 ≤ i ≤ k : ξ+
i > 0} . Then

k∑
j=1

ξ+
j =

N∑
j=1

ξ+
j

= sup
N∑

j=1

ξπ( j)

≤ sup
N∑

j=1

ηπ( j) (as ξ� η)

≤

N∑
j=1

η+
j

≤

k∑
j=1

η+
j .
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As k is arbitrary, we have ξ+
� η+. In a similar manner, one can show that ξ− � η−. Hence ξ ≺ η.

Let x = (x1, x2, · · · , xn) ∈ Rn. One can contemplate x as a sequence of l1 by setting xk = 0 for all k > n.

Fact 2.3. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two elements in Rn. Then x � y if and only if x ≺ y.

Proof. Let m1,m2 be the number of non negative components in x and y respectively. Suppose x ≺ y. For
the case m1 ≤ m2, as x+

� y+ and x− � y−, we have

k∑
j=1

x↓j ≤
k∑

j=1

y↓j for 1 ≤ k ≤ m2 (1)

and
k∑

j=0

−x↓n− j ≤

k∑
j=0

−y↓n− j for k = 0, 1, 2, . . . ,n −m2 − 1. (2)

Using (1), (2) and
n∑

j=1

x j =

n∑
j=1

y j, we get
m∑

j=1

x↓j ≤
m∑

j=1

y↓j for m = 1, 2, ...,n. Therefore, x � y. For the case

m1 > m2, as x+
� y+, we have

k∑
j=1

x↓j ≤
k∑

j=1

y↓j for 1 ≤ k ≤ m2. Also by x− � y−, we get
k∑

j=0

−x↓n− j ≤

k∑
j=0

−y↓n− j

for 0 ≤ k ≤ n −m2 − 1. Therefore,
k∑

j=1

x↓j ≤
k∑

j=1

y↓j for 1 ≤ k ≤ n. Hence x � y.

Conversely, assume that x � y. For the case m1 ≤ m2, one may observe that x+
� y+. Also we have

k∑
j=0

−x↓n− j ≤

k∑
j=0

−y↓n− j for 0 ≤ k ≤ n −m2 − 1 (3)

and
k∑

j=0

x↓n− j ≥

n−m2−1∑
j=0

y↓n− j for n −m2 − 1 ≤ k ≤ n −m1 − 1. (4)

Now by (3) and (4), we get x− � y−. Hence x ≺ y. Proceeding in the same manner, one can deduce that
x ≺ y, when m1 > m2. This completes the proof.

Fact 2.2 and Fact 2.3, show that the notation of majorization defined in Definition 2.1 is proper and
well-defined.

Let H be a self-adjoint operator on a separable Hilbert space K. As we are interested in the case that
H is a non-positive operator (which is neither a positive operator nor a negative operator), we assume the
following on the spectrum of H.

Definition 2.4. Let η ∈ l1. Then η is said to be pure if both η− and η+ are either in c00 or not in c00, where c00 denotes
the space of all finite sequences.

It is to be observed that if η is the eigenspectrum of H and η is pure, then H is non-positive operator.
Here we adopt techniques used in [6, 9]. In this case η can be rearranged such that η2n ≥ 0 and η2n+1 ≤ 0
for all n ∈N. Also ≺ is independent on permuting the coordinates of vectors in l1. Through out this paper,
we assume η2n ≥ 0, η2n+1 ≤ 0 for all n ∈ N and {η2n} is monotonically decreasing, {η2n+1} is monotonically
increasing. Though the following theorem can be proved using the techniques employed in [5] and by the
splitting the operator H as H = H+

−H−, we prove it in a different way, which turns out to be a simple and
straight forwarded method.
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Theorem 2.5. Let H be a self-adjoint operator on a separable Hilbert space K and ξ = {ξ j} ∈ l1. Suppose η = {η j} ∈ l1

is the eigenspectrum of H and pure. If ξ ≺ η, then there exists an orthonormal basis of K which is the union of
{φ j}

∞

j=1 and { f j}
m
j=1 (0 ≤ m ≤ ∞) such that 〈Hφ j, φ j〉 = ξ j for j ∈N and 〈H f j, f j〉 = 0 for j = 1, 2, 3, . . . ,m.

