Filomat 34:6 (2020), 2029–2035 https://doi.org/10.2298/FIL2006029A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A GT Generated by a Family of Maps

Mohammad Reza Ahmadi Zand^a, Rasool Khayyeri^a

^aMathematics Department, Yazd University, Yazd, Iran

Abstract. In this paper we define weak and strong generalized topologies. We show that a large range of generalized topological spaces can be characterized by the weak and strong generalized topologies. As a main result, we prove that a GTS is completely μ -regular if and only if μ is the weak GT generated by the family $C^*_{\mu,\nu}(X)$ of all bounded $(\mu, \nu_{\mathbb{R}})$ -continuous functions.

1. Introduction

Generalized topological spaces [6] were defined and studied by \hat{A} . Császár in 2002. Let X be a nonempty set and $\mathcal{P}(X)$ denotes the power set of X. A subset μ of $\mathcal{P}(X)$ is called a *generalized topology* (GT as an acronym) on X if it contains \emptyset and any union of elements of μ belongs to μ [6]. The pair (X, μ) is called a *generalized topological space* (GTS as an acronym). A subset A of X is called μ -open (or μ -closed) if $A \in \mu$ (or $X \setminus A \in \mu$). A GTS (X, μ) is called *strong* [5] if $X \in \mu$. For $A \subseteq X$, we show the union of all μ -open sets contained in A, by $i_{\mu}(A)$ and the intersection of all μ -closed sets containing A by $c_{\mu}(A)$. $i_{\mu}(A)$ and $c_{\mu}(A)$ are called *the interior and closure of* A, respectively [6]. The union of all elements of μ , i.e., $i_{\mu}(X)$ is denoted by M_{μ} [9]. In fact, M_{μ} is the largest μ -open subset of X. It is obvious that $M_{\mu} = X$ if and only if μ is strong. The family of all generalized topologies on a nonempty set X constructs a lattice which is denoted by $\mathcal{G}(X)$ [3]. Let $\mu, \nu \in \mathcal{G}(X)$. μ is called to be *finer* (*stronger*) than ν if $\nu \subseteq \mu$ [7]. In this case, we also say that ν is *coarser* (*weaker*) than μ .

2. Preliminaries

Definition 2.1. ([7]) Let (X, μ) be a GTS. $\beta \subseteq \mu$ is called a base for μ if every $M \in \mu$ is a union of a subfamily of β .

As [9] if $\beta \subseteq \mathcal{P}(X)$, then the family $\mu(\beta)$ composed of \emptyset and all sets $N \subseteq X$ of the form $N = \bigcup_{i \in I} B_i$, $B_i \in \beta$ and $I \neq \emptyset$ is arbitrary, is a GT on X and β is a base for $\mu(\beta)$ called the *generalized topology generated by* β .

Lemma 2.2. Let X be a set and $\beta \subseteq \mathcal{P}(X)$. Then the following hold:

(1) $\mu(\beta)$ is the weakest GT on X containing β .

(2) $\mu(\beta) = \bigcap \{ \mu \in \mathcal{G}(X) | \beta \subseteq \mu \}.$

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05; Secondary 54A99

Keywords. Generalized topology, generalized continuity, weak (strong) generalized topologies, completely μ -regular, $C^*_{\mu,\nu}(X)$, GT generated by a family of maps

Received: 19 April 2019; Revised: 08 January 2020; Accepted: 10 January 2020

Communicated by Ljubiša D.R. Kočinac

Email addresses: mahmadi@yazd.ac.ir (Mohammad Reza Ahmadi Zand), rasoul.khayyeri@yahoo.com (Rasool Khayyeri)

Proof. (1) If μ is a GT on X containing β , then it also contains all unions of some elements of β , i.e., $\mu(\beta) \subseteq \mu$. (2) It is an immediate consequence of part (1). \Box

Proposition 2.3. Let μ and μ' be two generalized topologies on X generated by bases β and β' , respectively. Then μ' is finer than μ if and only if for every $x \in X$ and every $B \in \beta$ containing x, there exists $B' \in \beta'$ such that $x \in B' \subseteq B$.

Proof. Necessity. Let μ' be finer than μ and $x \in B \in \beta$. Then *B* is a μ' -open set containing *x* and so by our assumption, there exists $B' \in \beta'$ such that $x \in B' \subseteq B$.

Sufficiency. Let for every $x \in X$ and every $B \in \beta$ containing x, there exists $B' \in \beta'$ such that $x \in B' \subseteq B$. Thus B is a union of some elements of β' , i.e., $\beta \subseteq \mu(\beta') = \mu'$ and so by Lemma 2.2, μ' contains $\mu = \mu(\beta)$. \Box

Definition 2.4. ([6]) Let (X, μ) and (Y, ν) be two generalized topological spaces. A function $f : X \to Y$ is called (μ, ν) -continuous if $f^{-1}(U) \in \mu$, for every $U \in \nu$.

