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Abstract. The modulus-based matrix splitting iteration has received substantial attention as a momentous
tool for complementarity problems. For the purpose of solving the horizontal linear complementarity
problem, we introduce the two-step modulus-based matrix splitting iteration method. We also show the
theoretical analysis of the convergence. Numerical experiments illustrate the effectiveness of the proposed
approach.

1. Introduction

The horizontal linear complementarity problem, which is a generalization of linear complementarity
problem [1], is to find a pair of vectors (z,w) such that

Az − Bw = q, z ≥ 0, w ≥ 0, zTw = 0,

where A ∈ Rn×n, B ∈ Rn×n are known matrices and q ∈ Rn is the known vector. This problem is abbreviated
as HLCP(A, B, q), which has many applications in noncooperative games, optimization problems, economic
equilibrium problems, and traffic assignment problems [2].

The HLCP is one type of significant complementarity problems. Many scholars have studied this
problem. There are several strategies to solve it such as interior point approaches [3–5], neural networks [6],
homotopy [7] and verification [8] methods. In [9], Mezzadri and Galligani introduced a class of projected
splitting methods. Recently, modulus-based matrix splitting is a popular method, which is applied on
many kinds of complementarity problems, especially the linear complementarity problem and nonlinear
complementarity problem. In 2019, Mezzadri and Galligani presented the modulus-based matrix splitting
method to solve the HLCP [10]. Furthermore, the convergence of the methods proposed in [10] has been
enlarged by Zheng and Vong[11].

When the matrix B is a unit matrix, the horizontal linear complementarity problem reduces to the stan-
dard linear complementarity problem, for which numerous strategies exist. When B is nonsingular, the
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HLCP(A, B, q) is equivalent to the LCP (B−1A, B−1q) [12]. In 2010, Bai first proposed the modulus-based
matrix splitting iteration method by reformulating the LCP into the corresponding modulus equation [13].
Since then, many scholars devised other different modified modulus-based matrix splitting iteration meth-
ods, such as general methods [14–17], accelerated methods [18], preconditioned [19, 20] and multisplitting
methods [21–25]. Zheng et al. [26] introduced its relaxation variant which generalized the modulus-based
matrix splitting iteration method. Based on two matrix splittings of the system matrix, Zhang [27] presented
the two-step modulus-based matrix splitting iteration method to improve the rate of convergence. Bai and
Zhang [28] proposed modulus-based multigrid methods to solve the LCP via employing modulus-based
matrix splitting iteration methods as smoothers.

In this paper, for the sake of improving the iteration rate of the modulus-based matrix splitting, we
propose the two-step modulus-based matrix splitting to solve the HLCP(A, B, q). We can acquire a series
of its relaxation methods via choosing different matrix splittings. The convergence analysis is given when
system matrices are either positive definite matrices or H+-matrices, respectively. Numerical experiments
depict that our proposed method outperforms some existing methods.

The remanent sections are organized as follows. We show several essential lemmas and symbolic
representations in Section 2. We give our proposed method, which is the two-step modulus-based matrix
splitting, in Section 3. We demonstrate the convergent theorems when the matrices A and B are positive
definite matrices and H+-matrices in Section 4. Numerical examples are given to illustrate the efficiency of
our method in section 5. The last section gives a short conclusion.

2. Preliminary results

In the subsequent section, we review several essential notations and indispensable lemmas.
Denote M = (mi j), then we show several special matrices as follows:
• The matrix M is called a Z-matrix iff mi j ≤ 0 for any i , j.
• The Z-matrix M is called an M-matrix iff M−1

≥ 0.
• The matrix M is called an H-matrix iff its comparison matrix 〈M〉 = 〈mi j〉 is an M-matrix, where

〈mi j〉 =

{
|mi j|, f or i = j,
−|mi j|, f or i , j, i, j = 1, 2, · · · ,n.

• The matrix M is called an H+-matrix iff M is an H-matrix with the diagonal elements being positive;
see [29].

DM and −BM means the diagonal and off-diagonal matrices of the matrix M. Denote the spectral radius
of the matrix M by ρ(M). M = E − F is an H-compatible splitting iff it holds that 〈A〉 = 〈E〉 − |F|. For
any two vectors x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T, we denote x ≥ y (x > y) provided that the
corresponding elements satisfy xi ≥ yi (xi > yi). |x| means the absolute value of the vector x, and xT is its
transpose. The notations of matrix is the similar to the aforementioned.

Lemma 2.1. [10] Let A, B ∈ Rn×n, let q ∈ Rn and let A = MA −NA and B = MB −NB be splittings of A and of B,
respectively. Furthermore, let Γ, Ω be two positive diagonal matrices of order n.
(i) If (z, w) is a solution of the HLCP(A, B, q) in (1), then x = 1

2 (Γ−1z −Ω−1w) satisfies

(MAΓ + MBΩ)x = (NAΓ + NBΩ)x + (BΩ − AΓ)|x| − q. (1)

(ii) If x satisfies (1), then

z = Γ(|x| + x) and w = Ω(|x| − x) (2)

is a solution of the HLCP(A, B, q).

Lemma 2.2. [30] Let A,B ∈ Rn×n be Hermitian and let the eigenvalues λl(A), λl(B), and λl(A + B) be arranged in
increasing order, i.e., λmin ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax. For each k = 1, 2, · · · ,n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).
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Lemma 2.3. [31] Let B ∈ Rn×n be a strictly diagonal dominant matrix. Then

‖B−1C‖ ≤ max
1≤i≤n

(|C|e)i
(〈B〉e)i

holds for arbitrary matrix C ∈ Rn×n, where e = (1, 1, · · · , 1)T.

