
Filomat 34:7 (2020), 2123–2129
https://doi.org/10.2298/FIL2007123L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A refined upper bound for the Z1-spectral radius of tensors is given, which needs less compu-
tations than that presented by Wang et al. in [Applied Mathematics and Computation, 329 (2018) 266-277].
Numerical experiments involving Uniform distribution, Gaussian distribution, Poisson distribution and
Binomial distribution are given to show the effectiveness of the proposed bound.

1. Introduction

The Z1-eigenvalue of tensors and its corresponding eigenvectors are useful for computing the limiting
probability distribution in high order Markov chain [1, 10] and the PageRank vector in multilinear PageRank
models [7, 11], and also have applications in image matching [5], best rank-one approximation of tensors[14,
17], and hypergraph theory [2, 8].

Definition 1.1. [1] A real number λ ∈ Rn and a non-zero real vector x = (x1, . . . , xn)> ∈ Rn are called a Z1-
eigenvalue and a Z1-eigenvector of an order m dimension n real tensorA = (ai1,...,im ) ∈ R[m,n] (R[m,n] denotes the set
of the order m dimension n tensors over real numbers R) if

Axm−1 = λx, ‖x‖1 =

n∑
k=1

|xk| = 1, (1)

whereAxm−1 is a vector with its i-th component being(
Axm−1

)
i
=

n∑
i2,...,im=1

aii2···im xi2 · · · xim , i ∈ [n] := {1, . . . ,n}.

Furthermore, the Z1-spectral radius ofA is denoted by

ρz1 (A) = max{|λ| : λ ∈ σ1(A)},

where σ1(A) is the set of all Z1-eigenvalues ofA.

2010 Mathematics Subject Classification. 15A18, 15A69, 65F15
Keywords. Z1-eigenvalue; Tensor; Bound; Z1-spectral radius
Received: 22 May 2016; Revised: 14 September 2019; Accepted: 02 January 2020
Communicated by Dragana Cvetković Ilić
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There are a variety of results on the Z1-eigenvalues and its corresponding Z1-eigenvectors, such as,
algorithms for computing Z1-eigenvalues and its corresponding Z1-eigenvectors [3], bounds for the Z1-
spectral radius [9, 12, 16], and the uniqueness conditions for the positive Z1-eigenvector for nonnegative
tensors [1, 4, 7, 10, 11].

Very recently, Wang et al. [16] provided an upper bound for the Z1-spectral radius of tensors as follows.

Theorem 1.2. [16, Theorem 2.5] LetA = (ai1i2···im ) ∈ R[m,n]. Then

ρz1 (A) ≤ min

C1(A), (R(A))
1

m−1

(
min

t∈[m]\{1}
Ct(A)

) m−2
m−1

 , (2)

where R(A) := max
i∈[n]

{
ri(A) :=

n∑
i2,...,im=1

|aii2···im |

}
, and

Ct(A) := max
is∈[n],s∈[m]\{t}

n∑
it=1

|ai1i2···it···im |, t ∈ [m].

As said in [16], if m = 2, then the bound (2) reduces to the well-known Frobenius’s bound [6] for the
spectral radius ρ(A) of a matrix A, i.e.,

ρ(A) ≤ min{C1(A),C2(A)},

where C1(A) and C2(A) are the maximum column sum and row sum ofA, respectively.
Although the bound (2) depends only on the entries of a given tensorA, unlike matrices case it involves

the term R(A), and thus needs extra computations. In this paper, we give a refinement bound for the
Z1-spectral radius of tensors:

ρz1 (A) ≤ min
t∈[m]

Ct(A),

which has nothing to do with R(A) like matrices case, and prove that the new bound is better than that in
Theorem 1.2 ([16, Theorem 2.5]).

2. Main results

Let

[n]m−1 =
{
(i2, i3, . . . , im) : i j ∈ [n], j = 2, 3, . . . ,m

}
.

Obviously, [n]1 = [n].

Theorem 2.1. LetA = (ai1i2···im ) ∈ R[m,n]. Then

ρz1 (A) ≤ min
t∈[m]

Ct(A). (3)

Proof. Suppose that a nonzero vector x = (x1, x2, . . . , xn)> with

‖x‖1 =

n∑
k=1

|xk| = 1

such thatAxm−1 = λx. We next consider the following two cases t = 1 and t = 2, . . . ,m.
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Case I: t = 1. From (1) we get

λxi1 =

n∑
i2,...,im=1

ai1i2···im xi2 · · · xim , i1 ∈ [n].