Lemma 2.5. ([4]) If μ is a GT on X, $A \subseteq X$ and $x \in X$, then $x \in c_{\mu}(A)$ if and only if $x \in M \in \mu$ implies $M \cap A \neq \emptyset$.

The following two lemmas show that to specify the closure of a set in a GTS and to examine continuity of a function between two generalized topological spaces, it is just enough to consider sets of a base:

Lemma 2.6. ([14]) Let μ be a GT on X, β a base for μ , $A \subseteq X$ and $x \in X$. Then $x \in c_{\mu}(A)$ if and only if $x \in B \in \beta$ implies $B \cap A \neq \emptyset$.

Lemma 2.7. ([8]) Let (X, μ) and (Y, ν) be two generalized topological spaces and β a base for ν . A function $f : X \to Y$ is (μ, ν) -continuous if and only if $f^{-1}(B) \in \mu$, for every $B \in \beta$.

Definition 2.8. ([10]) Let (X, μ) be a GTS and $Y \subseteq X$. Also suppose that $\mu_Y = \{O \cap Y | O \in \mu\}$. Then μ_Y is a GT on *Y* which is called the relative GT on *Y*. In such case we say that *Y* is a μ -subspace of *X*.

Let (Z, ν) be a GTS, $f : X \to Z$ be a function and $Y \subseteq X$. Since $(f|Y)^{-1}(U) = f^{-1}(U) \cap Y$, for every ν -open set U, we have the following result:

Lemma 2.9. Let (X, μ) and (Z, ν) be two generalized topological spaces and $Y \subseteq X$. If $f : (X, \mu) \rightarrow (Z, \nu)$ is (μ, ν) -continuous, then f|Y is (μ_Y, ν) -continuous.

3. A GT Generated by a Family of Maps

Definition 3.1. ([14]) Let $(X_{\alpha}, \mu_{\alpha})_{\alpha \in A}$ be a family of generalized topological spaces and $\{f_{\alpha}\}_{\alpha \in A}$ be a family of of maps, where X is a set and f_{α} is a map of X to X_{α} . Then, $\mu_w = \{ \cup U | U \subseteq \{f_{\alpha}^{-1}(U_{\alpha}) : U_{\alpha} \in \mu_{\alpha}, \alpha \in A\} \}$ is called the GT on X generated by the family $\{f_{\alpha}\}_{\alpha \in A}$ of maps.

By Definition 2.1, we have the following result:

Proposition 3.2. Let X be a nonempty set. If $(X_{\alpha}, \mu_{\alpha})$ is a GTS, $f_{\alpha} : X \to X_{\alpha}$ is a function for each $\alpha \in A$ and μ_w is the GT on X generated by the family $\{f_{\alpha}\}_{\alpha \in A}$ of maps. Then the following statements hold:

- (1) $\{f_{\alpha}^{-1}(U_{\alpha})|U_{\alpha} \in \mu_{\alpha}, \alpha \in A\}$ is a base for μ_{w} .
- (2) If β_{α} is a base for μ_{α} for each $\alpha \in A$, then the set $\{f_{\alpha}^{-1}(U_{\alpha})|U_{\alpha} \in \beta_{\alpha}, \alpha \in A\}$ forms a base for μ_{w} .

Let $(X_{\alpha}, \mu_{\alpha})$ be a GTS for each $\alpha \in A$. We note that the GT on X generated by the family $\{f_{\alpha} : X \to (X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ of maps is the smallest element between all GTs μ on X making each $f_{\alpha}(\mu, \mu_{\alpha})$ -continuous. The following result is needed.

Proposition 3.3. ([11]) Let (X, μ) be a GTS and Y a μ -subspace of X with the relative GT μ_Y . Then μ_Y is the GT on Y generated by the inclusion map $\iota : Y \to X$.

Lemma 3.4. Let (X, μ) , (Y, ν) and (Z, λ) be generalized topological spaces. If $f : X \to Y$ is (μ, ν) -continuous, and $g : Y \to Z$ is (ν, λ) -continuous, then $g \circ f$ is (μ, λ) -continuous.

Theorem 3.5. Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and $f_{\alpha} : X \to (X_{\alpha}, \mu_{\alpha})$ be a function for each $\alpha \in A$. Let the GT on X generated by the family $\{f_{\alpha}\}_{\alpha \in A}$ of maps is equal to μ . A function f from a GTS (Y, ν) to (X, μ) is (ν, μ) -continuous if and only if $f_{\alpha} \circ f$ is (ν, μ_{α}) -continuous, for each $\alpha \in A$.

