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Abstract. The so-called Mittag-Leffler function (M-LF) provides solutions to the fractional differential
or integral equations with numerous implementations in applied sciences and other allied disciplines.
During the previous century, the interest in M-LF has significantly developed and a variety of extensions
and generalizations forms of the M-LF have been posed. Moreover, M-LF played a distinguished and
important role in Geometric Function Theory (GFT). The intent of the current study is to reveal various
inclusion and convolution features for a specific subclass of univalent meromorphic functions correlating
with the integrodifferential operator containing an extended generalized M-LF. Some consequences of the
major geometric outcomes are also presented.

1. Introduction

The Mittag-Leffler Function (M-LF) has consistently been a theme that inspired numerous investigators
due to its significant role in diverse problems in fractional calculus, operator theory, mathematical analysis
and other fields allied with sciences and engineering. Therefore, researchers were more curious of M-
LF conduct and consequently extended their outcomes to the complex domain. In Geometric Function
Theory (GFT), M-LF is a fabulous gadget that has been hired to propose a lot of new operators and
discuss several geometric features of regulatory (analytical) functions. This function is considered as a
natural popularization of the exponential function. It is formulated of 1-parameter in 1903, initiated by
Mittag-Leffler who was one of the front rank mathematicians, see [19], as:

M%(z) =

∞∑
κ=0

zκ

Γ(%κ + 1)
(
<{%} > 0, z ∈ C

)
.

Since then, the study of M-LF has become one of the pivotal sorts in Special Function Theory (SFT), as lots
of intensive studies have been conducted in this area. In 1905, the first generalized M-LF of 2-parameters
was proposed by Wiman [[42] and [43]] as follow:

M%,τ(z) =

∞∑
κ=0

zκ

Γ(%κ + τ)
(
τ ∈ C, <(%) > 0, z ∈ C

)
.
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Apart from the extensions provided by Srivastava [28] in 1968, Prabhakar [22] in 1971 given a formula of
generalized M-LF of 3-parameters, namely Prabhakar function, as:

Ma
%,τ(z) =

∞∑
κ=0

(a)κ
Γ(%κ + τ)

zκ

κ!
(
τ, a ∈ C, <(%) > 0, z ∈ C

)
.

In this context, Srivastava contributed significantly to the study of various features, extensions, generaliza-
tions and implementations of M-LF. For their main contributions, in 2009, Srivastava and Tomovski [29]
studied a further generalization of M-LF as:

Ma
%,τ(z) =

∞∑
κ=0

(a)nκ

Γ(%κ + τ)
zκ

κ!
(
τ, a ∈ C, <(%) > max{0,<(n) − 1}, <(n) > 0 z ∈ C

)
.

The authors also investigated a generalized fractional integral operator involving this more general type
of M-LF. Later, in 2010, Tomovskia, Hilferb and Srivastava [39] derived several compositional features,
which correlate with specializing the corresponding M–LF considered in [29] and Hardy-type inequalities
for the generalized fractional derivative operator. In 2016, Srivastava [32] presented a review of some
recent evolutions including different classes of the M-LF type which are connected with several families
of generalized Riemann-Liouville and other relevant fractional derivative operators. The following year,
Srivastava and Bansal [33] studied a certain class of q-M-LF and investigated sufficient conditions under
which it is close-to-convex. At the same time, Srivastava et al. [34] imposed a new convolution operator in
the form of the generalized M-LF based on the extensively-studied Fox-Wright function in the right-half of
the open unit disk where <(z) > 0. In 2018, Kumar, Choi and Srivastava [17] investigated the solution of
the generalized fractional kinetic equation involving another generalized M-LF by applying the Sumudu
transform and the Laplace transform techniques. That same year, Srivastava et al. [36] introduced a general
fractional integral operator that contains the generalized multi-index M-LF type defined by Saxena and
Nishimoto [26]. The authors additionally obtained several results which generalize the corresponding
results acquired earlier by Kilbas et al. [16] and Srivastava and Tomovski [29] . Recently, in 2019, Srivastava
et al. [38] provided new relations between the M–LF of one, two and three parameters by using Riemann–
-Liouville fractional calculus. Ur Rehman, Ahmad, Srivastava and Khan [40] determined lower bounds for
the ratio of several normalized q-M-LF and their sequences of partial sums. Actually, the analysis of M-LF
and its various formulas have attracted considerable interest, and many researchs has thereafter emerged
on this topic. For instance, Srivastava et al. ([31], [35]), Rahman et al. [24], Agarwal et al. [1], Al-Janaby [3],
Al-Janaby and Ahmad [4], Al-Janaby and Darus [5] and others.