Taking modulus in the above equation and using the triangle inequality give

|λ| = |λ|
n∑

i1=1

|xi1 | ≤

n∑
i1,i2,...,im=1

|ai1i2···im ||xi2 | · · · |xim |

=

n∑
i2,...,im=1

|xi2 | · · · |xim |

n∑
i1=1

|ai1i2···im |


≤

 n∑
i2,...,im=1

|xi2 | · · · |xim |

 max
is∈[n],s∈[m]\{1}

n∑
i1=1

|ai1i2···im |

= C1(A),

where the last equality holds because

n∑
i2,...,im=1

|xi2 | · · · |xim | =
∏

k=2,3,...,m

 n∑
ik=1

|xik |

 = 1.

Thus, ρz1 (A) ≤ C1(A).

Case II: t = 2, . . . ,m. Let |xk| = max
i∈[n]
|xi|. Then |xk| , 0. From the k-th equality of (1) we get

λxk =
∑

(i2,...,im)∈[n]m−1

aki2···im xi2 · · · xim .

Taking modulus in the above equation and using the triangle inequality give

|λ||xk| ≤
∑

(i2,...,im)∈[n]m−1

|aki2···im ||xi2 | · · · |xim |

=

n∑
ip=1


 ∑

(i′2,...,i
′

m−1)∈[n]m−2

|aki′2···ip···i
′

m−1
|

m−1∏
s=2,
s,p

|x′is |

 |xip |


≤

max
ip∈[n]

 ∑
(i′2,...,i

′

m−1)∈[n]m−2

|aki′2···ip···i
′

m−1
|

m−1∏
s=2,
s,p

|x′is |




n∑
ip=1

|xip |

= max
ip∈[n]

 ∑
(i′2,...,i

′

m−1)∈[n]m−2

|aki′2···ip···i
′

m−1
|

m−1∏
s=2,
s,p

|x′is |


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= max
ip∈[n]


n∑

iq=1

 ∑
(i′′2 ,...,i

′′

m−2)∈[n]m−3

|aki′′2 ···ip···iq···i
′′

m−2
|

m−2∏
s=2,
s,p,q

|x′′is |

 |xiq |


≤ max

ip∈[n]


max

iq∈[n]

 ∑
(i′′2 ,...,i

′′

m−2)∈[n]m−3

|aki′′2 ···ip···iq···i
′′

m−2
|

m−2∏
s=2,
s,p,q

|x′′is |




n∑
iq=1

|xiq |


= max

ip∈[n]

max
iq∈[n]

 ∑
(i′′2 ,...,i

′′

m−2)∈[n]m−3

|aki′′2 ···ip···iq···i
′′

m−2
|

m−2∏
s=2,
s,p,q

|x′′is |




= max
(ip,iq)∈[n]2

 ∑
(i′′2 ,...,i

′′

m−2)∈[n]m−3

|aki′′2 ···ip···iq···i
′′

m−2
|

m−2∏
s=2,
s,p,q

|x′′is |


...

= max
(i∗2,...,i

∗

m−1)∈[n]m−2

 n∑
it=1

|aki∗2···it···i
∗

m−1
||xit |


≤

 max
(i∗2,...,i

∗

m−1)∈[n]m−2

 n∑
it=1

|aki∗2···it···i
∗

m−1
|


 |xk|

Dividing |xk| , 0 on both sides yields

|λ| ≤ max
(i∗2,...,i

∗

m−1)∈[n]m−2

 n∑
it=1

|aki∗2···it···i
∗

m−1
|


≤ max

i1∈[n]
max

(i∗2,...,i
∗

m−1)∈[n]m−2

 n∑
it=1

|ai1i∗2···it···i
∗

m−1
|


= max

is∈[n],s∈[m]\{t}

 n∑
it=1

|ai1i2···it···im |

 .
Apparently, the inequality above holds for any t = 2, . . . ,m, and hence

|λ| ≤ min
t∈[m]\{1}

max
is∈[n],s∈[m]\{t}

 n∑
it=1

|ai1i2···it···im |

 = min
t∈[m]\{1}

Ct(A),

consequently,

ρz1 (A) ≤ min
t∈[m]\{1}

Ct(A).