Proof. Necessity. Let f be (v, μ) -continuous. Then by Lemma 3.4, $f_{\alpha} \circ f$ is (v, μ_{α}) -continuous, for each $\alpha \in A$. Sufficiency. If $f_{\alpha} \circ f$ is (v, μ_{α}) -continuous, for each $\alpha \in A$, then $f^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = (f_{\alpha} \circ f)^{-1}(U_{\alpha})$ is v-open for each $U_{\alpha} \in \mu_{\alpha}$. By Proposition 3.2, the set of all $f_{\alpha}^{-1}(U_{\alpha})$, where $\alpha \in A$ and $U_{\alpha} \in \mu_{\alpha}$, form a base for μ and so by Lemma 2.7, f is (v, μ) -continuous. \Box

Definition 3.6. Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces, $X = \prod_{\alpha \in A} X_{\alpha}$ be its Cartesian Product and $\pi_{\alpha} : \prod_{\alpha \in A} X_{\alpha} \to X_{\alpha}$ be the projection map, i.e., $\pi_{\alpha 0}$ assigns to the point $x = \{x_{\alpha}\}_{\alpha \in A}$ its $\alpha 0$ th coordinates $x_{\alpha 0}$.

- ([14]) The GT on X generated by the family {π_α}_{α∈A} of maps is called the generalized product topology (briefly GPT) denoted by Π_{α∈A} μ_α.
- (2) ([9]) $\mathcal{B} = \{\prod_{\alpha \in A} M_{\alpha} | M_{\alpha} \in \mu_{\alpha} \text{ for all } \alpha \in A \text{ and } M_{\alpha} = M_{\mu_{\alpha}} \text{ for all but a finite number of indices } \alpha\}$ is a base for a GT on X called the product (or Csaszar product in [11]) of the GT's μ_{α} and it is denoted by $\mathbf{P}_{\alpha \in A} \mu_{\alpha}$.

By Theorem 3.5 and Definition 3.6(1) we have the following result.

Corollary 3.7. Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and $X = \prod_{\alpha \in A} X_{\alpha}$ be its Cartesian Product. If $\mu = \prod_{\alpha \in A} \mu_{\alpha}$ is the GPT on X, then a function f from a GTS (Y, ν) to (X, μ) is (ν, μ) -continuous if and only if $\pi_{\alpha} \circ f$ is (ν, μ_{α}) -continuous, for each $\alpha \in A$.

Remark 3.8. It is well known that Definition 3.6(1) and Definition 3.6(2) are equivalent in the class of topological spaces, and so Corollary 3.7 holds if μ is the product of topologies $\{\mu_{\alpha}\}_{\alpha \in A}$, i.e., $\mu = \mathbf{P}_{\alpha \in A}\mu_{\alpha}$, where μ_{α} is a topology for all $\alpha \in A$. But, Corollary 3.7 does not hold if μ is the Csaszar product of generalized topologies $\{\mu_{\alpha}\}_{\alpha \in A}$ even if all μ_{α} 's are strong as it is shown in Example 3.9. Thus, Definition 3.6(1) and Definition 3.6(2) are not equivalent in general.

Example 3.9. Let $X_1 = X_2 = \{a, b\}$ and $\mu_1 = \{\emptyset, \{a\}, X_1\}$, $\mu_2 = \{\emptyset, \{b\}, X_2\}$, $Y = \{a, b, c\}$, $v = \{\emptyset, \{a, b\}, \{b, c\}, Y\}$ and $\mu = \mathbf{P}_{i \in \{1, 2\}} \mu_i$. Then the function $f : Y \to X_1 \times X_2$ with f(a) = (a, a), f(b) = (a, b) and f(c) = (b, b) is not (v, μ) -continuous since $f^{-1}(\{a\} \times \{b\}) = \{b\}$ is not v-open. It is easy to check that the functions $\pi_1 \circ f$ and $\pi_2 \circ f$ are (v, μ_1) -continuous and (v, μ_2) -continuous, respectively.

Definition 3.10. Suppose we are given a GTS (X, μ) , a family $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ of generalized topological spaces and a family $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in A}$ of maps, where $f_{\alpha} : (X, \mu) \to (X_{\alpha}, \mu_{\alpha})$ is a (μ, μ_{α}) -continuous. If for every $x \in X$ and every μ -closed subset F of X such that $x \in X \setminus F$ there exists $\alpha \in A$ such that $f_{\alpha}(x) \notin c_{\mu_{\alpha}}(f_{\alpha}(F))$, then we say that the family \mathcal{F} separates points and μ -closed sets.