Related to this line of study, in 2015, Parmar [23] presented a gorgeously new global family of the ex-
tended generalized M-LF as:

M
({aι}ι∈N0 ;σ)
%,τ (z; s) =

∞∑
κ=0

B
({aι}ι∈N0 )(σ + κ, 1 − σ; s)

B(σ, 1 − σ)
zκ

Γ(%κ + τ)
(1)

(
σ, %, τ,∈ C; <(σ) > 0, <(%) > 0, <(τ) > 0; s ≥ 0; z ∈ C

)
.

Here, C is the complex plane, B(σ, 1 − σ) is the classical Beta function, and B({aι}ι∈N0 )(σ + κ, 1 − σ; s) is the
extended classic Beta function given by [23] as:

B({aι}ι∈N0 )(%, τ; s) =

∫ 1

0
ψ%−1(1 − ψ)τ−1Θ

(
{aι}ι∈N0 ;−

s
ψ(1 − ψ)

)
dψ

(
min{<(%),<(τ)} > 0; <(s) ≥ 0

)
,
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where Θ
(
{aι}ι∈N0 ; z

)
refers to the function of an appropriately bounded sequence {aι}ι∈N0 of arbitrary complex

or real numbers, which is considered by Srivastava et al. [30] as:

Θ
(
{aι}ι∈N0 ; z

)
=


∑
∞

=0 aι z 
! (|z| < R; 0 < R < ∞; aι = 1),

M0 zυ exp(z)
[
1 + O

(
1
z

) ]
(<(z)→∞; M0 > 0; υ ∈ C) .

On the other hand, several general classes of various types of special functions were discussed and presented
recently by Srivastava et al. [37]. A class of the relatively more general incomplete H-functions as well
as their special cases as the incomplete Fox-Wright generalized hypergeometric functions are introduced.
Moreover, various features of incomplete H-functions, including decomposition and reduction formulas,
derivative formulas, some integral transforms, computational representations, and so on are studied.

In the treatment of univalent regular functions in open unit disk ∆ = {z ∈ C : |z| < 1}, it is sufficient
to consider class A which involves regular functions defined on ∆, normalized under the stipulations
L(0) = L′(0) − 1 = 0. A function L has a (Taylor) series of model (see, [7] and [14])

L(z) = z +

∞∑
κ=2

cκzκ (z ∈ ∆). (2)

The pivotal property of functions in classA is the image domain L(∆) which describes various outstanding
geometric properties, such as convex and starlike, [14]. In 1913, Study introduced a convexity property
of L ∈ A, see [14]. It states that, ξ1, ξ2 ∈ L(∆) and 0 ≤ δ ≤ 1 imply δξ1 + (1 − δ)ξ2 ∈ L(∆); that is, the
regular function L ∈ A is called convex if L(∆) is convex. The regulatory stipulation equivalent to convexity
property is:

<

(
zL′′(z)
L′(z)

+ 1
)
> 0 (z ∈ ∆). (3)

Let S refer to a subclass ofA, which includes univalent functions.

Recall that any two regular functions ϑ, ϕ in ∆. The regular function ϑ is called subordinate to regu-
lar function ϕ, symbolized by ϑ ≺ ϕ, if there is a regular function θ in ∆ with θ(0) = 0 and |θ(z)| < 1, z ∈ ∆
provided that ϑ(z) = ϕ(θ(z)). Especially, if regular function ϕ is univalent in ∆, thus ϑ ≺ ϕ if and only if
ϑ(0) = ϕ(0) and ϑ(∆) ⊆ ϕ(∆), [14].