Lemma 2.4. [32] Let A be an H-matrix, then |A−1
| ≤ 〈A〉−1.

Lemma 2.5. [33] For a nonnegative matrix A ∈ Rn×n, if there exists a positive vector y ∈ Rn such that Ay < y, then
ρ(A) < 1.

3. The two-step modulus-based matrix splitting

In the subsequent section, we will consider the scheme of the two-step modulus-based matrix splitting
iteration method. First, we review the MMS iteration method, see [10] for details.

Method 3.1. [10] (The modulus-based matrix splitting iteration method for the HLCP(A, B, q))(MMS)
Let A, B ∈ Rn×n and x, q ∈ Rn. Starting from an initial guess x(0)

∈ Rn, let the (k + 1)-th iterate x(k+1) be the
solution of the linear system

(MA + MBΩ)x(k+1) = (NA + NBΩ)x(k) + (BΩ − A)|x(k)
| + γq, (3)

with γ positive constant, Ω positive diagonal matrix of order n, A = MA − NA and B = MB − NB. The
complementarity vectors at each iteration of methods have, then, the form

z(k+1) =
1
γ

(|x(k+1)
| + x(k+1)), w(k+1) =

1
γ

Ω(|x(k+1)
| − x(k+1)).

For the sake of achieving higher computation efficiency via making full use of the information contained
in the matrices A and B, we present the two-step modulus-based matrix splitting iteration method to solve
the HLCP.

Method 3.2. (The two-step modulus-based matrix splitting iteration method for the HLCP(A, B, q))(TMMS)
Let A = M′

A −N′

A = M′′

A −N′′

A and B = M′

B −N′

B = M′′

B −N′′

B.

Step 1. Given ε > 0. Choose an initial vector x(0)
∈ Rn and set k := 0;

Step 2. For k = 0, 1, 2, · · · , calculate x(k+1) by solving the linear systems:{
(M′

A + M′

BΩ)x(k+ 1
2 ) = (N′

A + N′

BΩ)x(k) + (BΩ − A)|x(k)
| + γq,

(M′′

A + M′′

BΩ)x(k+1) = (N′′

A + N′′

BΩ)x(k+ 1
2 ) + (BΩ − A)|x(k+ 1

2 )
| + γq.

(4)

Step 3. Set z(k+1) = 1
γ (|x(k+1)

| + x(k+1)) and w(k+1) = 1
γΩ(|x(k+1)

| − x(k+1)).

Step 4. If RES = min
(
z(k+1),w(k+1)

)
< ε, then terminate. Otherwise, set k := k + 1 and return to Step 2.

Remark 3.3. With the different matrix splittings of the matrices A and B, Method 3.2 yields a series of two-step
modulus-based relaxation methods. Consider the following splittings.

M
′

A =
1
α

(DA − βLA), N
′

A =
1
α

((1 − α)DA + (α − β)LA + αUA),

M
′′

A =
1
α

(DA − βUA), N
′′

A =
1
α

((1 − α)DA + (α − β)UA + αLA),
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M
′

B =
1
α

(DB − βLB), N
′

B =
1
α

((1 − α)DB + (α − β)LB + αUB),

M
′′

B =
1
α

(DB − βUB), N
′′

B =
1
α

((1 − α)DB + (α − β)UB + αLB),

Method 3.2 reduces to the two-step modulus-based AOR (TMAOR) iteration method.
x(k+ 1

2 ) =(DBΩ + DA − β(LBΩ + LA))−1[((1 − α)(DA + DBΩ)

+ (α − β)(LA + LBΩ) + α(UA + UBΩ))x(k) + α(BΩ − A)|x(k)
| + γαq],

x(k+1) =(DBΩ + DA − β(UBΩ + UA))−1[((1 − α)(DA + DBΩ)

+ (α − β)(UA + UBΩ) + α(LA + LBΩ))x(k+ 1
2 ) + α(BΩ − A)|x(k+ 1

2 )
| + γαq].

(5)

Then, we have the two-step modulus-based SOR (TMSOR) iteration method (α = β), the two-step modulus-based
Gauss-Seidel (TMGS) iteration method (α = β = 1) and the two-step modulus-based Jacobi (TMJ) iteration method
(α = 1, β = 0).

4. Convergence theorems

In this section, we will give the convergence analysis when the matrices A and B are positive definite
matrices or H+-matrices.

4.1. A and B are positive definite matrices
Theorem 4.1. Let A and B be positive definite matrices. Suppose A = M′

A −N′

A = M′′

A −N′′

A and B = M′

B −N′

B =

M′′

B −N′′

B are two splittings of the matrices A, B, respectively. Suppose γ is a positive parameter and Ω is a diagonal
matrix with positive elements. Suppose the matrices M′