Theorem 3.11. Let (X, μ) be a GTS, $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in A}$ be a family of maps, where

 $f_{\alpha}: (X, \mu) \to (X_{\alpha}, \mu_{\alpha})$ is (μ, μ_{α}) -continuous for all $\alpha \in A$.

Then, μ is equal to the GT on X generated by the family \mathcal{F} of maps if and only if the family \mathcal{F} separates points and μ -closed sets.

Proof. Necessity. Let μ be equal to the GT on X generated by the family \mathcal{F} of maps. If F is μ -closed and $x \in X \setminus F$, then there exists a μ_{α} -open set U_{α} for some $\alpha \in A$ such that $x \in f_{\alpha}^{-1}(U_{\alpha}) \subseteq X \setminus F$ since $\{f_{\beta}^{-1}(U_{\beta}) \mid U_{\beta} \in \mu_{\beta}, \beta \in A\}$ is a base for μ by Proposition 3.2. If $y = f_{\alpha}(x) \in U_{\alpha} \cap f_{\alpha}(F)$, then $y \in U_{\alpha}$ and there is $z \in F$ such that $y = f_{\alpha}(z)$, and so $z \in f_{\alpha}^{-1}(U_{\alpha}) \cap F$ which is a contradiction.

Sufficiency. Suppose that the family \mathcal{F} separates points and μ -closed sets. If $x \in U$ for some μ -open set U, then $F = X \setminus U$ is μ -closed and $x \in X \setminus F$, and so by supposition there exists $\alpha \in A$ such that $f_{\alpha}(x) \notin c_{\mu_{\alpha}}(f_{\alpha}(F))$. Thus by Lemma 2.5, there is a μ_{α} -open set U_{α} such that $f_{\alpha}(x) \in U_{\alpha}$ and $U_{\alpha} \cap f_{\alpha}(F) = \emptyset$. If $y \in f_{\alpha}^{-1}(U_{\alpha})$, then $f_{\alpha}(y) \in U_{\alpha}$ so $f_{\alpha}(y) \notin f_{\alpha}(F)$ which shows that $y \notin F = X \setminus U$ consequently $y \in U$, and so $x \in f_{\alpha}^{-1}(U_{\alpha}) \subseteq U$. Thus by our assumption, μ is the GT on X generated by the family \mathcal{F} of maps. \Box

Theorem 3.12. Let (X, μ) be a GTS and $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces such that for each $\alpha \in A$ there exists a family $\{(Y_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})\}_{\lambda \in \Lambda_{\alpha}}$ of generalized topological spaces. If μ is equal to the GT on X generated by the family $\{f_{\alpha} : X \to (X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ of maps and each μ_{α} is equal to the GT on X_{α} generated by the family $\{g_{\alpha_{\lambda}} : X_{\alpha} \to (Y_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})\}_{\alpha \in \Lambda}$ of maps, then μ is equal to the GT on X generated by the family $\{g_{\alpha_{\lambda}} : X_{\alpha} \to (Y_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})\}_{\alpha \in \Lambda}$ of maps, then μ is equal to the GT on X generated by the family $\{g_{\alpha_{\lambda}} \circ f_{\alpha} : X \to (Y_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})\}_{\alpha \in \Lambda, \lambda \in \Lambda_{\alpha}}$ of maps.

Proof. Let *U* be a μ -open set and $x \in U$. Then by our assumption and Proposition 3.2, there exists a μ_{α} -open set U_{α} for some $\alpha \in A$ such that

$$x \in f_{\alpha}^{-1}(U_{\alpha}) \subseteq U. \tag{1}$$

Since μ_{α} is equal to the GT on X_{α} generated by the family $\{g_{\alpha_{\lambda}} : X_{\alpha} \to (Y_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})_{\lambda \in \Lambda_{\alpha}}$ of maps and $f_{\alpha}(x) \in U_{\alpha}$, there is $\lambda \in \Lambda_{\alpha}$ and $U_{\alpha_{\lambda}} \in \mu_{\alpha_{\lambda}}$ such that $f_{\alpha}(x) \in g_{\alpha_{\lambda}}^{-1}(U_{\alpha_{\lambda}}) \subseteq U_{\alpha}$. Thus

$$x \in f_{\alpha}^{-1}(g_{\alpha\lambda}^{-1}(U_{\alpha\lambda})) = (g_{\alpha\lambda} \circ f_{\alpha})^{-1}(U_{\alpha\lambda}) \subseteq f_{\alpha}^{-1}(U_{\alpha}),$$
(2)

and so (1) and Proposition 3.2 complete the proof. \Box

Theorem 3.13. Let (X, μ) be a GTS, $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha}\}_{\alpha \in A}$ be a family of maps. If μ is equal to the GT on X generated by the family \mathcal{F} of maps and Y is a μ -subspace of X with the relative GT μ_Y . Then μ_Y is equal to the GT on Y generated by the the family $\{f_{\alpha}|Y\}_{\alpha \in A}$ of maps.

