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Abstract. In this paper, Lambert multipliers acting between Orlicz spaces are characterized based on some
properties of conditional expectation operators. We provide a necessary and sufficient condition for the
∗-multiplication operators to have closed range. Finally, a necessary condition for Fredholmness of these
type of operators will be investigated.

1. Introduction and preliminaries

Operator in function spaces defined by conditional expectations appeared already in Chen and Moy
paper [2] and Sidak [16], see for example Brunk [1], in the setting of Lp spaces. This class of operators was
further studied by Lambert [7–9], Herron [4], Takagi and Yokouchi [18]. Later, Jabbarzadeh and Sarbaz
in [5] have characterized the Lambert multipliers acting between two Lp-spaces, by using some properties
of conditional expectation operator. Also, Multiplication operators have been a subject of research of
many mathematicians, see for instance, [11, 14, 15]. In this paper, Lambert multipliers acting between
Orlicz spaces are characterized. Also, characterizations of existence and closedness of the range of ∗-
multiplication operators are provided. The main research tool is the conditional expectation operators. In
the end, Fredholmness of the corresponding ∗-multiplication operators is investigated.

Let Φ : R→ R+ be a continuous convex function satisfying the conditions: Φ(x) = Φ(−x), Φ(0) = 0 and
limx→∞Φ(x) = +∞, where R denotes the set of real numbers. With each such function Φ, one can associate
another convex function Ψ : R→ R+ having similar properties, which is defined by

Ψ(y) = sup{x|y| −Φ(x) : x ≥ 0}, y ∈ R .

The function Φ is called a Young function, and Ψ the complementary function to Φ. A Young function Φ is
said to satisfy the 42-condition (globally) if Φ(2x) ≤ kΦ(x), x ≥ x0 ≥ 0 (x0 = 0) for some absolute constant
k > 0. The simple functions are not dense in LΦ(Σ) but if Φ satisfies the 42-condition, then the class of simple
functions is dense in LΦ(Σ). Throughout this paper we assume that Φ satisfies 42-condition.

Let (X,Σ, µ) be a complete σ-finite measure space and Φ be a Young function, then the set of Σ-measurable
functions

LΦ(Σ) := { f : X→ C;
∫

X
Φ(ε| f |)dµ < ∞, for some ε > 0} ,
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is a Banach space, with respect to the norm

‖ f ‖Φ = inf{ε > 0 :
∫

X
Φ(| f |/ε)dµ ≤ 1} .

Such a space is known as a Orlicz space. For more details concerning Young function and Orlicz spaces, we
refer to Labuschagne, Rao and Ren in [6, 12].
If Φ(x) = |x|p, 1 ≤ p < ∞, then LΦ(Σ) = Lp(Σ), the usual p-integrable functions on X.

Let A ⊆ Σ be a complete σ-finite subalgebra. We view Lp(A) = Lp(X,A, µ|A) as a Banach subspace of
Lp(Σ). Denote the vector space of all equivalence classes of almost everywhere finite valued Σ- measurable
functions on X, by L0(Σ). For each nonnegative f ∈ L0(Σ) or f ∈ Lp(Σ), by the Radon-Nikodym theorem,
there exists a unique measurable function E( f ) with the following conditions:
(i) E( f ) isA-measurable;
(ii) If A is anyA-measurable set for which

∫
A f dµ converges, we have∫
A

f dµ =

∫
A

E( f )dµ .

For every complete σ-finite subalgebra A ⊆ Σ, the mapping f 7−→ E( f ), from Lp(Σ) to Lp(A), 1 ≤ p ≤ ∞,
is called the conditional expectation operator with respect to A. As an operator on Lp(Σ), E(·) is contractive
idempotent and E(Lp(Σ)) = Lp(A). We will need the following standard facts concerning E( f ), for more
details of the properties of E, we refer the interested reader to [4, 8, 13]:

• If 1 isA-measurable then E( f1) = E( f )1 ;

• |E( f )|p ≤ E(| f |p) ;

• ‖E( f )‖p ≤ ‖ f ‖p ;

• If f ≥ 0 then E( f ) ≥ 0; if f > 0 then E( f ) > 0 ;

• E(1) = 1.