A, M′′

A, M′

BΩ and M′

BΩ are positive definite. Set

ζ
′

1(Ω) = ‖(M
′

A + M
′

BΩ)−1N
′

A‖, ζ
′′

1 (Ω) = ‖(M
′′

A + M
′′

BΩ)−1N
′′

A‖,

ζ
′

2(Ω) = ‖(M
′

A + M
′

BΩ)−1N
′

BΩ‖, ζ
′′

2 (Ω) = ‖(M
′′

A + M
′′

BΩ)−1N
′′

BΩ‖,

ζ
′

3(Ω) = ‖(M
′

A + M
′

BΩ)−1(M
′

BΩ −M
′

A)‖, ζ
′′

3 (Ω) = ‖(M
′′

A + M
′′

BΩ)−1(M
′′

BΩ −M
′′

A)‖,

then the iteration sequence {z(k)
}
+∞
k=0 ⊂ R

n generated by Method 3.2 converges to the unique solution z∗ ∈ Rn of the
HLCP(A, B, q) for any initial vector x(0)

∈ Rn provided that Ω satisfies

(2ζ
′

1(Ω) + 2ζ
′

2(Ω) + ζ
′

3(Ω))(2ζ
′′

1 (Ω) + 2ζ
′′

2 (Ω) + ζ
′′

3 (Ω)) < 1. (6)

Proof. Assume that x∗ is the exact solution, which satisfies the following systems:{
(M′

A + M′

BΩ)x∗ = (N′

A + N′

BΩ)x∗ + (BΩ − A)|x∗| + γq,
(M′′

A + M′′

BΩ)x∗ = (N′′

A + N′′

BΩ)x∗ + (BΩ − A)|x∗| + γq, (7)

Subtracting (7) from (4), we can get
(M′

A + M′

BΩ)(x(k+ 1
2 )
− x∗) = (N′

A + N′

BΩ)(x(k)
− x∗)

+ (BΩ − A)(|x(k)
| − |x∗|),

(M′′

A + M′′

BΩ)(x(k+1)
− x∗) = (N′′

A + N′′

BΩ)(x(k+ 1
2 )
− x∗)

+ (BΩ − A)(|x(k+ 1
2 )
| − |x∗|).

(8)

It is obvious that M′

A + M′

BΩ and M′′

A + M′′

BΩ are nonsingular. Write the norm of the error (8) as
‖x(k+ 1

2 )
− x∗‖ = ‖(M

′

A + M
′

BΩ)−1[(N
′

A + N
′

BΩ)(x(k)
− x∗)

+ (BΩ − A)|x(k)
| − |x∗|]‖,

‖x(k+1)
− x∗‖ = ‖(M

′′

A + M
′′

BΩ)−1[(N
′′

A + N
′′

BΩ)(x(k+ 1
2 )
− x∗)

+ (BΩ − A)|x(k+ 1
2 )
| − |x∗|]‖.
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According to the properties of norm and ‖|x(k)
| − |x∗|‖ ≤ ‖x(k)

− x∗‖, the error can be estimated as
‖x(k+ 1

2 )
− x∗‖ ≤ (2‖(M

′

A + M
′

BΩ)−1N
′

A‖ + 2‖(M
′

A + M
′

BΩ)−1N
′

BΩ‖

+ ‖(M
′

A + M
′

BΩ)−1(M
′

BΩ −M
′

A)‖)‖x(k)
− x∗‖,

‖x(k+1)
− x∗‖ ≤ (2‖(M

′′

A + M
′′

BΩ)−1N
′′

A‖ + 2‖(M
′′

A + M
′′

BΩ)−1N
′′

BΩ‖

+ ‖(M
′′

A + M
′′

BΩ)−1(M
′′

BΩ −M
′′

A)‖)‖x(k+ 1
2 )
− x∗‖,

which means

‖x(k+1)
− x∗‖ ≤ (2ζ

′

1(Ω) + 2ζ
′

2(Ω) + ζ
′

3(Ω))(2ζ
′′

1 (Ω) + 2ζ
′′

2 (Ω) + ζ
′′

3 (Ω))‖x(k)
− x∗‖.

Hence, (2ζ
′

1(Ω)+2ζ
′

2(Ω)+ζ
′

3(Ω))(2ζ
′′

1 (Ω)+2ζ
′′

2 (Ω)+ζ
′′

3 (Ω)) < 1 implies lim
k→∞

x(k) = x∗, completing the proof.

In particular, when Ω = ωI ∈ Rn×n is a positive scalar matrix and M′

A, M′′

A, M′

B and M′′

B are symmetric
positive definite matrices, Theorem 4.1 results in the subsequent convergent conditions.

Corollary 4.2. Let A and B be positive definite matrices. Suppose γ is a positive parameter and Ω = ωI with
ω > 0. Assume A = M′

A − N′

A = M′′

A − N′′

A and B = M′

B − N′

B = M′′

B − N′′

B are two splittings of the matrices A,
B, respectively. M′

A, M′′

A, M′

Band M′′

B are symmetric. Suppose the matrices M′

A, M′′

A, M′

BΩ and M′′

BΩ are positive
definite. Denote the maximum eigenvalues of the matrices M′

A(M′′

A) and M′

B(M′′

B) as λ′max(λ′′max) and µ′max(µ′′max).
Denote the minimum eigenvalues of the matrices M′

A (M′′

A) and M′

B (M′′

B) as λ′min(λ′′min) and µ′min(µ′′min). Define
τ
′

A = ‖M′
−1

A N′

A‖, τ
′′

A = ‖M′′
−1

A N′′

A‖, τ
′

B = ‖M′
−1

B N′

B‖ and τ′′B = ‖M′′
−1

B N′′

B‖. Then the iteration sequence {z(k)
}
+∞
k=0 ⊂ R

n

generated by Method 3.2 converges to the unique solution z∗ ∈ R of the HLCP(A, B, q) for any initial vector x(0)
∈ Rn

provided that the parameter ω satisfies one of the subsequent cases:

(1) When ω ≥ max{
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
} and ω satisfies

a2ω
2 + a1ω + a0 > 0, (9)

where a2 = µ
′

minµ
′′

min − (2τ
′

B + 1)(2τ
′′

B + 1)µ
′

maxµ
′′

max, a1 = λ
′

minµ
′′

min + µ
′′

minλ
′′

min − (2τ
′

B + 1)µ
′

max(2λ
′′

maxτ
′′

A −λ
′′

min)−
(2τ

′′

B + 1)µ
′′

max(2λ
′

maxτ
′

A − λ
′

min) and a0 = λ
′

minλ
′′

min − (2λ
′

maxτ
′

A − λ
′

min)(2λ
′′

maxτ
′′

A − λ
′′

min).

(2) When λ
′

min+λ
′

max

µ
′

min+µ
′

max
< ω <

λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
and ω satisfies

b2ω
2 + b1ω + b0 > 0, (10)

where b2 = µ
′′

minµ
′

min − (2µ
′′

maxτ
′′

B −µ
′′

min)(2τ
′

B + 1)µ
′

max, b1 = λ
′′

minµ
′

min +µ
′′

minλ
′

min −λ
′′

maxµ
′

max(2τ
′′

A + 1)(2τ
′

B + 1)−
(2µ

′′

maxτ
′′

B − µ
′′

min)(2λ
′

maxτ
′

A − λ
′

min) and b0 = λ
′′

minλ
′

min − λ
′′

max(2τ
′′

A + 1)(2λ
′

maxτ
′

A − λ
′

min).

(3) When λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
< ω <

λ
′

min+λ
′

max

µ
′

min+µ
′

max
, and ω satisfies

c2ω
2 + c1ω + c0 > 0, (11)

where c2 = µ
′

minµ
′′

min − (2µ
′

maxτ
′

B − µ
′

min)(2τ
′′

B + 1)µ
′′

max, c1 = λ
′

minµ
′′

min + µ
′

minλ
′′

min − λ
′

maxµ
′′

max(2τ
′

A + 1)(2τ
′′

B + 1)−
(2µ

′

maxτ
′

B − µ
′

min)(2λ
′′

maxτ
′′

A − λ
′′

min) and c0 = λ
′

minλ
′′

min − λ
′

max(2τ
′

A + 1)(2λ
′′

maxτ
′′

A − λ
′′

min).

(4) When ω ≤ min{
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
} and ω satisfies

d2ω
2 + d1ω + d0 > 0, (12)

where d2 = µ
′

minµ
′′

min − (2µ
′

maxτ
′

B − µ
′

min)(2µ
′′

maxτ
′′

B − µ
′′

min), d1 = λ
′

minµ
′′

min + µ
′

minλ
′′

min − λ
′

max(2τ
′

A + 1)(2µ
′′

maxτ
′′

B −

µ
′′

min) − λ
′′

max(2τ
′′

A + 1)(2µ
′

maxτ
′

B − µ
′

min) and d0 = λ
′

minλ
′′

min − λ
′

maxλ
′′

max(2τ
′

A + 1)(2τ
′′

A + 1).
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Proof. On the basis of Theorem 4.1, we merely need to certify the sufficient condition (6). Owing to the
assumptions that M′

A and M′

B are symmetric positive definite matrices and Ω = ωI is a positive scalar
matrix, we have

ζ
′

1(Ω) = ‖(M
′

A + M
′

BΩ)−1N
′

A‖ = ‖(M
′

A + M
′

Bω)−1M
′

AM
′
−1

A N
′

A‖

≤ ‖(M
′

A + M
′

Bω)−1
‖‖M

′

A‖‖M
′
−1

A N
′

A‖.

Based on Lemma 2.2, we can obtain

ζ
′

1(Ω) ≤
λ
′

maxτ
′

A

λ
′

min + ωµ
′

min

.

Similarly, we have

ζ
′

2(Ω) = ‖(M
′

A + M
′

BΩ)−1N
′

BΩ‖ ≤
ωµ

′

maxτ
′

B

λ
′

min + ωµ
′

min

.

As for ζ
′

3(Ω), we can obtain

ζ
′

3(Ω) = ‖(M
′

A + M
′

BΩ)−1(M
′

BΩ −M
′

A)‖

≤ ‖(M
′

A + M
′

BΩ)−1
‖‖M

′

BΩ −M
′

A‖

≤


ωµ
′

max−λ
′

min

λ
′

min+ωµ
′

min
if ω ≥

λ
′

min+λ
′

max

µ
′

min+µ
′

max
,

λ
′

max−ωµ
′

min

λ
′

min+ωµ
′

min
, if ω <

λ
′

min+λ
′

max

µ
′

min+µ
′

max
.