Proof. By Proposition 3.3, μ_Y is the GT on *Y* generated by the inclusion map $\iota : Y \to X$ and $f_{\alpha}|Y = f_{\alpha}o\iota$ for every $\alpha \in A$. Now Theorem 3.12 shows that μ_Y is equal to the GT on *Y* generated by the family $\{f_{\alpha} \circ \iota : Y \to X_{\alpha}\}_{\alpha \in A}$ of maps and this completes the proof. \Box

Let $\beta = \{(-\infty, b) | b \in \mathbb{R}\} \cup \{(a, +\infty) | a \in \mathbb{R}\}$. Recall that the family $\nu_{\mathbb{R}}$ composed of \emptyset and all sets $G \subseteq \mathbb{R}$ of the form $G = \bigcup_{i \in I} B_i$, where $B_i \in \beta$ and $I \neq \emptyset$ is arbitrary, is a GT on \mathbb{R} [8]. It is called the standard GT on \mathbb{R} .

Notation 3.14. Let X be a nonempty set and (X, μ) be a GTS. We denote by $C_{\mu,\nu_{\mathbb{R}}}(X)$ the set of all $(\mu, \nu_{\mathbb{R}})$ continuous functions. A function $f \in C_{\mu,\nu_{\mathbb{R}}}(X)$ is called to be bounded if |f(x)| < n, for some $n \in \mathbb{N}$ and each $x \in X$. The subset of all bounded functions in $C_{\mu,\nu_{\mathbb{R}}}(X)$ is denoted by $C^*_{\mu,\nu_{\mathbb{R}}}(X)$. Let $c \in \mathbb{R}$ denote the constant function on X with image $\{c\}$. If $f, g \in C_{\mu,\nu_{\mathbb{R}}}(X)$, then the functions $f \pm g$, fg, -f and cf are defined as usual.

Lemma 3.15. Let f be a continuous real-valued function on \mathbb{R} . Then, $f \in C_{\nu_{\mathbb{R}},\nu_{\mathbb{R}}}(\mathbb{R})$ if and only if $x \leq y$ implies $f(x) \leq f(y)$ or $x \leq y$ implies $f(x) \geq f(y)$.

Proof. The proof is straightforward. \Box

Let X be a nonempty set and (X, μ) be a GTS. Then, it is easy to see that μ is not strong if and only if $C_{\mu,\nu_{\mathbb{R}}}(X) = \emptyset$ if and only if $C^*_{\mu,\nu_{\mathbb{R}}}(X) = \emptyset$. Let (X, μ) be a GTS which is strong. It is easy to check that if f and g are in $C_{\mu,\nu_{\mathbb{R}}}(X)$ ($C^*_{\mu,\nu_{\mathbb{R}}}(X)$), then so are -f, cf and $f \pm c$. However, as the following example shows, $f \pm g$ and fg need not be in $C_{\mu,\nu_{\mathbb{R}}}(X)$ ($C^*_{\mu,\nu_{\mathbb{R}}}(X)$).

Example 3.16. Suppose that $f(x) = x^3$ and g(x) = x. Then by Lemma 3.15, f and g are $(v_{\mathbb{R}}, v_{\mathbb{R}})$ -continuous, but $f - g = x^3 - x$ and $fg = x^4$ are not so, since $(f - g)^{-1}(-\infty, 0)$ and $(fg)^{-1}(-\infty, 1)$ are not $v_{\mathbb{R}}$ -open.

Definition 3.17. ([11]) A GTS (X, μ) is called completely μ -regular if for every μ -closed set $F \subset X$ and for every $x \in X$ such that $x \notin F$, there exists a ($\mu, \nu_{\mathbb{R}}$)-continuous function $f : X \to [0, 1]$ such that f(x) = 0 and f(y) = 1, for every $y \in F$.

Let (X, μ) be a completely μ -regular GTS. If there is a proper μ -closed set, then it is an immediate consequence of the above definition that (X, μ) is strong.

Example 3.18. ([1]) Let $X = \{a, b, c, d\}$ and $\mu = \mathcal{P}(X) \setminus \{\{a\}, \{b\}, \{c\}, \{d\}\}$. Then,

 $\mathcal{B} = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, d\}\}$

is a base for the GTS (X, μ) such that every member of \mathcal{B} is μ -closed. Therefore, the GTS (X, μ) is completely μ -regular.

The following interesting result is needed in this paper.

Theorem 3.19. ([11]) Every μ -subspace (Y, μ_Y) of a completely μ -regular GTS (X, μ) is completely μ -regular.