Let Φ be a Young function and f ∈ LΦ(Σ), since Φ is convex, by Jensen’s inequality,

• Φ(|E( f )|) ≤ E(Φ(| f |)) ;

and consequently,∫
X

Φ(
E( f )
‖ f ‖Φ

)dµ =

∫
X

Φ(E(
f
‖ f ‖Φ

))dµ ≤
∫

X
E(Φ(

f
‖ f ‖Φ

))dµ =

∫
X

Φ(
f
‖ f ‖Φ

)dµ ,

this implies that,

• ‖E( f )‖Φ ≤ ‖ f ‖Φ ,

that is, E is contraction on Orlicz spaces. Now let

D(E) := { f ∈ L0(Σ) : E(| f |) ∈ L0(A)} ,

then f is said to be conditionable with respect to E if f ∈ D(E). For f and 1 in D(E), we define

f ∗ 1 = f E(1) + 1E( f ) − E( f )E(1) .

Let Φ and Ψ be Young functions. A measurable function u in D(E) for which u ∗ f ∈ LΨ(Σ) for each f ∈ LΦ(Σ)
is called a Lambert multiplier. In other words, u ∈ D(E) is a Lambert multiplier if and only if the corre-
sponding ∗-multiplication operator Tu : LΦ(Σ)→ LΨ(Σ) defined as Tu f = u ∗ f is bounded. Our exposition
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regarding Lambert multipliers follows [4, 9]. As a more results of Lambert multipliers, we mention the
upcoming paper [3], in which the present authors showed that the set of all Lambert multipliers acting
between Lp-spaces are commutative Banach algebra.

In the following sections, Lambert multipliers on Orlicz spaces are considered. We give necessary
and sufficient condition on the ∗-multiplication operators to be closed range. Also, Fredholmness of the
corresponding ∗-multiplication operators is investigated.

2. Characterization of Lambert multipliers

Let Φ and Ψ be Young functions. Define K∗Φ,Ψ, the set of all Lambert multipliers from LΦ(Σ) into LΨ(Σ),
as follows:

K∗Φ,Ψ := {u ∈ D(E) : u ∗ LΦ(Σ) ⊆ LΨ(Σ)} .

K∗Φ,Ψ is a vector subspace of D(E). Put K∗Φ,Φ = K∗Φ. In the following theorem, similar to theorem 2.1 of [5],
we characterize the members of K∗Φ.

Theorem 2.1. Let Φ be a Young function and u ∈ D(E). Then u ∈ K∗Φ if and only if E(Φ(|u|)) ∈ L∞(A).

Proof. Let E(Φ(|u|)) ∈ L∞(A) and f ∈ LΦ(Σ). Since Φ(|E(u)|) ≤ E(Φ(|u|)) ≤ ‖E(Φ(|u|))‖∞ a.e., that is, |E(u)| ≤
Φ−1(‖E(Φ(|u|))‖∞), it follows ( Prop. 3 page 60 in [12]) that,∫

X
Φ(

|E(u) f |
Φ−1(‖E(Φ(|u|))‖∞)‖ f ‖Φ

)dµ ≤
∫

X
Φ(
| f |
‖ f ‖Φ

)dµ ≤ 1 .

Hence ‖E(u) f ‖Φ ≤ Φ−1(‖E(Φ(|u|))‖∞)‖ f ‖Φ. A similar argument, using the fact that E( f E(1)) = E( f )E(1), we
also have ∫

X
Φ(

|uE( f )|
Φ−1(‖E(Φ(|u|))‖∞)‖ f ‖Φ

)dµ ≤
∫

X
Φ(
| f |
‖ f ‖Φ

)dµ ≤ 1 .

Thus ‖E(u)E( f )‖Φ ≤ ‖uE( f )‖Φ ≤ Φ−1(‖E(Φ(|u|))‖∞)‖ f ‖Φ. Now, we get that

‖u ∗ f ‖Φ ≤ ‖E(u) f ‖Φ + ‖uE( f )‖Φ + ‖E(u)E( f )‖Φ ≤ 3Φ−1(‖E(Φ(|u|))‖∞)‖ f ‖Φ .

It follows that u ∗ f ∈ LΦ(Σ), hence u ∈ K∗Φ.

Now, let u ∈ K∗Φ. A straightforward application of the closed graph theorem shows that the operator
Tu : LΦ(Σ)→ LΦ(Σ) given by Tu f = u ∗ f is bounded. Define a linear functional Λ on L1(A) by

Λ( f ) =

∫
X

E(Φ(|u|)) f dµ, f ∈ L1(A) .