Hence, we can obtain the inequalities of the following two cases

(a1) When ω ≥
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,

2ζ
′

1(Ω) + 2ζ
′

2(Ω) + ζ
′

3(Ω) ≤
2λ

′

maxτ
′

A + 2ωµ
′

maxτ
′

B + ωµ
′

max − λ
′

min

λ
′

min + ωµ
′

min

;

(a2) When ω <
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,

2ζ
′

1(Ω) + 2ζ
′

2(Ω) + ζ
′

3(Ω) ≤
2λ

′

maxτ
′

A + 2ωµ
′

maxτ
′

B + λ
′

max − ωµ
′

min

λ
′

min + ωµ
′

min

;

Analogously, we have

ζ
′′

1 (Ω) ≤
λ
′′

maxτ
′′

A

λ
′′

min + ωµ
′′

min

, ζ
′′

2 (Ω) ≤
ωµ

′′

maxτ
′′

B

λ
′′

min + ωµ
′′

min

,

ζ
′′

3 (Ω) ≤


ωµ
′′

max−λ
′′

min

λ
′′

min+ωµ
′′

min
, if ω ≥

λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
,

λ
′′

max−ωµ
′′

min

λ
′′

min+ωµ
′′

min
, if ω <

λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
.

Therefore, we have the inequalities of the following two cases

(b1) When ω ≥
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
,

2ζ
′′

1 (Ω) + 2ζ
′′

2 (Ω) + ζ
′′

3 (Ω) ≤
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + ωµ
′′

max − λ
′′

min

λ
′′

min + ωµ
′′

min

;
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(b2) When ω <
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
,

2ζ
′′

1 (Ω) + 2ζ
′′

2 (Ω) + ζ
′′

3 (Ω) ≤
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + λ
′′

max − ωµ
′′

min

λ
′′

min + ωµ
′′

min

.

Finally, it holds that

(1) When ω ≥ max{
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
},

2λ
′

maxτ
′

A + 2ωµ
′

maxτ
′

B + ωµ
′

max − λ
′

min

λ
′

min + ωµ
′

min

·
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + ωµ
′′

max − λ
′′

min

λ
′′

min + ωµ
′′

min

< 1;

(2) When
λ
′

min+λ
′

max

µ
′

min+µ
′

max
< ω <

λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
,

2λ
′

maxτ
′

A + 2ωµ
′

maxτ
′

B + ωµ
′

max − λ
′

min

λ
′

min + ωµ
′

min

·
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + λ
′′

max − ωµ
′′

min

λ
′′

min + ωµ
′′

min

< 1;

(3) When
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
< ω <

λ
′

min+λ
′

max

µ
′

min+µ
′

max
,

2λ
′

maxτ
′

A + 2ωµ
′

maxτ
′

B + λ
′

max − ωµ
′

min

λ
′

min + ωµ
′

min

·
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + ωµ
′′

max − λ
′′

min

λ
′′

min + ωµ
′′

min

< 1;

(4) When ω ≤ min{
λ
′

min+λ
′

max

µ
′

min+µ
′

max
,
λ
′′

min+λ
′′

max

µ
′′

min+µ
′′

max
},

2λ
′

maxτ
′

A + 2ωµ
′

maxτ
′

B + λ
′

max − ωµ
′

min

λ
′

min + ωµ
′

min

·
2λ

′′

maxτ
′′

A + 2ωµ
′′

maxτ
′′

B + λ
′′

max − ωµ
′′

min

λ
′′

min + ωµ
′′

min

< 1.

Obviously, when the parameter ω satisfies one of the conditions (9), (10), (11) and (12), we can obtain the
condition (6) holds, which implies the Method 3.2 converges to the unique solution. This completes the
proof.

4.2. A and B are H+-matrices
Theorem 4.3. Let A and B be H+-matrices. Suppose A = M′

A − N′

A = M′′

A − N′′

A and B = M′

B − N′

B = M′′

B − N′′

B
are two H-compatible splittings of the matrices A, B, respectively. Let M′

A + M′

BΩ and M′′

A + M′′

BΩ are H+-matrices.
Suppose Ω is a diagonal matrix with positive elements satisfying Ω ≥ DAD−1

B . If there exists an arbitrary small
number ε s.t. ρ(Tε) < 1 with Tε = D−1

A |BBΩ| + D−1
A |BA| + εeeT and e = (1, 1, · · · , 1)T

∈ Rn. Then the iteration
sequence {z(k)

}
+∞
k=0 ⊂ R

n generated by Method 3.2 converges to the unique solution z∗ ∈ Rn of the HLCP(A, B, q) for
any initial vector x(0)

∈ Rn.

Proof. Assume that x∗ is the exact solution, which satisfies the following systems:{
(M′

A + M′

BΩ)x∗ = (N′

A + N′

BΩ)x∗ + (BΩ − A)|x∗| + γq,
(M′′

A + M′′

BΩ)x∗ = (N′′

A + N′′

BΩ)x∗ + (BΩ − A)|x∗| + γq, (13)

Subtracting (13) from (4), we can get
(M′

A + M′

BΩ)(x(k+ 1
2 )
− x∗) = (N′

A + N′

BΩ)(x(k)
− x∗)

+ (BΩ − A)(|x(k)
| − |x∗|),

(M′′

A + M′′

BΩ)(x(k+1)
− x∗) = (N′′

A + N′′

BΩ)(x(k+ 1
2 )
− x∗)

+ (BΩ − A)(|x(k+ 1
2 )
| − |x∗|).

(14)
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Since both M′

A + M′

BΩ and M′′

A + M′′

BΩ are H+-matrices, based on Lemma 2.4, we can obtatin

0 ≤ |(M
′

A + M
′

BΩ)−1
| ≤ 〈M

′

A + M
′

BΩ〉−1,

0 ≤ |(M
′′

A + M
′′

BΩ)−1
| ≤ 〈M

′′

A + M
′′

BΩ〉−1.