The notion of the differential subordination was imposed by Miller and Mocanu [18] as:
Let Γ : C2

× ∆ → C and ν be univalent in ∆. If L is regular in ∆ and achieves the following differential
subordination

Γ(L(z), zL′(z), z) ≺ J(z), (4)

then L is called the solution of (4). The univalent function F is so-called a dominant of the solutions of (4),
if L ≺ F for all L achieves (4).

Closely related to S is the class Ξ of meromorphic functions defined as:

G(z) = z + υ0 +

∞∑
κ=1

υκz−κ, (5)

that are regular and univalent in the exterior of disk ∇ = {z ∈ C : 1 < |z| < ∞}. The subclass Ξ0 including all
functions G ∈ Ξ with υ0 , 0 in ∇, i.e.

Ξ0 = {G ∈ Ξ : υ0 , 0, z ∈ ∇}. (6)



F. Ghanim, Hiba F. Al-Janaby / Filomat 34:7 (2020), 2141–2150 2144

The transformation

G(z) =
1

L(1/z)
(7)

yields G in Ξ0 if L ∈ S. Conversely, it shows L is in S if G ∈ Ξ0, ([7] and [14]). In 1914, Gronwall [15]
who first introduced the outcome with respect to the coefficient problem. the study state that, if G ∈ Ξ
then

∑
∞

κ=1 κ |υκ|
2
≤ 1. It is popularly known as the Area Theorem. The interest of the class Ξ arose from

an application of the Area Theorem in the proof of the well-known conjecture so-called the Bieberbach’s
conjecture for the second coefficient.

The transformation

A(z) = G(1/z) (|1/z| > 1) , (8)

takes each G in Ξ into a function A of the model:

A(z) =
1
z

+

∞∑
κ=1

υκzκ (0 < |z| < 1) . (9)

Therefore, Σ is referred to the class of univalent meromorphic functions A given by (9) which are defined
on the punctured disk ∆∗ = {z ∈ C : 0 < |z| < 1}. A function A ∈ Σ is convex if it is univalent and the
complement of A(∆∗) is convex. It is equivalent to the regulatory stipulation

<

(
(zA′(z))′

A′(z)

)
< 0 (z ∈ ∆∗). (10)

Various studies dealing with meromorphic functions were made in [[6],[9],[10],[11],[13] and [31]].

By using the extended generalized M-LF given by (1), we consider a new meromorphic functionQ
({aι}ι∈N0 ;σ)
%,τ (z; s)

as:

Q
({aι}ι∈N0 ;σ)
%,τ (z; s) =

B(σ, 1 − σ) Γ(% + τ)

B
({aι}ι∈N0 )(σ + 1, 1 − σ; s)

[
M

({aι}ι∈N0 ;σ)
%,τ (z; s) −

B
({aι}ι∈N0 )(σ, 1 − σ; s)
B(σ, 1 − σ) Γ(τ)

+
B

({aι}ι∈N0 )(σ + 1, 1 − σ; s)
B(σ, 1 − σ) Γ(% + τ)

1
z

]

=
1
z

+

∞∑
κ=1

Γ(% + τ) B({aι}ι∈N0 )(σ + κ, 1 − σ; s)

B
({aι}ι∈N0 )(σ + 1, 1 − σ; s) Γ(%κ + τ)

zκ

=
1
z

+

∞∑
κ=1

Λκ zκ

(11)

where

Λκ =
Γ(% + τ) B({aι}ι∈N0 )(σ + κ, 1 − σ; s)

B
({aι}ι∈N0 )(σ + 1, 1 − σ; s) Γ(%κ + τ)

.