We show that Λ is bounded. Since Φ satisfies 42-condition, we have (by the Corollary 5 page 26 in [12]):

|Λ( f )| ≤
∫

X
E (Φ(|u|)) | f |dµ =

∫
X

E
(
Φ(|u|)| f |

)
dµ

≤

∫
X

E
(
C|u|α| f |

)
dµ =

∫
X

E
(
C

(
|u|| f |

1
α

)α)
dµ

=

∫
X

C
(
|u|| f |

1
α

)α
dµ = C‖Tu| f |

1
α ‖
α
α

≤ C‖Tu‖
α
‖| f |

1
α ‖
α
α = C‖Tu‖

α
‖ f ‖1 ,



J. Cheshmavar, S. K. Hosseini / Filomat 34:7 (2020), 2185–2191 2188

for some α > 1,C > 0. Consequently, Λ is a bounded linear functional on L1(A) and ‖Λ‖ ≤ C‖Tu‖
α. By the

Riesz representation theorem, there exists a unique function 1 ∈ L∞(A) such that

Λ( f ) =

∫
X
1 f dµ, f ∈ L1(A) .

Therefore, 1 = E(Φ(|u|)), a.e. on X and hence E(Φ(|u|)) ∈ L∞(A) .

Let m be the collection {Tu : u ∈ K∗Φ}. An easy consequence of the closed graph theorem shows that m consist
of continuous linear transformations. Since TuTv = Tu∗v (it is obvious), m is commutative algebra. Similar
argument as in the proof of Theorem 4.1 in [10], m is maximal abelian and hence it is norm closed.
For u ∈ K∗Φ, we define its norm by ‖u‖K∗

Φ
:= Φ−1(‖E(Φ(|u|)‖∞) such that (K∗Φ, ‖u‖K∗Φ ) is respected as a normed

space. The next result reads as follows:

Theorem 2.2. Let u ∈ K∗Φ, then the following holds:

(i) ‖u‖K∗
Φ
≤ ‖Tu‖ ≤ 3‖u‖K∗

Φ
,

(ii) (K∗Φ, ‖u‖K∗Φ ) is a Banach space.

Proof. In order to prove (i), assume that u ∈ K∗Φ and f ∈ L1(A). Then, E(Φ(|u|)) ∈ L∞(A), and

‖E(Φ(|u|)‖∞ = sup
‖ f ‖≤1

∫
X

E (Φ(|u|)) | f |dµ ≤ C‖Tu‖
α .

That is, Φ−1(‖E(Φ(|u|)‖∞) ≤ ‖Tu‖. It follows that ‖u‖K∗
Φ
≤ ‖Tu‖. On the other hand, by the properties of

conditional expectation operators, it is easy to see that for each f ∈ LΦ(Σ) with ‖ f ‖Φ ≤ 1,

max{‖E(u) f ‖Φ, ‖uE( f )‖Φ, ‖E(u)E( f )‖Φ} ≤ Φ−1(‖E(Φ(|u|)‖∞) ,

and so ‖Tu‖ ≤ 3‖u‖K∗
Φ
.

For the proof of (ii), assume that {un}
∞

n=1 be a Cauchy sequence with respect to the norm ‖.‖K∗
Φ
. Let

f ∈ LΦ(Σ) and 1 ∈ LΨ(Σ) be arbitrary elements, then

|

∫
X

Tun−um ( f )1dµ| ≤ 3‖un − um‖K∗
Φ
‖ f ‖Φ‖1‖Ψ ,

that is, {Tun }
∞

n=1 is a Cauchy sequence in the weak operator topology. The subalgebra m is maximal abelian
and so it is weakly closed. Therefore, {Tun−u0 }

∞

n=1 is weakly convergent to zero, for some u0 ∈ K∗Φ. By the
dominated convergence theorem we have∫

X
lim
n→∞

(un − u0) f1dµ = lim
n→∞

∫
X

Tun−u0 ( f )1dµ = 0 .

Thus, limn→∞(un − u0) = 0, a.e. on X and since E is a contraction map, then, limn→∞ E(Φ(|un − u0|)) = 0, a.e.
on X. Finally, ‖un − u0‖K∗

Φ
→∞ as n→∞.

3. Fredholm ∗-multiplication operators

In the following theorem, we establish a condition for a ∗-multiplication operator Tu to have closed
range. We use the symbolsN(Tu) and R(Tu) to denote the kernel and the range of Tu, respectively.