Then, we take the absolute value of the first equation of (14) as

|x(k+ 1
2 )
− x∗|

=
∣∣∣∣(M′

A + M
′

BΩ)−1
[
(N

′

A + N
′

BΩ)(x(k)
− x∗) + (BΩ − A)(|x(k)

| − |x∗|)
]∣∣∣∣

≤|(M
′

A + M
′

BΩ)−1
|(|N

′

A + N
′

BΩ| + |BΩ − A|)|x(k)
− x∗|

≤〈M
′

A + M
′

BΩ〉−1(|N
′

A + N
′

BΩ| + |BΩ − A|)|x(k)
− x∗|.

(15)

Similar to (15), we obtain

|x(k+1)
− x∗|

=
∣∣∣∣(M′′

A + M
′′

BΩ)−1
[
(N

′′

A + N
′′

BΩ)(x(k+ 1
2 )
− x∗) + (BΩ − A)(|x(k+ 1

2 )
| − |x∗|)

]∣∣∣∣
≤|(M

′′

A + M
′′

BΩ)−1
|(|N

′′

A + N
′′

BΩ| + |BΩ − A|)|x(k+ 1
2 )
− x∗|

≤〈M
′′

A + M
′′

BΩ〉−1(|N
′′

A + N
′′

BΩ| + |BΩ − A|)|x(k+ 1
2 )
− x∗|.

(16)

Combining (15) and (16), we have

|x(k+1)
− x∗| ≤ K(Ω)K1(Ω)|x(k)

− x∗|,

where K1(Ω) = 〈M′

A + M′

BΩ〉−1(|N′

A + N′

BΩ| + |BΩ − A|) and K(Ω) = 〈M′′

A + M′′

BΩ〉−1(|N′′

A + N′′

BΩ| + |BΩ − A|).
Obiviously, the iteration sequence generated by Method 3.2 is convergent if ρ(K(Ω)K1(Ω)) is less than

one. Then, in the following dissusion, we only need to find the conditions of ρ(K(Ω)K1(Ω)) < 1.
Regarding the iteration matrix K(Ω)K1(Ω), we have

K(Ω) =〈M
′′

A + M
′′

BΩ〉−1(|N
′′

A + N
′′

BΩ| + |BΩ − A|)

=I − 〈M
′′

A + M
′′

BΩ〉−1(〈M
′′

A + M
′′

BΩ〉 − |N
′′

A + N
′′

BΩ| − |BΩ − A|)

≤I − 〈M
′′

A + M
′′

BΩ〉−1(〈M
′′

A〉 + 〈M
′′

BΩ〉 − |N
′′

A| − |N
′′

BΩ| − |BΩ − A|)

=I − 〈M
′′

A + M
′′

BΩ〉−1(〈A〉 + 〈BΩ〉 − |BΩ − A|)

≤I − 2〈M
′′

A + M
′′

BΩ〉−1(DA − |BBΩ| − |BA|) + 2〈M
′′

A + M
′′

BΩ〉−1DAεeeT

=I − 2〈M
′′

A + M
′′

BΩ〉−1DA(I −D−1
A |BBΩ| −D−1

A |BA| − εeeT)

:=I − 2〈M
′′

A + M
′′

BΩ〉−1DA(I − Tε)

(17)

and

K1(Ω) =〈M
′

A + M
′

BΩ〉−1(|N
′

A + N
′

BΩ| + |BΩ − A|)

≤I − 2〈M
′

A + M
′

BΩ〉−1DA(I − Tε),
(18)

where e = (1, 1, · · · , 1)T
∈ Rn and Tε = D−1

A |BBΩ| + D−1
A |BA| + εeeT. Obviously, Tε is a positive matrix and by

the Perron-Frobenius theorem[34], there exists a positive vector y ∈ Rn such that Tεy = ρ(Tε)y. Based on
(17) and (18) and ρ(Tε) < 1, we can obtain the inequality as follow

K(Ω)K1(Ω)y ≤ K(Ω)
[
I − 2〈M

′

A + M
′

BΩ〉−1DA(I − Tε)
]

y < K(Ω)y

≤

[
I − 2〈M

′′

A + M
′′

BΩ〉−1DA(I − Tε)
]

y < y,
(19)
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Since M′

A + M′

BΩ is an H+-matrix, 〈M′

A + M′

BΩ〉 is an M-matrix, i.e., 〈M′

A + Ω〉−1 is a positive matrix.
Analogously, 〈M′′

A + M′′

BΩ〉 is also a positive matrix. Hence, K(Ω)K1(Ω) is a nonnegative matrix. According
to Lemma 2.5, we directly have ρ(K(Ω)K1(Ω)) < 1, which means the iteration is convergent.

Corollary 4.4. Let A and B be H+-matrices in Rn×n, and Ω be known positive diagonal matrices. Let A =
DA − LA −UA := DA − BA and BΩ = DBΩ − LBΩ −UBΩ := DBΩ − BBΩ. When the parameters α and Ω satisfy one
of the subsequent cases:
(1) DBΩ > DA and 2αDAe > α|BA + BBΩ|e + α|BBΩ − BA|e;
(2) DBΩ < DA and 2αDBΩe > α|BA + BBΩ|e + α|BBΩ − BA|e.
Then, for arbitrary initial vector, the TMSOR iteration method is convergent for 0 < α < 1.