Since then, by employing newly meromorphic function (11), we introduce a new differential operator by



F. Ghanim, Hiba F. Al-Janaby / Filomat 34:7 (2020), 2141–2150 2145

the formula: for ` ≥ 0 and 1 ≥ µ ≥ 0

D
0
µ A(z) = A(z),

D
1
µ A(z) = Dµ A(z) = Q

({aι}ι∈N0 ;σ)
%,τ (z; s) A(z) + µ

[
z
(
Q

({aι}ι∈N0 ;σ)
%,τ (z; s)

)′
A(z) +

1
z

]
=

1
z

+

∞∑
κ=1

(1 + µκ) Λκ υκ zκ

...

D
`
µ A(z) = Dµ(D`−1

µ A(z)) =
1
z

+

∞∑
κ=1

[
(1 + µκ) Λκ

]` υκ zκ.

(12)

Definition 1.1. If the function A ∈ Σ achieves the following subordination stipulation

(1 + ζ) z
(
D
`
µ A(z)

)
+ ζz2

(
D
`
µ A(z)

)′
≺ ℘(z) , (13)

then, A is in the class Σ`
µ (ζ, ℘), where ζ ∈ C and ℘(z) ∈ Ω. Where Ω is the class of regular functions ℘(z) with

℘(0) = 1, which are convex and univalent in ∆ = ∆∗ ∪ {0}.

Based on posed operator (12), for A , X  ∈ Σ,  = 1, 2, ..,m, c > 0, and η , γ  ≥ 0,  = 1, 2, ..,m, we provide the
following integrodifferential operator Ψm : Σm

→ Σ by

Ψm(z) =
c
zc

∫ z

0
ωc−1

m∏
=1

(
ωD`

µ Aı(ω)
)η  (
−ω2
D
`+1
µ X (ω)

)γ 
dω. (14)

The operator Ψm is a generalization of several integral operators which were investigated by some authors
(cf., e.g., [12], [20], and [21]). Recall that, for some 0 < β < 1, S∗(β) denotes the class of all starlike functions
of order β defined on ∆∗. A regular function A(z) ∈ A is called a prestarlike of order β in ∆∗, if

z

(1 − z)2(1−β)
∗ A(z) ∈ S∗

(
β
)
,

where ∗ is the convolution product of two regular functions defined on ∆∗, denoted by C(β) (see [25] and
[41]). Besides, a regular function A(z) ∈ A is in the class C(0) if and only if A(z) is convex univalent defined
on ∆∗ and

R

(1
2

)
= S∗

(1
2

)
.

2. Preliminary Outcomes

Lemma 2.1. [18] Let J(z) and ℘(z) be two regular functions in ∆, ℘(z) convex univalent with ℘(0) = J(0). If,

J (z) +
1
c

zJ′ (z) ≺ ℘(z), (15)

where<c ≥ 0 and c , 0, then

J (z) ≺ ℘̃(z) = cz−c
∫ z

0
ωc−1℘ (ω) dω ≺ ℘(z)

and ℘̃(z) is the best dominant of (15).
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Lemma 2.2. [25] Let λ < 1, A(z) ∈ S∗(λ) and J(z) ∈ C(β). For any regular function F(z) in ∆∗, then

J ∗ (AF)
J ∗ A

(∆∗) ⊂ co (F (∆∗)) ,

where co (F (∆∗)) represents the convex hull of F(∆∗).

3. Inclusion Features

Theorem 3.1. Let 0 ≤ ζ1 < ζ2. Then

Σ`
µ (ζ2; ℘) ⊂ Σ`

µ (ζ1; ℘)

Proof. Let 0 ≤ ζ1 < ζ2 and consider that:

J (z) = z
(
D
`
µ A(z)

)
(16)

for A(z) ∈ Σ`
µ (ζ2; ℘). Thus the function J(z) is regular in ∆∗ with J(0) = 1. By differentiating both sides of

(16) with respect to z and utilizing (13), we achive

(1 + ζ2) z
(
D
`
µ A(z)

)
+ ζ2z2

(
D
`
µ A(z)