Lemma 3.20. A GTS (X, μ) is completely μ -regular if and only if for every μ -closed set $F \subset X$ and every $x \in X$ such that $x \notin F$, there exists $f \in C^*_{\mu,\nu_{\mathbb{R}}}(X)$ and $a \in \mathbb{R}$ such that one of the following conditions hold:

- (1) f(x) > a and $f(y) \le a$, for each $y \in F$;
- (2) f(x) < a and $f(y) \ge a$, for each $y \in F$.

Proof. Necessity. Obvious.

Sufficiency. Let for every μ -closed set $F \subset X$ and every $x \in X$ such that $x \notin F$, there exists $f \in C^*_{\mu,\nu_{\mathbb{R}}}(X)$ and $a \in \mathbb{R}$ such that one of the conditions (1) or (2) holds. If $F \subset X$ is a μ -closed set and $x \in X \setminus F$, then there exists a $(\mu, \nu_{\mathbb{R}})$ -continuous function $f : X \to [c, d]$ and $a \in \mathbb{R}$ such that one of the conditions (1) or (2) holds. Without loss of generality we can assume that the condition (1) holds. Thus by Lemma 3.15, the function $g : \mathbb{R} \to \mathbb{R}$ defined by

$$g(t) = \begin{cases} 1 & t < a \\ \frac{t - f(x)}{a - f(x)} & a \le t \le f(x) \\ 0 & t > f(x) \end{cases}$$

is $(v_{\mathbb{R}}, v_{\mathbb{R}})$ -continuous and therefore by Lemma 3.4, $h = g \circ f : \mathbb{R} \to [0, 1]$ is $(\mu, v_{\mathbb{R}})$ -continuous such that h(x) = 0 and h(y) = 1, for every $y \in F$. \Box

Proposition 3.21. Let (X, μ) be a GTS. Then, (X, μ) is completely μ -regular if and only if the family $C^*_{\mu,\nu_{\mathbb{R}}}(X)$ separates points and μ -closed sets.

Proof. Let (X, μ) be completely μ -regular and $x \in X \setminus F$. Then by Lemma 3.20, there exists $f \in C^*_{\mu,\nu_{\mathbb{R}}}(X)$ such that one of the conditions in Lemma 3.20 holds. Without loss of generality we can assume that the condition (1) in Lemma 3.20 holds. Thus $f(x) \notin c_{\nu_{\mathbb{R}}}(f(F))$ since the $\nu_{\mathbb{R}}$ -open set $U = (b, \infty)$ contains f(x) but $U \cap f(F) = \emptyset$, where *b* is an arbitrary number in the open interval (a, f(x)). The converse is obvious. \Box

Theorem 3.22. A GTS (X, μ) is completely μ -regular if and only if μ is equal to the GT on X generated by the family $C^*_{\mu,\nu_{\mathbb{R}}}(X)$ of maps.

Proof. If (X, μ) is completely μ -regular, then by Proposition 3.21, $C^*_{\mu,\nu_{\mathbb{R}}}(X)$ separate points and μ -closed sets. Now Theorem 3.11 implies that μ is equal to the GT on X generated by the family $C^*_{\mu,\nu_{\mathbb{R}}}(X)$ of maps.

Conversely, let μ be equal to the GT on X generated by the family $C^*_{\mu,\nu_{\mathbb{R}}}(X)$ of maps. If F is a μ -closed set and $x \notin F$, then $U = F^c$ is a μ -open set containing x. Thus, there exists a $\nu_{\mathbb{R}}$ -open subset V of \mathbb{R} and a function $f \in C^*_{\mu,\nu_{\mathbb{R}}}(X)$ such that $x \in f^{-1}(V) \subseteq U$ since μ is the GT on X generated by $C^*_{\mu,\nu_{\mathbb{R}}}(X)$. By Proposition 3.2, we can suppose that V is of the form $(-\infty, b)$ or $(a, +\infty)$ in which $a, b \in \mathbb{R}$. As we mentioned before, $-f \in C^*_{\mu,\nu}(X)$, for each $f \in C^*_{\mu,\nu}(X)$. Furthermore, $f^{-1}(-\infty, a) = (-f)^{-1}(-a, +\infty)$. Thus replacing f by -f, enables us to assume that V has the form $(a, +\infty)$. Thus $x \in f^{-1}(a, +\infty) \subseteq U$. This is apparent that f(x) > a, and $f(y) \le a$, for every $y \notin U$. Now Lemma 3.20 completes the proof. \Box

A space (X, μ) is called μ - T_1 [15] if for every pair of distinct points x and y of X, there exists a μ -open subset U of X such that $x \in U$ and $y \notin U$. μ - T_1 completely μ -regular spaces are called $T_{3.5}$ (or Tychonoff) in [11]. Makai et al. considered [0, 1] with the relative topology ν_R and showed that in the category of GenTop (GTS's with continuous functions), a GTS X is $T_{3.5}$ if and only if it is homeomorphic to a subspace Y of a power of the GTS [0,1] (see [11, Theorem 4.12]).