Proof. Let

M
′

A =
1
α

(DA − αLA), N
′

A =
1
α

((1 − α)DA + αUA),

M
′′

A =
1
α

(DA − αUA), N
′′

A =
1
α

((1 − α)DA + αLA),

M
′

B =
1
α

(DB − αLB), N
′

B =
1
α

((1 − α)DB + αUB),

M
′′

B =
1
α

(DB − αUB), N
′′

B =
1
α

((1 − α)DB + αLB),

According to 4.3, we need to certify ρ(K(Ω)K1(Ω)) < 1.

‖K1(Ω)‖ = ‖〈M
′′

A + M
′′

BΩ〉−1(|N
′′

A + N
′′

BΩ| + |BΩ − A|)‖

=
(|(1 − α)(DA + DBΩ) + α(LA + LBΩ)| + α|BΩ − A|)e

(DA + DBΩ − α|UA + UBΩ|)e
.

Hence, ‖K1(Ω)‖ < 1 holds when the parameters α < 1 and Ω satisfy one of the subsequent cases:
(1) DBΩ > DA and 2αDAe > α|BA + BBΩ|e + α|BBΩ − BA|e;
(2) DBΩ < DA and 2αDBΩe > α|BA + BBΩ|e + α|BBΩ − BA|e.
Analogously, we can get ‖K(Ω)‖ < 1. Therefore, ρ(K(Ω)K1(Ω)) < ‖K(Ω)‖ · ‖K1(Ω)‖ < 1, which prove the
TMSOR iteration method is convergent.

5. Numerical results

For the sake of demonstrating the effectiveness of the suggested approaches. We are going to do several
experiments, which were performed in Matlab (R2017a) on an Intel(R) Core(TM) i5-4210U, where the
memory is 4.00GB and RAM the CPU is 1.70GHz.

Set the initial vector x(0) as (2, 2, · · · , 2)T. All experiment results include three aspects: the elapsed CPU
time in seconds (CPU), the norm of absolute residual vectors (RES), and the number of iteration steps (IT),
respectively. ’RES’ is defined as

RES := min
(
z(k),w(k)

)
.

In the following experiments, when the prescribed iteration number kmax = 2000 is exceeded or the
residual vector satisfies RES ≤ 10−6, all runs are terminated. We show five methods to compare and give
their abbreviations in Table 1. Set Ω = DAD−1

B and γ = 2. We will consider the problems with four
dimensions, i.e., n = 100, 400, 900, 1600. The parameters α and β in the TMSOR, TMAOR, MSOR and
MAOR methods are tentative optimal parameters.

Example 5.1. [10] Let m be a prescribed positive integer and n = m2. Consider the HLCP (A, B, q), in which
A = Â + µI with µ real parameter is block tridiagonal matrix and B = B̂ + νI with ν real parameter is block diagonal
matrix
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Table 1: The method abbreviations

Method Description
MJ the modulus-based Jacobi method

MSOR the modulus-based successive over-relaxation method
MAOR the modulus-based accelerated over-relaxation method
TMSOR the two-step modulus-based successive over-relaxation method
TMAOR the two-step modulus-based accelerated over-relaxation method

Table 2: Numerical results with µ = 0 and ν = 4 for Example 5.1

Algorithm m=10 m=20 m=30 m=40

MJ
CPU 2.4043 3.9201 134.7908 1.2804e+03
RES 7.7037e-07 9.5067e-07 8.8820e-07 8.2581e-07
IT 42 48 51 53

MSOR

α 1.1 1.2 1.2 1.2
CPU 0.0603 2.2441 86.9993 804.5363
RES 6.1557e-09 6.8200e-09 6.9415e-09 5.8503e-09
IT 28 31 32 33

MAOR

(α,β) (1.1,1.1) (1.1,1.1) (1.1,1.1) (1.1,1.1)
CPU 0.0569 2.4601 91.8171 857.4322
RES 6.1557e-09 5.3277e-09 9.3713e-09 9.7681e-09
IT 28 33 34 35

TMSOR

α 1.2 1.2 1.1 1.1
CPU 0.0507 1.8282 51.2272 461.1408
RES 3.9544e-09 5.5995e-09 3.4988e-09 6.5509e-09
IT 17 18 18 18

TMAOR

(α,β) (1.1,1.3) (1.0,1.3) (1.1,1.3) (1.1,1.2)
CPU 0.0503 1.8676 53.4272 459.9878
RES 7.8232e-09 4.6771e-09 7.5234e-09 5.1579e-09
IT 16 18 18 18

Â =



S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −I
0 0 0 · · · −I S


, B̂ =


S 0 · · · 0 0
0 S · · · 0 0
...

...
. . .

...
...

0 0 · · · S 0
0 0 · · · 0 S


,

and the block diagonal matrix S is defined as a tridiagonal matrix

S = tridia1(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m.

The vector q = Az∗ − Bw∗, where z∗ and w∗ are defined as

z∗ = (0, 1, 0, · · · , 1)T and w∗ = (1, 0, 1, · · · , 0)T,
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respectively.

From Table 2, we can observe that two-step modulus-based matrix splitting method is sensitive to solve
the HLCP. The numeric results which contain the MJ, MSOR, MAOR, TMSOR, TMAOR methods illustrate
TSOR and TAOR methods are more efficient than MJ, MSOR and MAOR methods concerning CPU and IT.
In particular, the larger the matrix dimension, the more obvious the convergence rate is faster.

