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Abstract. The Szasz-Mirakjan-Kantorovich operators and the Baskakov—Kantorovich operators are shown
to be controlled by the Hardy-Littlewood maximal operator. The Szdsz-Mirakjan-Kantorovich operators
and the Baskakov-Kantorovich operators turn out to be uniformly bounded in Lebesgue spaces and Morrey
spaces with variable exponents when the integral exponent is global log-Holder continuous.

1. Introduction

The Szasz-Mirakjan-Kantorovich operators and the Baskakov-Kantorovich operators are used in ap-
proximation theory. In this paper we prove that these operators are subject to the control of the Hardy-

Littlewood maximal operator. What is important here is that the constant is 1 or 2 and that our bound is
sharp in the case of the Szasz—Mirakjan—Kantorovich operators.

Density of the continuous functions in L!([0, 1]) plays a key role in many fields of mathematics. There is a
constructive proof which uses the Baskakov—Kantorovich operators. Recall that the Baskakov-Kantorovich
operator V, of order n € N on the interval [0, 1] is defined for f € L!([0,1]) by

k+1
[

n-1
Vilf,2) =1 ) () ﬁ fhdt, xeo,1],
k=0 n
where

_[n-1 x ny__n
mn,k(x) = k 1+ x)n+k’ Kkl k'(n - k)'

Let1 < p < 0. We know that lim V,(f,x) = f(x) in LP([0, 1]) for f € LP([0,1]). This well-known fact is also a
direct consequence of the estimate we will prove in this paper. We will show that each V), is subject to the
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control by the Hardy-Littlewood maximal operator M is given by

M@= sup 2020 (%15,

O<ri<n<l T2~ r
for f € LY([0,1]). Here and in what follows xs is the characteristic function of the set S.

Theorem 1.1. Let V), be the Baskakov—Kantorovich operator of order n € IN. Then
IVu(f, 2)l < 2Mf(x), x € [0,1],
where f is a locally integrable function on [0, 1].

When we consider the approximation of defined on [0, c0), we can use the Szasz-Mirakjan—Kantorovich
operators {T,}*, defined for f € L} ([0, )) by

oo k+1

T3 =Y wpust) [ S0k, x€ [0,

k=0

where p,r(x) = e‘”"("ki,)k, n € N. We know that lim T,,(f,x) = f(x) almost everywhere in (0, o) for
° n—o0

f € LY(0, %) such that f(x) = % f ' f(s)ds; see [4, Theorem 2].
0

Accordingly, we consider the Hardy-Littlewood maximal operator M given by

Mf(x) := sup X(;;Z)S)f lf(y)ldy

ry>r1>0 T2 =

for f € LL ([0, c0)).

loc
We have a counterpart of Theorem 1.1.

Theorem 1.2. Let T, be the Szdsz—Mirakjan—Kantorovich operator of order n € IN. Then |T,(f,x)| < Mf(x), for
any x € [0,00) and f € L! ([0, 0)).

loc
As the example of f = 1 shows, we can not replace Mf(x) with aMf(x) for any a € (0,1). Theorem 1.2
improves [4, Theorem 3], which asserts that |T,,(f, x)| < 3Mf(x).
Theorems 1.1 and 1.2 have many applications. Among others we consider the uniform boundedness of
Vn and T, acting on variable Lebesgue spaces and variable Morrey spaces.
We recall definitions and fix notation. We call a measurable function p(-) a variable exponent. For a
variable exponent p(-) : [0,1] — R, we denote

p- = essinfreop(x) and p, = esssup, g, p(%).

The set P([0, 1]) consists of all variable exponents p(-) satisfying p— > 1 and p. < co. Let p(-) € P([0, 1]). The
Lebesgue space LFV)([0, 1]) with variable exponent p(-) is defined by

If ()l
A

p(x)
) dx < oo for some A > 0}.

1
/9([0,1]) := {f [0,1] — C : f is measurable, f (
0

The norm is given by

1 p)
Iflloqoay := inf {/\ >0: f ('f;x)l) dx < 1}.
0

Variable function spaces go back to [17]. Starting from a seminal paper [16], the theory of variable function
spaces has been developed quickly; see the books [6, 8, 10, 14, 15, 19].

Theorem 1.1 yields the uniform boundedness of the Baskakov—Kantorovich operators {V,} >, .
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Theorem 1.3. If M is bounded in LFV([0, 1]), then there exists a constant C such that
IVa(Ollro oy < Cllflloqoa
forall f e LPO([0,1]).
We do not prove Theorem 1.3 since Theorem 1.1 immediately reduces the matters to the boundedness
of M on LPO([0, 1]).