Definition 3.23. Let $\{\mu_{\alpha}\}_{\alpha \in A}$ be a family of generalized topologies on *X*. The supremum of μ_{α} 's is defined to be $\mu(\bigcup_{\alpha \in A} \mu_{\alpha})$, i.e., the GT on X generated by the base $\bigcup_{\alpha \in A} \mu_{\alpha}$ and it is denoted by $\sup_{\alpha \in A} \mu_{\alpha}$.

The following result is an immediate consequence of Lemma 2.2(1), Definition 3.2 and Definition 3.23:

Theorem 3.24. Let $\{\mu_{\alpha}\}_{\alpha \in A}$ be a family of generalized topologies on X.

- (1) $\sup_{\alpha \in A} \mu_{\alpha}$ is the weakest GT on X containing all μ_{α} 's.
- (2) $\sup_{\alpha \in A} \mu_{\alpha}$ is the weak GT generated by the family $\{I_{\alpha} : X \to (X, \mu_{\alpha})\}_{\alpha \in A}$ of identity maps.

Definition 3.25. Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and let f_{α} be a map from X_{α} to a set Y, for each $\alpha \in A$. The strong generalized topology (briefly, strong GT) induced by the family $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in A}$ of maps on Y is the GT μ_s which consists of all sets U in Y such that $f_{\alpha}^{-1}(U)$ is μ_{α} -open, for each $\alpha \in A$.

Definition 3.26. Let $\{\mu_{\alpha}\}_{\alpha \in A}$ be a family of generalized topologies on a nonempty set *X*. The infimum of μ_{α} 's is defined to be the GT $\bigcap_{\alpha \in A} \mu_{\alpha}$ on X denoted by $\inf_{\alpha \in A} \mu_{\alpha}$.

The following result is an immediate consequence of Definitions 3.25 and 3.26:

Theorem 3.27. Let $\{\mu_{\alpha}\}_{\alpha \in A}$ be a family of generalized topologies on a nonempty set *X*. Then the following statements *hold:*

- (1) $\inf_{\alpha \in A} \mu_{\alpha}$ is the strongest GT on X contained in all μ_{α} 's.
- (2) $\inf_{\alpha \in A} \mu_{\alpha}$ is the strong GT on X induced by the family $\{I_{\alpha} : (X, \mu_{\alpha}) \to X\}_{\alpha \in A}$ of identity maps.

The following result is an immediate consequence of Definitions 3.25 and 2.4.

Theorem 3.28. Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and let f_{α} be a map from X_{α} to a set Y, for each $\alpha \in A$. The strong generalized topology μ_s induced by the family $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in A}$ of maps on Y is the finest GT μ on Y making each f_{α} (μ_{α}, μ)-continuous.

Theorem 3.29. Let Y have the strong GT μ generated by the family $\{f_{\alpha} : X_{\alpha} \to Y\}_{\alpha \in A}$ of maps. If (Z, ν) is a GTS, then a map $g : (Y, \mu) \to (Z, \nu)$ is (μ, ν) -continuous if and only if $g \circ f_{\alpha}$ is (μ_{α}, ν) -continuous, for each $\alpha \in A$.

Proof. Necessity. It follows from Theorem 3.28 and Lemma 3.4.

Sufficiency. Suppose that $g \circ f_{\alpha} : X_{\alpha} \to Z$ is (μ_{α}, ν) -continuous, for each $\alpha \in A$, and $U \subseteq Z$ is a ν -open set. Thus $f_{\alpha}^{-1}(g^{-1}(U)) = (g \circ f_{\alpha})^{-1}(U)$ is μ_{α} -open, for each $\alpha \in A$. Therefore by Definition 3.25, $g^{-1}(U)$ is μ -open which yields that g is (μ, ν) -continuous. \Box **Theorem 3.30.** Let $\{(X_{\alpha}, \mu_{\alpha})\}_{\alpha \in A}$ be a family of generalized topological spaces and let $\mathcal{F} = \{f_{\alpha} : (X_{\alpha}, \mu_{\alpha}) \to Y\}_{\alpha \in A}$ be a family of maps such that for each $\alpha \in A$, there exists a family $\{(Z_{\alpha_{\lambda}}, \mu_{\alpha_{\lambda}})\}_{\lambda \in \Lambda_{\alpha}}$ of generalized topological spaces. If v_s is the strong GT on Y induced by the family \mathcal{F} of maps and for every $\alpha \in A$, μ_{α} is equal to the strong GT on X_{α} induced by the family $\mathcal{G}_{\alpha} = \{g_{\alpha\lambda} : (Z_{\alpha\lambda}, \mu_{\alpha\lambda}) \to X_{\alpha}\}_{\lambda \in \Lambda_{\alpha}}$ of maps, then v_s is equal to the strong GT on Y induced by the family $\{f_{\alpha} \circ g_{\alpha\lambda} : (Z_{\alpha\lambda}, \mu_{\alpha\lambda}) \to Y\}_{\alpha \in A, \lambda \in \Lambda_{\alpha}}$ of maps.