)′
= T(z) + ζ2zT′ (z) ≺ ℘ (z) . (17)

Thus an implementation of Lemma 2.1 with c = 1
ζ2
> 0 gives:

J (z) ≺ ℘(z). (18)

Notice that 0 ≤ ζ1
ζ2
< 1 and that ℘(z) is convex univalent in ∆∗, thus (16), (17) and (18), yield

(1 + ζ1) z
(
D
`
µ A(z)

)
+ ζ1z2

(
D
`
µ A(z)

)′
=
ζ1

ζ2

[
(1 + ζ2) z

(
D
`
µ A(z)

)
+ ζ2z2

(
D
`
µ A(z)

)′]
+

(
1 −

ζ1

ζ2

)
T(z) ≺ ℘(z).

Hence, A(z) ∈ Σ`
µ (ζ1; ℘) and the proof of Theorem 3.1 is complete.

Theorem 3.2. Let ζ > 0, α > 0 and A(z) ∈ Σ`
µ (ζ; α ℘ + 1 − α). If α ≤ α0, where

α0 =
1
2

1 −
1
ζ

∫ 1

0

u
1
ζ−1

1 + u
du

−1

(19)

then A(z) ∈ Σ`
µ (ζ; h).

Proof. Let us define,

J (z) = z
(
D
`
µ A(z)

)
(20)

for A(z) ∈ Σ`
µ (ζ; α h + 1 − α) with ζ > 0, and α > 0. Hence we gain:

J (z) + ζzJ′ (z) = (1 + ζ) z
(
D
`
µ A(z)

)
+ ζz2

(
D
`
µ A(z)

)′
≺ α (℘(z) − 1) + 1.

Thus an implementation of Lemma 2.1 yields:

J (z) ≺
α
ζ

z−
1
ζ

∫ z

0
t

1
ζ−1℘(t)dt + 1 − α = (℘ ∗Ψ) (z) , (21)
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where

Ψ (z) =
α
ζ

z−
1
ζ

∫ z

0

t
1
ζ−1

1 − t
dt + 1 − α. (22)

If 0 < α ≤ α0, where α0 > 1 is defined by (19), hence from (22) we obtain:

<Ψ (z) =
α
ζ

∫ 1

0
u

1
ζ−1
<

( 1
1 − uz

)
du + 1 − α >

α
ζ

∫ 1

0

u
1
ζ−1

1 + u
du + 1 − α ≥

1
2

(z ∈ ∆∗) .

Now, by utilizing the Herglotz representation for Ψ (z), (20) and (21) yield

z
(
D
`
µA(z)

)
≺ (℘ ∗Ψ) (z) ≺ ℘(z),

and because ℘(z) is convex univalent in ∆∗, it follows that A(z) ∈ Σ`
µ (ζ; ℘). For ℘(z) = 1

1−z and A(z) ∈ Σ, we
have

z
(
D
`
µ A(z)

)
=
α
ζ

z−
1
ζ

∫ z

0

t
1
ζ−1

1 − t
dt + 1 − α,

and consequently,

(1 + ζ) z
(
D
`
µ A(z)

)
+ ζ z2

(
D
`
µ A(z)

)′
= α (℘(z) − 1) + 1.

Thus, A(z) ∈ Σ`
µ (ζ; α ℘ + 1 − α). Also, for α > α0, it yields:

< z
(
D
`
µ A(z)

)
→

α
ζ

∫ 1

0

u
1
ζ−1

1 + u
du + 1 − α <

1
2

(z→ −1) ,

and therefore A(z) < Σ`
µ (ζ; ℘).

4. Convolution Features

Theorem 4.1. Let A(z) ∈ Σ`
µ (ζ; ℘) , J (z) ∈ Σ and

< (zJ (z)) >
1
2

(z ∈ ∆∗) . (23)

Then,

(A ∗ J) (z) ∈ Σ`
µ (ζ; ℘) .