The tools we need to prove Theorems 1.1, 1.2 and 4.2 are the Abel transformation and the following
fundamental pointwise estimate for intervals I and measurable functions f:

%LﬁﬂwmstUW)(yED

or equivalently

flf(x)ldx < fo(y)dx (y €. (1)
I I

See also Lemma 4.1 to follow, which is a useful tool. Lemma 4.1 seems interesting in itself.

We can also investigate variable Morrey spaces. Here we recall the definition due to Almeida, Hasanov
and Samko [1]. Let p(),q(-) € P([0,1]) satisfy 1 < g- < q(-) < p(-) < p+ < co. Then the Morrey space
MZE; ([0,1]) with variable exponents p(-) and g(:) is the set of all measurable functions f for which

sup |ﬁ—a|”(#) i

0<a<p<l

1
a+p
7z

1A lsg0 01y = ANl g gy < 00

To guarantee that M is bounded on MZ 8

exponent 4(-).

([0,1]), we postulate the following conditions on the variable

Definition 1.4. Let q(-) be a real-valued measurable function on [0, 1]. If there exists a constant Cq such that

lg(x) — g(y)l < (x,ye [0,1], lx =yl < 1),

1
~log(lx — y)) 2
then q(-) is called locally log-Holder continuous. In this case write g(-) € Clog([0, 1]).

Actually, concerning the class C'°8([0, 1]), we have the following boundedness properties:
Lemma 1.5. [8, Theorem 4.3.8] Let p(-) € C'°8([0, 1]) and satisfy p— > 1. Then M is bounded on LP")([0, 1]).

Lemma 1.6. [1, Theorem 2] Let p(-) € P([0, 1]) and q(-) € C'°5([0, 1]), and suppose 1 < q— < q(-) < p(*) < p+ < co.
Then M is bounded on MZ E)) ([0,17).

Let V, be the Baskakov-Kantorovich operator of order n € IN as above. The following result is a
consequence of Theorem 1.3 and Lemma 1.5.

Corollary 1.7. Ifp(-) € C°8([0, 1]) and p_ > 1, then {V,,}, is uniformly bounded on LPY)([0, 11).
The following corollary follows from Theorem 1.3 and Lemma 1.6.

Theorem 1.8. If p(-) € P([0,1]), g(-) € C°8([0,1]) and 1 < g_ < q(-) < p(-) < ps4 < oo, then (Vb is uniformly
bounded on MZE; ([0,1]).
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We move on to function spaces on [0, o). For a variable exponent p(-) : [0, ) — R, we denote

p- =essinfp(x) and p., = esssupp(x).

x€[0,00) x€[0,00)

The set P([0, o0)) consists of all variable exponents p(-) satisfying p— > 1 and p; < oo. Let p(-) € P([0, 00)).
The Lebesgue space L/V)([0, o)) with variable exponent p(-) is defined by

[f Gl

00 p(x)
LP9([0, 00)) := { f is measurable : f ( ) dx < oo for some A > 0}.
0

The norm is given by
. = (@I
I llro 0,00y 2= inf {A >0: f (%) dx < 1}.
0

Theorem 1.2 yields the uniform boundedness of the Szasz-Mirakjan—Kantorovich operator T, n € IN.

Theorem 1.9. Let p(-) € P([0, 00)). If M is bounded on LPV([0, o)), then there exists a constant C independent of n
such that

T (oo, < CllFllroo,e0)
for all f € LPO([0, 0)).

To guarantee that M is bounded on L1V)([0, o)) we postulate the following conditions on the variable
exponent g(-) or its reciprocal %

Definition 1.10. Let #(-) be a real-valued measurable function on [0, co).

(i) If there exists a constant Cy such that

[r(x) — r(y)| < (x,ye [0,00), [x -yl < %)

G
—log(lx — yl)

then r(-) is called locally log-Holder continuous. In this case write r(-) € Cg)g([O, 0)).
(ii) If there exists 1o € R satisfying

C
[r(x) — 70| < log(e—+x) (x € [0, 00)),

then r(-) is called log-Holder continuous at infinity. In this case write r(-) € c}fj,g([o, 0)).
(iii) If r(:) is both locally log-Holder continuous and log-Holder continuous at infinity, then r(-) is called global
log-Holder continuous. In this case write r(-) € C'°8([0, c0)).