Theorem 3.1. Let u ∈ K∗Φ. Then Tu is closed range if and only if there exists δ > 0 such that E (Φ(|u|)) > δ, almost
everywhere on the support of E(u).
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Proof. Let S := {x ∈ X : E(u)(x) , 0} be the support of E(u). If Tu has closed range, then it is bounded below
on LΦ(S), i.e., there exists a constant k > 0 such that

‖Tu f ‖Φ ≥ k‖ f ‖Φ, f ∈ LΦ(S) .

Let δ = k/2, and put U := {x ∈ S : E(Φ(|u|))(x) < δ} . Suppose on contrary µ(U) > 0. Since (X,A, µ|A) is
a σ-finite measure space, we can find a set B ∈ A such that Q := B ∩ S ⊆ U with 0 < µ(Q) < ∞ . Then the
A-measurable characteristic function χQ lies in LΦ(S). It is known that, ‖χQ‖Φ = 1

Φ−1(1/µ(Q)) and

‖TuχQ‖ = inf{ε :
∫

S
Φ(|uχQ|/ε)dµ ≤ 1}

< inf{ε :
∫

S
Φ(|Φ−1(δ)χQ|/ε)dµ ≤ 1}

= ‖Φ−1(δ)χQ‖Φ = Φ−1(δ)‖χQ‖Φ ,

which is a contradiction. Therefore, µ(U) = 0, i.e., E (Φ(|u|)) > δ a.e. on S. Conversely, suppose E (Φ(|u|)) > δ
a.e. on S and {Tu fn}∞n=0 be an arbitrary sequence in R(Tu), such that ‖Tu fn − 1‖Φ → 0 as n → ∞, for some
1 ∈ LΦ(Σ) . Hence

E(Tu fn) = E(u)E( fn)
LΦ(Σ)
−−−−→ E(1), as n→∞ .

Since, E(1/Φ(|u|))χS = (1/E(Φ(|u|)))χS , then we have Φ(E(1/|u|))χS ≤ 1/δ, and so we get that E(1/|u|) ≤
Φ−1(1/δ) a.e. on S. Therefore, we have

‖
E(1)
E(u)

χS‖Φ = inf{ε > 0 :
∫

S
Φ(|

E(1)
E(u)

χS|/ε)dµ ≤ 1}

= inf{ε > 0 :
∫

S
Φ(|E(1)E(

1
u

)χS|/ε)dµ ≤ 1}

≤ inf{ε > 0 :
∫

S
Φ(|E(1)E(

1
|u|

)χS|/ε)dµ ≤ 1}

≤ inf{ε > 0 :
∫

S
Φ(|
|E(1)|
Φ−1(δ)

χS|/ε)dµ ≤ 1}

≤
1

Φ−1(δ)
‖1‖Φ .

This follows that E(1)
E(u)χS ∈ LΦ(S). Consequently,

E( fn)
LΦ(Σ)
−−−−→

E(1)
E(u)

χS, as n→∞ ,

and so there exist f ∈ LΦ(Σ) such that,

fn
LΦ(Σ)
−−−−→ f , as n→∞ .

Thus Tu fn
LΦ(Σ)
−−−−→ Tu f , as n→∞, and hence 1 = Tu f , which implies that Tu is closed range.

Recall (See [19]) that Tu is said to be a Fredholm operator ifR(Tu) is closed, dimN(Tu) < ∞, and codimR(Tu) < ∞.
Also, recall that anA-atom of the measure µ is an element A ∈ A with µ(A) > 0 such that for each F ∈ Σ, if
F ⊆ A then either µ(F) = 0 or µ(F) = µ(A). A measure with no atoms is called non-atomic. It is a well-known
fact that every σ-finite measure space (X,A, µ|A) can be partitioned uniquely as

X = (
⋃
n∈N

An) ∪ B ,
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where {An}n∈N is a countable collection of pairwise disjointA-atoms and B, being disjoint from each An, is
non-atomic .

The following Theorem is a generalization of Prop. 3 due to Takagi in [17]:

Theorem 3.2. Let u ∈ K∗Φ andA is a non-atomic measure space. If the operator Tu is Fredholm on LΦ(Σ), then we
have |E(u)| ≥ δ, almost everywhere on X, for some δ > 0.

Proof. Suppose that Tu is a Fredholm operator. We first claim that Tu is onto. Suppose the contrary, pick
1 ∈ LΦ(Σ) \ R(Tu). Since R(Tu) is closed, Φ and Ψ are complementary Young functions and Φ satisfies 42-
condition, it follows from [12] ( Corollary 5, page 77 and Theorem 7 page 110 ) that we can find a function
1∗ ∈ LΨ = (LΦ)∗, such that

(I)
∫

X
11∗dµ = 1 ,

and

(II)
∫

X
1∗Tu f dµ = 0, f ∈ LΦ(Σ) .