Proof. Suppose {ψ j : j ∈ N} is the system of orthonormal eigenvectors corresponding to the eigenvalues
{η j : j ∈ N}. For ξ1 > 0, as ξ+

� η+, there exists a unique k such that 0 ≤ η2(k+1) ≤ ξ1 ≤ η2k. Let S be the
subspace spanned by {ψ2k, ψ2(k+1)}. As 〈H·, ·〉 is continuous on the closed unit ball in S, we get a unit vector
φ1 ∈ S such that 〈Hφ1, φ1〉 = ξ1. Let S1 be the closed linear span by the vectors {ψ j : j ∈ N}. Suppose ψ is
the unit vector orthogonal to φ1 in S. Construct a new orthonormal basis {ψ′j : j ∈N} of S1, by

ψ′n :=


φ1 if n = 2k
ψ if n = 2(k + 1)
ψn otherwise .

Then
∞∑
j=1

〈Hψ′j, ψ
′

j〉 =

∞∑
j=1

〈Hψ j, ψ j〉. Hence 〈Hψ,ψ〉 = η2k + η2(k+1) − ξ1. Consider a new set of eigenvectors

{ψ(1)
j : j ∈N} and a pair sequences {η(1)

j }, {ξ
(1)
j } in l1 determined by

(a) ξ(1)
j = ξ j+1 for j ≥ 1.

(b) η(1)
2 j+1 = η2 j+1 and ψ(1)

2 j+1 = ψ′2 j+1 for all j.

(c) η(1)
2 j = η2 j for j < k, η(1)

2k = η2k + η2(k+1) − ξ1 and η(1)
2 j = η2( j+1) for j ≥ k + 1.

(d) ψ(1)
2 j = ψ′2 j for j < k, ψ(1)

2k = ψ and ψ(1)
2 j = ψ′2( j+1) for j ≥ k + 1.

Assertion (a). ξ(1)
≺ η(1), where ξ(1) = {ξ(1)

j } and η(1) = {η(1)
j }.

Proof of Assertion (a): It is easy to observe that ξ(1)−
� η(1)−,

∞∑
j=1

ξ(1)
j =

∞∑
j=1

η(1)
j and

n∑
j=1

ξ(1)+
j ≤

n∑
j=1

η(1)+
j for n ≤

k − 1. Now for n ≥ k
n∑

j=1

ξ(1)+
j =

n+1∑
j=2

ξ+
j

=

n+1∑
j=1

ξ+
j − ξ1

≤

n+1∑
j=1

η+
j − ξ1

=

k−1∑
j=1

η+
j +

n+1∑
j=k+2

η+
j + η+

k + η+
k+1 − ξ1

=

k−1∑
j=1

η(1)+
j +

n∑
j=k+1

η(1)+
j + η(1)+

k =

n∑
j=1

η(1)+
j .

Hence ξ(1)+
� η(1)+. This completes the proof of the assertion (a).

For ξ1 < 0, as ξ− � η−, there exists a unique k such that β2k+3 ≤ α1 ≤ β2k+1 ≤ 0. By applying similar
argument as in the case ξ1 > 0, we get φ1 and ψ such that 〈Hφ1, φ1〉 = ξ1 and 〈Hψ,ψ〉 = η2k+1 + η2k+3 − ξ1.



G. S. Raju Kosuru, S. Saha / Filomat 34:7 (2020), 2193–2202 2197

Let us consider a new set of eigenvectors {ψ(1)
j : j ∈ N} and two sequences of real numbers η(1) = {η(1)

j },

ξ(1) = {ξ(1)
j } in l1 determined by

(e) ξ(1)
j = ξ j+1 for j ≥ 1.

(f) η(1)
2 j = η2 j and ψ(1)

2 j = ψ2 j for all j.

(h) η(1)
2 j+1 = η2 j+1 for j < k, η(1)

2k+1 = η2k+1 + η2k+3 − ξ1 and η(1)
2 j+1 = η2 j+3 for j ≥ k + 1.

(i) ψ(1)
2 j+1 = ψ2 j+1 for j < k, ψ(1)

2k+1 = ψ and ψ(1)
2 j+1 = ψ2 j+3 for j ≥ k + 1.

By using the similar technique used in assertion (a), we get ξ(1)
≺ η(1). Since ξ(1)

≺ η(1), we get a unit vectorφ2

and the sequence of eigenvetors {ψ(2)
j } also a pair of sequences ξ(2), η(2) in l1, such that 〈Hφ2, φ2〉 = ξ(1)

1 = ξ2,

〈Hψ(2)
j , ψ

(2)
j 〉 = η(2)

j and ξ(2)
≺ η(2).