Table 3: Numerical results with µ = 0 and ν = 4 for Example 5.2

Algorithm m=10 m=20 m=30 m=40

MJ
CPU 0.1426 3.0295 129.5049 1.2349e+03
RES 8.7690e-07 6.6058e-07 9.1828e-07 9.6072e-07
IT 37 47 50 52

MSOR

α 1.1 1.1 1.1 1.1
CPU 0.0488 1.5605 61.9086 603.6123
RES 4.1740e-09 4.5977e-09 6.6385e-09 5.2225e-09
IT 20 23 24 25

MAOR

(α,β) (1.1,1.2) (1.1,1.2) (1.1,1.2) (1.1,1.2)
CPU 0.0466 1.5078 53.5993 539.3606
RES 5.2093e-09 3.1855e-09 6.3434e-09 2.6760e-09
IT 18 21 22 23

TMSOR

α 1.1 1.1 1.1 1.1
CPU 0.0401 1.4519 45.7516 433.8235
RES 3.7805e-09 2.6089e-09 6.6863e-09 3.0073e-09
IT 14 16 16 17

TMAOR

(α,β) (1.1,1.0) (1.1,1.0) (1.1,1.1) (1.1,1.0)
CPU 0.0409 1.4100 45.6885 405.9570
RES 8.4003e-09 4.7463e-09 6.6863e-09 5.8979e-09
IT 13 15 16 16

Example 5.2. [10] Let m be a prescribed positive integer and n = m2. Consider the HLCP (A, B, q), in which
A = Â + µI with µ real parameter is block tridiagonal matrix and B = B̂ + νI with ν real parameter is block diagonal
matrix

Â =



S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −0.5I
0 0 0 · · · −1.5I S


, B̂ =


S 0 · · · 0 0
0 S · · · 0 0
...

...
. . .

...
...

0 0 · · · S 0
0 0 · · · 0 S


,

and the block diagonal matrix S is defined as a tridiagonal matrix

S =



4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −0.5
0 0 0 · · · −1.5 4


∈ Rm×m.

The vector q = Az∗ − Bw∗, where z∗ and w∗ are defined as
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z∗ = (0, 1, 0, · · · , 1)T and w∗ = (1, 0, 1, · · · , 0)T,

respectively.

In Table 3, it contains the results of the MJ, MSOR, MAOR, TMSOR, TMAOR methods, which show
that two-step modulus-based matrix splitting method is sensitive to solve the HLCP. The numeric results
illustrate TSOR and TAOR methods converge faster than MJ, MSOR and MAOR methods concerning CPU
and IT to obtain the same residuals for distinct dimension.

Table 4: Numerical results with µ = 0 and ν = 4 for Example 5.3

Algorithm m=10 m=20 m=30 m=40

MJ
CPU 0.0455 1.7594 73.1118 857.2154
RES 7.4681e-07 1.9743e-07 3.4746e-07 5.2083e-07
IT 17 31 43 54

MSOR

α 1.0 1.0 1.0 1.0
CPU 0.0336 1.4213 53.6197 618.6461
RES 2.6600e-09 2.3520e-09 9.3923e-09 8.4486e-09
IT 15 23 30 38

MAOR

(α,β) (1.0,1.0) (1.0,1.0) (1.0,1.1) (1.0,1.1)
CPU 0.0278 1.3892 53.2101 588.8837
RES 2.6600e-09 2.3520e-09 2.9635e-09 7.5920e-09
IT 15 23 29 35

TMSOR

α 1.0 1.0 1.0 1.0
CPU 0.0186 1.1394 33.7205 362.1086
RES 3.5576e-10 7.5188e-11 2.4680e-09 5.0083e-09
IT 8 13 17 21

TMAOR

(α,β) (1.0,1.0) (1.0,1.1) (1.0,1.0) (1.0,1.1)
CPU 0.0167 1.0623 34.0975 361.1106
RES 1.3766e-10 8.1566e-09 2.4680e-09 1.7272e-09
IT 8 12 17 20

Example 5.3. Let m be a prescribed positive integer and n = m2. Consider the HLCP (A, B, q), in which A = Â +µI
with µ real parameter is block tridiagonal matrix and B = B̂ + νI with ν real parameter is block diagonal matrix

Â =



S −I −I · · · 0 0
0 S −I · · · 0 0
0 0 S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −I
0 0 0 · · · 0 S


, B̂ =


S 0 · · · 0 0
0 S · · · 0 0
...

...
. . .

...
...

0 0 · · · S 0
0 0 · · · 0 S


,

and the block diagonal matrix S is defined as a tridiagonal matrix

S =



4 −1 −1 · · · 0 0
0 4 −1 · · · 0 0
0 0 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · 0 4


∈ Rm×m.

The vector q = Az∗ − Bw∗, where z∗ and w∗ are defined as
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z∗ = (0, 1, 0, · · · , 1)T and w∗ = (1, 0, 1, · · · , 0)T,

respectively.

In Table 4, it contains the results of the MJ, MSOR, MAOR, TMSOR, TMAOR methods, which show
that two-step modulus-based matrix splitting method is sensitive to solve the HLCP. The numeric results
illustrate the convergence rate is faster obviously as the matrix dimension is increasing. It implies that the
TSOR and TAOR methods have an advantage over the MJ, MSOR and MAOR methods concerning CPU
and IT.

In short, these above-mentioned numerical results illustrate that the two-step modulus-based method
is more efficient than some of existing methods concerning the CPU time and the IT steps under certain
conditions. Hence, our proposed method might be more appropriate to solve the HLCP(A, B, q).
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