Proof. For A(z) ∈ Σ`
µ (ζ; ℘) and J ∈ Σ, we acquire:

(1 + ζ) z
(
D
`
µ (A ∗ J) (z)

)
+ ζz2

(
D
`
µ (A ∗ J) (z)

)′
= (1 + ζ) zJ (z) ∗ z

(
D
`
µA(z)

)
+ ζzJ (z) ∗ z2

(
D
`
µA(z)

)′
= zJ (z) ∗Ψ (z) (24)

where

Ψ (z) = (1 + ζ) z
(
D
`
µA(z)

)
+ ζz2

(
D
`
µA(z)

)′
≺ ℘ (z) . (25)

In view of (23), the function zJ (z) has the Herglotz representation:

zJ (z) =

∫
|x|=1

dc (x)
1 − xz

(z ∈ ∆∗) , (26)
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where c (x) is a probability measure defined on the unit circle |x| = 1 and∫
|x|=1

dc (x) = 1.

Since ℘(z) is convex univalent defined on ∆∗, from (24), (25) and (26), we get

(1 + ζ) z
(
D
`
µA(z)

)
+ ζz2

(
D
`
µA(z)

)′
=

∫
|x|=1

Ψ (xz) dc (x) ≺ ℘(z).

Therefore A(z) ∈ Σ`
µ (ζ; ℘) and the theorem is proved.

Corollary 4.2. Let A(z) ∈ Σ`
µ (ζ; ℘) be defined as (9) and suppose that

ωm (z) =
1
z

+

m−1∑
n=1

anzn−1 (m ∈N\ {1}) .

Then the function:

σm (z) =

∫ 1

0
tωm (tz) dt

is also in Σ`
µ (ζ; ℘).

Proof. We have:

σm (z) =
1
z

+

m−1∑
n=1

an

n + 1
zn−1 = (A ∗ Jm) (z) (m ∈N\ {1}) , (27)

where

A (z) =
1
z

+

∞∑
n=1

anzn−1
∈ Σ`

µ (ζ; ℘)

and

Jm(z) =
1
z

+

m−1∑
n=1

zn−1

n + 1
∈ Σ.

Furthermore, for m ∈N\ {1}, it is gained from [27] that:

< {zJm(z)} =<

1 +

m−1∑
n=1

zn

n + 1

 > 1
2

(z ∈ ∆∗) . (28)

From (27) and (28), an implementation of Theorem 4.1 leads to σm (z) ∈ Σ`
µ (ζ; ℘).

Theorem 4.3. Let A(z) ∈ Σ`
µ (ζ; ℘), J (z) ∈ Σ and

z2 J (z) ∈ R
(
β
) (

β < 1
)
.

Then,

(A ∗ J) (z) ∈ Σ`
µ (ζ; ℘) .
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Proof. For A(z) ∈ Σ`
µ (ζ; ℘) and J (z) ∈ Σ, from (24) (utilized in the proof of Theorem 4.1), we can write:

(1 + ζ) z
(
D
`
µ (A ∗ J) (z)

)
+ ζz2

(
D
`
µ (A ∗ J) (z)

)′
=

z2J (z) ∗ zΨ (z)
z2J (z) ∗ z

(z ∈ ∆∗) , (29)

where Ψ (z) is given by (25).
Since ℘(z) is convex univalent defined on ∆∗, Ψ (z) ≺ ℘ (z), z2J (z) ∈ R

(
µ
)

and

z ∈ S∗
(
β
) (

β < 1
)
,

From (29) and Lemma 2.2 , the outcome is obtained.
The following result is gained by setting β = 0 and β = 1

2 in Theorem 4.3

Corollary 4.4. Let A(z) ∈ Σ`
µ (ζ; ℘) and let J (z) ∈ Σ achieve either of the following stipulations:

(i) z2J (z) is convex univalent in ∆∗ or
(ii) z2J (z) ∈ S∗

(
1
2

)
. Thus,

(A ∗ J) (z) ∈ Σ`
µ (ζ; ℘) .
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