Following [11], we define Morrey spaces with variable exponent on [0, o). Let p(-), q(-) € P([0, o0)) satisfy
1<g- <q() <p() < ps < 0. Assume that r(-) € C'8([0, )), where 7() := q(-)/p(-) — 1. Then the Morrey

space MZE; ([0, 00)) with variable exponents p(-) and g(*) is the set of all measurable functions f for which

roo

1 1
atp) a+f a+p
Ifllppoqoey = sup 1B a5 DN flpoqapy +  sup 18—l fllsogagy < oo
g0

O<a<f<a+l<co O0<a<a+1<p<oo

Actually, concerning the class CI°8([0, c0)), we have the following boundedness properties:

Lemma 1.11. Lef p(-) € P([0, 0)) N C'°8([0, 00)). Then M is bounded on LF([0, 0)).
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Lemma 1.12. Let p(-) € P([0,0)), q(-) € C°8([0, 00)), and let 1 < g_ < q(-) < p(-) < p+ < 0. Assume in addition
that r(-) € Cl°8([0, o)), where r(-) := q(-)/p(-) — 1. Then M is bounded on MZE:;([O, 0)).

It seems that the proof of Lemma 1.12 is missing. However, by considering exponents P(-) and Q(-)
obtained by extending p(-), 4(-) to even functions respectively, we are in the position of using [11, Theorem
3.5]. So, we omit the details here.

Recall that T, is the Szdsz-Mirakjan-Kantorovich operator of order n € IN. The following corollary
follows from Lemma 1.11 and Theorem 1.9.

Corollary 1.13. Ifp(-) € ([0, o)) satisfy p(-) € C'°8([0, 00)), then {T,,} | is uniformly bounded on LPV)([0, c0)).
Theorem 1.2 and Lemma 1.12 yield the following conclusion.

Theorem 1.14. Let p(-),q(-) € C'°8([0,00)) satisfy 1 < q- < gq(-) < p(-) < ps < co. Assume in addition that

r(-) € Cg’g([O, 00)), where r(-) := q(-)/p(-) = 1. Then {T,,}>"_, is uniformly bounded on MZE:;([O, 00)).

Let p() € P([0, 0)). Denote by /A\;(ZJE; (I) the closure of CZ°(Int(I)) in MZE; (I). If we use Theorems 1.3, 1.8,
1.9 and 1.14, then we have the following conclusion as a byproduct of these theorems.

Theorem 1.15. Under the assumptions in Theorem 1.3, lim V,,(f) = f in LPO([0,1]) for all f € LPO([0, 1]).

Theorem 1.16. Under the assumptions in Theorem 1.8, lim V,(f) = f in MZE_';([O, 1]) forall f € M’; 8 ([0,1D.
n—oo

Theorem 1.17. Under the assumptions in Theorem 1.9, lim T, (f) = f in LPO([0, 00)) for all f € LPO([0, 00)).
n—oo

Theorem 1.18. Under the assumptions in Theorem 1.14, lim T, (f) = f in MZE:;([O, o0)) for all f € TAEE:;([O, 0)).

The proofs of Theorems 1.15-1.18 are based on the fact that the operators are uniformly bounded and
that the operators approximate the smooth functions nicely. We omit the details.

We make a historical remark on these operators. We remark that the original Baskakov-Kantorovich
operator V, is considered in (0, ) and given by

k+1

n

Valf,0) =1 Y i) f " fhdt x € [0,0),
k=0 "

see [9, Page 115]. We can say that the idea of a constructive approximation of the functions by polynomials
goes back to the original functions as we considered in [2]. In [2], Bernstein introduced the operator B,, for
each n € N. For f in C[0, 1] the Bernstein operator B, is defined by

Bf =Y bucos(E) xe 011
k=0

Theorem 1.1 substitutes for the estimate obtained in [3] for the functions in L'([0, 1]). In [13] Kantorovich
considered the approximation of the functions in L7[0, 1], p € [1, o). Write

bi(x) := (Z)xk(l —x)"*, x €[0,1]

for x € [0,1], k,n € Z satisfying 0 < k < n. Kantorovich in [13] introduced the operator K,, n € IN defined
for f € LY([0,1]) by