As 〈φ1, ψ
(1)
j 〉 = 0, for all j ∈ N, we have 〈φ1, φ2〉 = 0. By repeating the same process, we get a system

of orthonormal vectors {φ j}
∞

j=1 such that 〈Hφ j, φ j〉 = α j for all j ∈ N. Let K1 be the closed linear span of
{φ j}. If K1 = K, then m = 0. If not, we consider the subspace K⊥1 , the orthogonal complement of K1 in K.

Let {1 j}
m
j=1 (1 ≤ m ≤ ∞) be the orthonormal basis of K⊥1 . As tr(H) =

∞∑
j=1

〈Hφ j, φ j〉 =

∞∑
j=1

η j =

∞∑
j=1

ξ j, then

m∑
j=1

〈H1 j, 1 j〉 = 0. Hence, there is a unit vector f1 ∈ K⊥1 such that 〈H f1, f1〉 = 0. Let K2 be the orthogonal

complement of the subspace spanned by the f1 in K⊥1 . Repeating this argument and using transfinite
induction we get an orthonormal basis { f j}

m
j=1 of K⊥1 with 〈H f j, f j〉 = 0 ( j = 1, 2, ...,m). Thus the union of

{φ j}
∞

j=1 and { f j}
m
j=1 forms an orthonormal basis of K.

Let ξ = {ξ j}, η = {η j} be two sequences in l1 and η is pure. Let K be a separable Hilbert space with an

orthonormal basis {ψ j : j ∈ N}. Define an operator H on K by H(x) =

∞∑
j=1

η j〈x, ψ j〉ψ j for all x ∈ K. It is to

be observed that H is bounded, self-adjoint, compact operator on K and {η j : j ∈ N} is the eigenspectrum
of H. Now if ξ ≺ η, then by Theorem 2.5, there exists an orthonormal set {φ j : j ∈ N} in K such that
〈Hφ j, φ j〉 = ξ j for j ∈ N. This states Horn type theorem for sequences in l1, which essentially says that if
α ≺ β, then there exists a compact self-adjoint operator H for which α is the diagonal vector and β is the
eigenspectrum.

Theorem 2.6. Let K be a separable Hilbert space and ξ, η ∈ l1. Suppose η is pure. If ξ ≺ η, then there exists an
orthonormal basis of K which is the union of {φ j}

∞

j=1 and { f j}
m
j=1 (0 ≤ m ≤ ∞) and a self-adjoint compact operator H

on K such that {η j : j ∈N} is the eigenspectrum of H and 〈Hφ j, φ j〉 = ξ j for j ∈N, 〈H f j, f j〉 = 0 for j = 1, 2, ...,m.

Remark 2.7. In the above results, if the coordinates of η are positive, then coordinates of ξ are also non-negative and
the self-adjoint operator H in the above theorem becomes a positive compact operator. In this case, m turns out to be
0. Thus {φ j : j ∈N} becomes an orthonormal basis of K.

Let ξ = {ξ j} ∈ l1. Denote a new sequence ξ̂ := {ξ̂ j} by including finite or infinite number of zeros as
components in the sequence ξ. It is to be observed that ξ ≺ η ⇔ ξ̂ ≺ η for any η ∈ l1. The following result
is Hardy-Littlewood-Pólya type theorem.

Theorem 2.8. Let ξ = {ξ j}, η = {η j} ∈ l1 and η is pure. Then ξ ≺ η iff ξ̂ = Mη for some infinite matrix M = (mi j),

with mi j ≥ 0 and
∞∑
j=1

mi j = 1,
∞∑

i=1

mi j = 1, for i, j ∈N, where ξ̂ is defined above.
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Proof. First, assume that ξ ≺ η. Then by Theorem 2.6, for any separable Hilbert space K with an orthonormal

basis {ψ j : j ∈N}, there exists a self-adjoint operator H defined by H(x) =

∞∑
j=1

η j〈x, ψ j〉ψ j and an orthonormal

basis {φ j}
∞

j=1 ∪ { f j}
m
j=1 such that {η j : j ∈ N} is the eigenspectrum of H and 〈Hφ j, φ j〉 = ξ j for j ∈ N,

〈H f j, f j〉 = 0 for j = 1, 2, ...,m. Define {φ
′

j} = {φ j}∪{ f j}
m
j=1 and a unitary operator U on K by U(ψ j) = φ

′

j for j ∈N.
Now for any j ∈N,

ξ̂ j = 〈Hφ
′

j, φ
′

j〉 = 〈H(Uψ j),Uψ j〉

=
〈 ∞∑

k=1

ηk〈Uψ j, ψk〉ψk,Uψ j

〉
=

∞∑
k=1

ηk〈Uψ j, ψk〉〈ψk,Uψ j〉

=

∞∑
k=1

ηk | 〈Uψ j, ψk〉 |
2 .