Now (I) yields that the set Br = {x ∈ X : |E(11∗)(x)| ≥ r} has positive measure for some r > 0. As A is
non-atomic, we can choose a sequence {An} of subsets of Br with 0 < µ(An) < ∞ and Am

⋂
An = ∅ for m , n.

Put 1∗n = χAn1
∗. Clearly, 1∗n ∈ LΨ(Σ) and is nonzero, because∫

X
|11∗n|dµ ≥

∫
An

|11∗n|dµ =

∫
An

E(|11∗|)dµ ≥
∫

An

|E(11∗)|dµ ≥ rµ(An) > 0 ,

for each n. Also, for each f ∈ LΦ(Σ), χAn f ∈ LΦ(Σ) and so (II) implies that∫
X

T∗u1
∗

n f dµ =

∫
X
1∗nTu f dµ =

∫
An

1∗Tu f dµ =

∫
X
1∗Tu(χAn f )dµ = 0 ,

which implies that T∗u1∗n = 0 and so 1∗n ∈ N(T∗u) . Since all the sets in {An}n are disjoint, the sequence {1n}n
forms a linearly independent subset of N(T∗u). This contradicts the fact that dim N(T∗u) = codimR(Tu) < ∞.
Hence Tu is onto. Let Z(E(u)) := {x ∈ X : E(u)(x) = 0}. Then µ(Z(E(u))) = 0. Since, if µ(Z(E(u))) > 0, then
there is an F ⊆ Z(E(u)) with 0 < µ(F) < ∞. If χF ∈ R(Tu), then there exists f ∈ LΦ(Σ) such that Tu f = χF.
Then

µ(F) =

∫
X
χFdµ =

∫
F

Tu f dµ =

∫
F

E(Tu f )dµ =

∫
F

E(u)E( f )dµ = 0 ,

and this is a contradiction. So χF ∈ LΦ(Σ) \ R(Tu), which contradicts the fact that Tu is onto. For each
n = 1, 2, ..., let

Hn = {x ∈ X :
‖E(Φ(|u|))‖∞

(n + 1)2 < Φ(|E(u)|)(x) ≤
‖E(Φ(|u|))‖∞

n2 } ,

and H = {n ∈ N : µ(Hn) > 0}. Then the Hn’s are pairwise disjoint, X =
⋃
∞

n=1 Hn and µ(Hn) < ∞ for each
n ≥ 1. Take

f (x) =


|E(u)|Φ−1(1/µ(Hn)) x ∈ Hn,n ∈ H

0 otherwise.
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Then ∫
X

Φ

(
| f (x)|

‖E(Φ(|u|))‖∞

)
dµ =

∞∑
n=1

(∫
Hn

Φ

(
Φ(|E(u)|)(x)
‖E(Φ(|u|))‖∞

Φ−1

(
1

µ(Hn)

))
dµ

)
≤

∞∑
n=1

(∫
Hn

Φ

(
1
n2 Φ−1

(
1

µ(Hn)

))
dµ

)
≤

∞∑
n=1

1
n2

1
µ(Hn)

∫
Hn

dµ =

∞∑
n=1

1
n2 < ∞ .

Therefore, f ∈ LΦ(A) and so there exist 1 ∈ LΦ(Σ) such that Tu1 = f . Hence E(u)E(1) = E(Tu1) = f . Since
E(1) = f/E(u) except of Z(E(u)) and µ(Z(E(u))) = 0, it follows that∫

X
Φ(|1|)dµ =

∫
X

E(Φ(|1|))dµ ≥
∫

X
Φ(|E(1)|)dµ

=

∫
X

Φ(
f
|E(u)|

)dµ =
∑
n∈H

1
µ(Hn)

=
∑
n∈H

1 .

This implies that H must be a finite set. So there is an n0 such that n ≥ n0 implies µ(Hn) = 0. Together with
µ(Z(E(u))) = 0, we obtain

µ

x ∈ X : Φ(|E(u)|)(x) ≤
‖E(Φ(|u|))‖∞

n2
0


 = µ

 ∞⋃
n=n0

Hn ∪ Z(E(u))

 = 0 ,

that is, |E(u)| ≥ Φ−1
(
‖E(Φ(|u|))‖∞/n2

0

)
:= δ, a.e. on X.
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