kel

Ki(fix) = (1+1) Y bua) f " foar, xe o1
k=0 n+l

n+l
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The operators V,, and K,, overcome the problem of B,,. In fact, we can not define B, (f, x) for f € L([0,1]).
There are many variants and generalizations of the Kantorovich operators. Indeed, Srivastava and Zeng
in [22] investigated a class of approximation operators (namely, the Szdsz-Bézier integral operators) which
contain the modified Szdsz-Mirakyan operators as their special case. In [18], Ozarslan, Dumanb and
Srivastava considered a general sequence of Kantorovich-type operators associated with some special
polynomials. In [21] the authors introduced a family of g-Szdsz-Mirakjan-Kantorovich type positive linear
operators. In [20] the authors gave approximation properties of an extended family of the Szasz-Mirakjan
Beta-type operators. Recently, in [3] Burenkov, Ghorbanalizadeh and the first author of the paper obtained
the uniform boundedness of Kantorovich operators in Morrey spaces. In [24], it was showed the uniform
boundedness of Kantorovich operators in variable Morrey spaces. In [27], Zhou considered approximation
by means of positive linear operators on variable Lebesgue spaces.

In Section 2, we prove Theorem 1.1 and consider Baskakov—Kantorovich operators, which are rational
expressions. Section 3 is the proof of Theorem 1.2. In Section 4, we obtain that the conjugate operator of K,
is also controlled by the Hardy-Littlewood maximal operator. And we show that the Kantorovich-Stancu
type of Szasz-Mirakyan operators are controlled by the Hardy-Littlewood maximal operator in a certain
interval. We will employ the method in [3] for the proof of Theorems 1.1, 1.2 and 4.2.

2. Baskakov-Kantorovich operators — Proof of Theorem 1.1

Letx € [0,1] and n > 2. Write n, := [nx] here and below in Section 2, so that n, < nx < n, + 1.
Lemma 2.1.

1. The difference my, j(x) — my j—1(x) is non-negative fork € {1,...,n, — 1}.
2. The difference m,, y_1(x) — my x(x) is non-negative for k € {ny +1,...,n}.

Proof. Arithmetic shows
(n+k=2)!x1(nx —x —k)
ki(n — 1)I(1 + x)+k

My j(X) = 1y (¥) =
This equality clearly yields the desired result. [J

We suppose f is a nonnegative measurable function to prove Theorem 1.1; otherwise, we replace f by
Ifl. Let x € [0,1]. We write

k+l nx+1

ny—1 kil xtl n-1 k1
IzznkZ_()‘mn,k(x) j: f(Hdt, = nmy,, (x) f f(hdt, M:=n Z 11,1 (X) ﬁ f(rdt,

k=n,+1

so that V,(f, x) = I + II + III. First, keeping in mind that k + 1 < nx for k < n, — 1, we have

I= ngmn,k(x)( f " fydt - f f(t)dt).

We further decompose I to have

X x ny—1 x ny=1 x
1= nmyo(x) fo F(BAE = 1y _1(%) f fBdt+n 2 1y (%) f f(Hdt—n Z My 1 (%) f F(t)dt
n k=1 n k=1 "

X X ne—1 X
= 0 (x) fo FO)At = 1y 1 (x) f fOd 1Y (m(@) = e () ﬁ F(bdt.
n k=1 n
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Secondly, keeping in mind that n, < nx < n, + 1 we decompose

ny+1
n

II= nmn,nx(x)f fHdt + nmy, , (x) ﬁx fHdt.

X

Similar to I, we obtain that

1 nctl n-1 &
I = nmy, ;1 (x) fB)dt —nmy, . 11(x) fHdt +n (M, k-1 (%) = My (x)) f(Hdt.
Consequently we have
X ny=1 X
Va(f, x) = nmy, 0(x) fHdt +n My, (%) = My g1 (X) ft)dt
0 j(; ;( k k-1 ) ﬁ

X X 1
— MMy, —1(X) f ! f®dt + nmy,, (x) f ) fO)dt + nmy -1 (x) f ft)dt

n—-1 k
+n My, -1 () — 1 1 (X) fHdt.
kZ( - () f
Since —nmy, , —1(x) fi f(t)dt <0, we obtain
X ny—1 X
Valf, ) < mmnaa(s) [ f0+n Y (maa0) = 9) [ s
k=1 i

n-1

1, (1) f FEAE + 11,5 1(3) f e+ n Y, (@ = i) f " fat.

k=n,+1
Using (1), we can replace the function f by the constant function Mf(x) and obtain that

ny—1

Va(f, %) < () fo Mpwde+n Y (k@) = m101c1(0) f Mf@t

k=1

X 1
+ 1My, (X) f Mf(x)dt + nmy, -1 (x) f Mf(x)dt

n—1

+n Z (mn,k_l(x)—mn,k(x)) fxﬁ Mf(x)dt.