Set m jk =| 〈Uψ j, ψk〉 |
2 for j, k ∈ N. Then m jk ≥ 0 and ξ̂ = Mη, where M = (mi j). As U is a unitary operator,

∞∑
j=1

m jk =

∞∑
j=1

| 〈Uψ j, ψk〉 |
2= 1 for all k ∈N. In a similar fashion, we have

∞∑
k=1

m jk = 1 for j ∈N.

Conversely, assume that ξ̂ = Mη. For n ∈ N, fix N = Max{1 ≤ i ≤ n : ξ̂i
+
> 0}. Now we rearrange the

coordinates of ξ̂ in such a way that the first N components of ξ̂ are the same as the first N components of
ξ̂+. Therefore,

n∑
j=1

ξ̂ j
+

=

N∑
j=1

ξ̂ j
+

=

N∑
j=1

ξ j =

N∑
j=1

∞∑
k=1

m jkηk

≤

N∑
j=1

∞∑
k=1

m j2kη
+
k =

∞∑
k=1

N∑
j=1

m j2kη
+
k

=

∞∑
k=1

Skη
+
k , where Sk =

N∑
j=1

m j2k

=

N−1∑
k=1

Skη
+
k +

∞∑
k=N

Skη
+
k

≤

N−1∑
k=1

Skη
+
k +

∞∑
k=N

Skη
+
N

≤

N−1∑
k=1

Skη
+
k +

(
N −

N−1∑
k=1

Sk

)
η+

N

=

N−1∑
k=1

Sk(η+
k − η

+
N) + Nη+

N

≤

N−1∑
k=1

(η+
k − η

+
N) + Nη+

N
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≤

N∑
k=1

η+
k =

n∑
k=1

η+
k .

As n is arbitrary, we have ξ̂+
� η+. By repeating the same one can derive that ξ̂− � η− Also

∞∑
j=1

ξ̂ j =

∞∑
j=1

∞∑
k=1

m jkηk =

∞∑
k=1

∞∑
j=1

m jkηk =

∞∑
k=1

ηk. Hence ξ̂ ≺ η. This completes the proof.

Example 2.9. Let η = {η j}, where η j =
(−1) j

j2 for j ∈ N and ξ = {ξ j}, where ξ1 =
η1+η2

2 , ξn =
ηn−1+ηn+1

2 for n ≥ 2.

Then
∞∑
j=1

ξ j =

∞∑
j=1

η j. Also
n∑

j=1

ξ+
j =

n∑
j=1

1
2

[ 1
(2 j)2 +

1
(2 j + 2)2

]
≤

n∑
j=1

1
(2 j)2 =

n∑
j=1

η+
j . As n is arbitrary, ξ+

� η+. In

a similar fashion, one can derive that ξ− � η−. Thus ξ ≺ η and ξ = Dη, where

D =



1
2

1
2 0 0 0 0 0 · · ·

1
2 0 1

2 0 0 0 0 · · ·

0 1
2 0 1

2 0 0 0 · · ·

0 0 1
2 0 1

2 0 0 · · ·

0 0 0 1
2 0 1

2 0 · · ·

0 0 0 0 1
2 0 1

2 · · ·

...
...

...
...

...
...

...
...



3. CONVEX FUNCTIONS AND MAJORIZATION

In Rn, the theory of majorization has a close relation with convex functions (for more information, the
reader can go through [10]). In this section, we prove an inequality involving majorization in l1 and convex
functions. We also give a characterization of majorization in l1 using convex functions.

Theorem 3.1. Let ξ = {ξ j}, η = {η j} ∈ l1 and η is pure. Assume that ξ ≺ η. Suppose 1 : R → R is a continuous
convex function. Then the following hold.

1. If {1(η j)} ∈ l1, then
∞∑
j=1

1(ξ j) ≤
∞∑
j=1

1(η j).