Proof. Let v be the strong GT on Y generated by the family $\{f_{\alpha} \circ g_{\alpha\lambda} : (Z_{\alpha\lambda}, \mu_{\alpha\lambda}) \to Y\}_{\alpha \in A, \lambda \in \Lambda_{\alpha}}$ of maps. We claim that $v = v_s$. Let $U \subseteq Y$ be v_s -open. Then by our assumption, $f_{\alpha}^{-1}(U) \in \mu_{\alpha}$ for each $\alpha \in A$ and so for each $\lambda \in \Lambda_{\alpha}$, $(f_{\alpha} \circ g_{\alpha\lambda})^{-1}(U) = g_{\alpha\lambda}^{-1}(f_{\alpha}^{-1}(U))$ is $\mu_{\alpha\lambda}$ -open which implies that U is v-open. Thus $v_s \subseteq v$. Conversely, suppose that $U \subseteq Y$ be v-open. Then by our assumption, $(f_{\alpha} \circ g_{\alpha\lambda})^{-1}(U)$ is $\mu_{\alpha\lambda}$ -open for

Conversely, suppose that $U \subseteq Y$ be ν -open. Then by our assumption, $(f_{\alpha} \circ g_{\alpha\lambda})^{-1}(U)$ is $\mu_{\alpha\lambda}$ -open for each $\alpha \in A$ and $\lambda \in \Lambda_{\alpha}$, and so $g_{\alpha\lambda}^{-1}(f_{\alpha}^{-1}(U))$ is $\mu_{\alpha\lambda}$ -open, for each $\lambda \in \Lambda_{\alpha}$. Thus, $f_{\alpha}^{-1}(U)$ is μ_{α} -open since μ_{α} is the strong GT on X_{α} induced by the family \mathcal{G}_{α} of maps. Thus, U is ν_s -open since ν_s is the strong GT on Y induced by the family \mathcal{F} of maps. Therefore, $\nu \subseteq \nu_s$ and this completes the proof. \Box

Acknowledgement

The authors thank referees for their careful reading and valuable comments.

References

- [1] M.R. Ahmadi Zand, Generalized topologies on finite sets, Honam Math. J. 38(3) (2016) 455-465.
- [2] M.R. Ahmadi Zand, R. Khayyeri, Generalized G_{δ} -submaximal spaces, Acta Math. Hungar. 149(2) (2016) 274–285.
- [3] R. Baskaran, M. Murugalingam, D. Sivaraj, Lattice of generalized topologies, Acta Math. Hungar. 133(4) (2011) 365–371.
- [4] Á. Császár, δ and θ -Modifications of generalized topologies, Acta Math. Hungar. 120(3) (2008) 275–279.
- [5] Á. Császár, Extremely disconnected generalized topologies, Ann. Univ. Sci. Budapest 47 (2004) 91-96.
- [6] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002) 351-357.
- [7] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115(1) (2007) 29–36.
- [8] Á. Császár, Normal generalized topologies, Acta Math. Hungar. 115 (2007) no. 4 309-313.
- [9] Á. Császár, Product of generalized topologies, Acta Math. Hungar. 123 (2009) no. 1-2 127-132.
- [10] E. Ekici, Generalized submaximal spaces, Acta Math. Hungar. 134(1) (2012) 132–138.
- [11] E. Makai Jr., E. Peyghan, B. Samadi, Weak and strong structures and the T_{3.5} property for generalized topological spaces, Acta Math. Hungar. 150(1) (2016), 1–35.
- [12] M.S. Sarsak, On μ-compact sets in μ-spaces, Q and A in general topology 31(1) (2013) 49–57.
- [13] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.
- [14] X. Wu, P. Zhu, Generalized product topology, Commun. Korean Math. Soc. 28(4) (2013) 819-825.
- [15] G.E. Xun, G.E. Ying, µ-Separations in generalized topological spaces, Appl. Math. J. Chinese Univ., Ser B 25(2) (2010) 243–252.