k=n,+1

Furthermore, in (2), replace the function f by the constant function Mf(x), we have

Mf(x) = Va(Mf(x), %)

ny—1

= 1My (x) j: Mf(x)dt +n Z

k=1

(mn,k(x) - mn,k_l(x)) ﬁ *Mf@dt

X X 1
+ 1My, (X) ﬁ Mf(x)dt — nmy, ‘ﬁ Mf(x)dt + nmy, ,-1(x) f Mf(x)dt

n—-1

wn Y (mn,k_l(x)—m,,,k(x)) f " M)t + f jMf(x)dt.

k=n,+1

2115

(2)

4)
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Now we have

ny—1

Va(f, %) < () fo Mp@dt+n Y (e = m101c1(0) f “Mf@dt

k=1

X 1
+ 11y, (X) ﬁ Mf(x)dt + nmy, ;-1 (x) f Mf(x)dt

+n kgl (a0 = mos0) [  Mpwa
= it () fo " MF@dt+n i (k) = m101c1(0) ﬁ “Mf@dt

k=1

X X 1
+ 1y, (X) f Mf(x)dt — nmy, f Mf(x)dt + nmy, ,-1(x) f Mf(x)dt
= = x
n-1

Y (Mniea@ - o) f " MF@AE + ity f jMf(x)dt

k=n,+1

X
+”mn,m—1f Mf(x)dt

= Mf(x) + nmy 1 ﬁx Mf(x)dt
< 2Mf(x). ”

Consequently, we obtain the desired result.

3. Szasz-Mirakjan-Kantorovich operators — Proof of Theorem 1.2

Let x > 0. We write n, := [nx], so that n, < nx <n, + 1. We set

Ny—

I—nz ‘""("x)f f(hdt,

k=0
nx+1
My “n
= ne—"x—(”nx)' fe)dt,
x- Lx
I = n Z e (1X)° x) f f(t)dt.
k= My +1 n

Then we have T, (f, x) = I + II + III. First, we have

f F(Hdt — ne ™ ml), f f(t)dt+nZ —""((mj Zx)kl;, f F(Hdt.

Next, keeping in mind that n, < nx < n, + 1 we decompose

= -"X(”’i)), f f(t)dt+ne‘""(( ); f F(Hdt

2116
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Finally, as for III, we obtain that

M=n Z e”X(((Z’i)kl_;! —(%)k) f % f(t)dt—ne’”" )n:; f f(tdt,

k=n,+2

Putting together all these decompositions, we obtain that

To(f,x) =1+ 11+ 111

k
f f(t)dt+n —"*((”]z) gzx . f F(hydt

fnx( )kl )k
+nk;16 ((Zx 1)!"nx ff(t)dt

If we have k € [0, n,], then k < nx. Hence,

() (o) () e
Mo k—1 - k- 1)'( )>0‘

By the same way, if k € [n, + 1, ), then

(nx)1 (nx)f (nx)kl( nx

k-1 K k-1 1_7)>0'

Consequently

X Ty k k— 1
ITu(f, )| < ne™ fo |f(t)|dt+nZe—"X(% El’:x) 5 f f(bdt

=1

. i e—nx((nX)k (nx)k f fbld.

|
k=n,+1 ( Dt

Using (1), we have

1

ITu(f, %) < ne™™ fo fo(x)dt+n 3 e*"X((”;?k ()~ 1) f Mf()dt

(k=1
+n i e‘""(% nx)k f Mf(x)dt
k=n,+2 (k 1!
+ ne‘”x—((;lj)_xl f Mf(x)dt + ne™™ (( i))!x (1 - nxni 1)fx n Mf(x)dt
= T,(Mf(x), x).