The conclusion follows from Case I and Case II.

IfA ∈ R[m,n] is a nonnegative tensor, then the bound (3) reduces to

ρz1 (A) ≤ min
t∈[m]

max
is∈[n],s∈[m]\{t}

n∑
it=1

ai1i2···it···im ,
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which is the exact upper bound in Corollary 3.6 of [9] for the weakly symmetric nonnegative irreducible
tensor case. Apparently, the bound (3) needs less computations than the bound (2) because the latter has to
compute R(A). Next, we establish a comparison result to show that the bound (3) is less than or equal to
the bound (2).

Theorem 2.2. LetA = (ai1i2···im ) ∈ R[m,n]. Then

min
t∈[m]

Ct(A) ≤ min

C1(A), (R(A))
1

m−1

(
min

t∈[m]\{1}
Ct(A)

) m−2
m−1

 ,
where R(A) and Ct(A), t ∈ [m] are defined as in Theorem 1.2.

Proof. Note that for any t = 2, 3, . . . ,m,

max
is∈[n],s∈[m]\{t}

n∑
it=1

|ai1i2···it···im | ≤ max
i∈[n]

ri(A).

Hence, min
t∈[m]

Ct(A) ≤ min
t∈[m]\{1}

Ct(A) ≤ R(A). Furthermore, from min
t∈[m]

Ct(A) ≤ C1(A), we have

min
t∈[m]

Ct(A) = min{C1(A),min
t∈[m]

Ct(A)}

≤ min

C1(A),
(
min
t∈[m]

Ct(A)
) 1

m−1
(

min
t∈[m]\{1}

Ct(A)
) m−2

m−1


≤ min

C1(A), (R(A))
1

m−1

(
min

t∈[m]\{1}
Ct(A)

) m−2
m−1

 .
The proof is complete.

Remark here that besides the bound (2) in Theorem 1.2 ([16, Theorem 2.5]), there are another bounds for
the Z1-spectral radius, for instance, in 2015, Li et al. [9, Theorem 2.1] derived the following upper bound
about the Z1-spectral radius ofA:

ρz1 (A) ≤ min
k∈[m]

max
ik∈[n]

∑
is∈[n],

s∈[m]\{k}

|ai1···ik ···im |.

As stated in [16, Remark 3],

min

C1(A), (R(A))
1

m−1

(
min

t∈[m]\{1}
Ct(A)

) m−2
m−1

 ≤ min
k∈[m]

max
ik∈[n]

∑
is∈[n],

s∈[m]\{k}

|ai1···ik ···im |.

Hence,
min
t∈[m]

Ct(A) ≤ min
k∈[m]

max
ik∈[n]

∑
is∈[n],

s∈[m]\{k}

|ai1···ik ···im |.

This implies that the bound in Theorem 2.1 is better than that in [9, Theorem 2.1].
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Figure 1: The bound differences for four distributions entries.

Example 2.3. Consider 4× 103 order 4 dimensional 2 tensors generated by the way from [16], i.e., tensors are imple-
mented randomly with four different distributions (Uniform distribution, Gaussian distribution, Poisson distribution
and binomial distribution) entries. In uniform distribution case, all entries are in the range of [0, 1]. In gaussian
distribution case, the parameters µ and σ are generated randomly in the range of [0, 1]. For convenience, all the
entries of tensorA are shifted to be positive. In poisson distribution case, the parameter λ is set to be 10. In binomial
distribution case, the number of entries is set to be 100. And the probability of success for each trial p is set to be 0.5.

The differences of the bounds in Theorem 1.2, Theorem 2.1 and [9, Theorem 2.1] are drawn in Figure 1, where the
star symbol in red color ’∗’ means the upper bound in [9, Theorem 2.1] minus the upper bound in Theorem 2.1, and
the cross symbol in blue color + means the upper bound in Theorem 1.2 minus the upper bound in Theorem 2.1. From
all sub-figures it is easy to see that there are no ’∗’ and ’+’ below zero. This means that the upper bound in Theorem
2.1 is better than that in Theorem 1.2 and [9, Theorem 2.1].

3. Conclusions

In this paper, we give a new upper bound for the Z1-spectral radius for tensors, and it needs less
computations, and is sharper than that in [16].
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