2. If almost all 1(η j)’s have the same sign except finitely many terms, then
∞∑
j=1

1(ξ̂ j) ≤
∞∑
j=1

1(η j), where ξ̂ = {ξ̂ j}

defined above.

Proof. By Theorem 2.8, ξ̂ = Mη where M = (mi j) such that mi j ≥ 0,
∞∑
j=1

mi j = 1 =

∞∑
i=1

mi j. By convexity of 1,
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we have 1(ξ̂ j) ≤
∞∑

k=1

m jk1(ηk) for all j ∈N. If {1(η j)} ∈ l1, then 1(0) = 0. Hence

∞∑
j=1

1(ξ̂ j) =

∞∑
j=1

1(ξ j)

≤

∞∑
j=1

∞∑
k=1

m jk1(ηk)

=

∞∑
k=1

∞∑
j=1

m jk1(ηk), as {1(η j)} ∈ l1

=

∞∑
k=1

1(ηk).

This completes the proof of (1). Now for (2), as all 1(β j)’s but finitely many are of the same sign, we have

∞∑
j=1

1(ξ̂ j) ≤

∞∑
j=1

∞∑
k=1

m jk1(ηk)

=

∞∑
k=1

∞∑
j=1

m jk1(ηk)

=

∞∑
k=1

1(ηk).

Remark 3.2. It is to be noted that, in the above theorem one cannot expect
∞∑
j=1

1(ξ j) ≤
∞∑
j=1

1(η j), always. If one of the

series
∞∑
j=1

1(ξ j) and
∞∑
j=1

1(η j) is conditionally convergent say
∞∑
j=1

1(ξ j), then by the Riemann rearrangement theorem,

there exist two rearrangements σ1(n) and σ2(n) with
∞∑
j=1

1(ξσ1( j)) < ∞ and
∞∑
j=1

1(ξσ2( j)) = ∞.

Finally, we provide a characterization of majorization in l1 through convex functions and it is an analogue
of Theorem II.1.3 in [3], for an infinite dimensional settings.

Theorem 3.3. Let α = {α j}, β = {β j} ∈ l1. Then the following are equivalent

1. α ≺ β

2.
∞∑
j=1

(α j − t)+
≤

∞∑
j=1

(β j − t)+,
∞∑
j=1

(t − α j)+
≤

∞∑
j=1

(t − β j)+ for all t ∈ R and
∞∑
j=1

α j =

∞∑
j=1

β j.

Proof. Assume that α ≺ β. Then
∞∑
j=1

α j =

∞∑
j=1

β j. For t > 0, both series
∞∑
j=1

(t − α j)+ and
∞∑
j=1

(t − β j)+ diverge

to ∞. So,
∞∑
j=1

(t − α j)+
≤

∞∑
j=1

(t − β j)+. If t > α+
1 , then 0 =

∞∑
j=1

(α j − t)+
≤

∞∑
j=1

(β j − t)+. Otherwise, there exists a
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k ∈N such that α+
k+1 ≤ t ≤ α+

k . Now

∞∑
j=1

(α j − t)+ =

k∑
j=1

α+
j − kt

≤

k∑
j=1

β+
j − kt

=

k∑
j=1

(β+
j − t)

≤

∞∑
j=1

(β j − t)+.

In a similar manner, one can prove (2), when t < 0.

Conversely, suppose
∞∑
j=1

(α j − t)+
≤

∞∑
j=1

(β j − t)+,
∞∑
j=1

(t−α j)+
≤

∞∑
j=1

(t− β j)+ for all t ∈ R and
∞∑
j=1

α j =

∞∑
j=1

β j.

Fix some k ∈N. Let us consider t = β+
k+1. Then

∞∑
j=1

(β j − t)+ =

k∑
j=1

β+
j − kt and

k∑
j=1

α+
j − kt =

k∑
j=1

(α+
j − t)

≤

∞∑
j=1

(α j − t)+

≤

∞∑
j=1

(α j − t)+

=

k∑
j=1

β+
j − kt.

Thus
k∑

j=1

α+
j ≤

k∑
j=1

β+
j and hence α+

� β+. In a similar way, one can show that α− � β−. Hence α ≺ β.

Corollary 3.4. Let α, β ∈ l1 with
∞∑
j=1

α j =

∞∑
j=1

β j. If
∞∑
j=1

1(α j) ≤
∞∑
j=1

1(β j) for any convex function 1 on R, then

α ≺ β.
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