So, we have

muaneny e [ g Y e s = My,

k=0 " k=0
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4. Appendix

4.1. The conjugate of K,

Then the conjugate operator of K, is given by

n 1
K00 =Y i [ 04 Db, e 0,11
k=0

To handle the operator of this type, we will use the following lemma:

Lemma 4.1. Let g : [0,1] — [0, 00) be a function increasing on [0,a] and decreasing on [a,1]. Then for any
measurable function f,

1 1
f gIf(B)ldt < Mf(a) f g(t)dt.
0 0

N

Proof. By approximating g by a function of the form ). A;xa,), where a; < a < bj and A; > 0, we may
j=0

assume that g itself is such a function. In this case, we can resort to (1). [

If we set

- k
Buat) = max (b 2 (0, i),

then En,k(t) attains its maximum at any point in (%, %), since b, increases in [0, %] and decreases in [%, 1].
Furthermore,
s DBt < [ s Dbt b, [E) =14 (TR
0 nk =~ Jo nk n+1 "\n)” k) nt(n+1) "
Consequently

n) Ke(n — kyr=*

. 1
K, (g, D)l < (1 + (k T D) )Mg(t) < (1 + m)Mg(t) < 2My(t)

forall t € [A, &1,

According to [3, Theorem 1.1] we have |K,(f;x)| < Mf(x), x € [0,1]. Thus K, are uniformly bounded
on LF9([0, 1]) which the Hardy-Littlewood maximal operator is bounded on. However the necessity of the
Hardy-Littlewood maximal operator bounds on LP")([0,1]) is p— > 1. Using the above estimate of K}, we
learn that the uniformly boundedness of K,, on LP)([0, 1]) is possible for p_ > 1 as long as p < oo, in other
words, if the Hardy-Littlewood maximal operator is bounded on L70)([0,1]), then K, are also uniformly

bounded on LF)([0,1]).

4.2. Kantorovich-Stancu type of Szasz-Mirakyan operators

The Kantorovich-Stancu type of Szasz-Mirakyan operators are defined as follows:

k+a+l

TP = ) (14 Bpus() f " fwdt, xe[0,w)
k=0

k+a
n+p

where p,, k(x) = e‘""%, n €N,k € NU {0} and a, § > 0 are parameters. We have the following result:
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Theorem 4.2. Let T"" be the Kantorovich-Stancu type for every n € IN, M be the Hardy-Littlewood maximal
function. Then

TP (f, 0] < Mf(x),

whenever f is a locally integrable function on [0, co) and

max a-1 « <x<a
B 'n+p) T B

p

I_,:ZO‘ _nx(nx) kfl fbdt = Z e (n2) ) f f(tdt—ﬁ

+a;;-1 f(t dt)
)
II:=e ? . f(t)dt,

x+a

n+p

Proof. By the triangle inequality, we may assume that f is non-negative. Let n, := [(n + f)x —a] for x € [0, 1],
so thatn, < (n+ f)x —a <n, +1. We set

1+

00 k k+a+1
o (5 g et [
. k+a
k=n,+1 ntp

n+p

n+ n+p
o ( f(Hdt - f f(bydt).
k=n,+1 ’ x x
Then we have Tﬁ,a’ﬁ ) (f, %)

= (n+ ) + 11 + III).
We consider the Abel transform of I to have

) k kta+l
m= Y )

kta

e (nx) . (nx)s=1
Izz kwft)dt_; W

oy (m)F (nx)k 1 - (nxy=t
fn . f(t)dt+zle (- =T f fidt e = f(t)dt

Secondly, keeping in mind that n, < (n + f)x — a < n, + 1, we decompose

f(dt

k+a

L () e ()
II=¢ W L f(t)dt +e ( )'

We consider the Abel transform of III to have

- nx)kl (s = nx)k
Il = Z e—"’ffk_) o f(Hdt - Z e‘""% f f(Hdt
k=n.+2 TYXx ’ X

k=n,+1
(e8]

k—1 k n+ e+l nx’:-wl
5 [ e [
k=n,+2 ' : x

(n, + 1)!
So, we have

" s

nx-Hx

I+II+1II

f fHdt + i e—nx( (nx)k (nx)*~
b k=1

_nx (nx)1 (nx)k "
K k=1 f fbydt+ Z (k—l)!_k_!)fx fltyd.
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From the definition of n, n, < (n + f)x —a < ny + 1. If k € [0, n,], then nx — k > nx —n, > a — fx > 0. Hence,
the following conclusion is established.

(mx)f ()1 () onx
KT k-1 (k- 1)'(__1) 0

In the same way, if k € [n, +1,00), wehavek—nx >n, +2 -nx > fx+1—-a > 0. Thus

k-1 k k-1
ey gk gy
k-1 kK " k-1IV &
Using (1), we have
—hnx —}’lx nx)k (nx)k !
[+IM+TI<e f N MFf(x)dt + Z Rl 1)| Mf(x)dt
e (10 (nX)k
+ Z e (k L Mf(x)dt MF(x).
k=ny+1
O
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