
Filomat 34:6 (2020), 2003–2015
https://doi.org/10.2298/FIL2006003L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let f (z) be a meromorphic functions with finite order , R(z) be a nonconstant rational function
and k be a positive integer. In this paper, we consider the difference equation originated from Schwarzian
differential equation, which is of form[
∆3 f (z)∆ f (z) −

3
2

(∆2 f (z))2
]k

= R(z)(∆ f (z))2k.

We investigate the uniqueness of meromorphic solution f of difference Schwarzian equation if f shares
three values with any meromrphic function. The exact forms of meromorphic solutions f of difference
Schwarzian equation are also presented.

1. Introduction and main results

In this paper, we use the basic notions of Nevanlinna’s theory, see [12, 28]. In addition, we use the
notation σ( f ) to denote the order of growth of the meromorphic function f (z). Let S(r, f ) denote any
quantity satisfying S(r, f ) = o

(
T(r, f )

)
for all r outside of a set with finite logarithmic measure.

Let f (z) and 1(z) be two meromorphic functions, a be a small function relative to both f and 1. We say
that f and 1 share a CM if f −a and 1−a have the same zeros with the same multiplicities, f and 1 are said to
share a IM if f − a and 1 − a have the same zeros ignoring multiplicities. Nevanlinna’s four values theorem
(see [26]) says that if two nonconstant meromorphic functions f and 1 share four values CM, then f ≡ 1 or
f is a Möbius transformation of 1. The condition ‘ f and 1 share four values CM’ has been weakened to ‘ f
and 1 share two values CM and two values IM’ by Gundersen [9, 10], as well as by Mues [25].

For Schwarzian differential equation f ′′′

f ′
−

3
2

(
f ′′

f ′

)2k

= R(z, f ) =
P(z, f )
Q(z, f )

, (1)
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Ishizaki [18] showed that if the Schwarzian equation (1) possesses an admissible solution, then d +

2k
l∑

j=1
δ(α j f ) ≤ 4k , where a j are distinct complex constants, and d = deg R(z, f ) = max{deg P(z, f ),deg Q(z, f )}.

In particular, when R(z, f ) is independent of z, it is shown that if (1) possesses an admissible solution f , then
by some Möbius transformation w = (a f + b)/(c f + d)(ad − bc , 0), R(z, f ) can be reduced to some special
forms, see [18, Theorem 3]. Liao and Ye[23] considered differential equation, which is a special type of the
Schwarzian differential equation, f ′′′

f ′
−

3
2

(
f ′′

f ′

)2k

= R(z), (2)

and gave the order of meromorphic solutions as follows.

Theorem 1.1. [23, Theorem 3] Let P(z) and Q(z) be polynomials with deg P = m and deg Q = n, and let R(z) =
P(z)/Q(z). If f is a transcendental meromorphic solution of (2), then m−n+2k > 0 and the orderσ( f ) = (m−n+2k)/2k.

For every positive integer n, the forward differences ∆n f (z) are defined as

∆ f (z) = f (z + c) − f (z), ∆n+1 f (z) = ∆n f (z + c) − ∆n f (z).

We know that ∆ f (z) is considered as difference counterpart of f ′. Recently, a number of papers focus
on unicity of meromorphic functions sharing values with their shifts or difference operators, see, e.g.
[1, 2, 5–8, 13–17, 22, 24, 27, 30]. Some papers studied uniqueness of meromorphic functions concerning
meromorphic solutions of difference equations, see, e.g. [8, 15, 27]. Others considered the value distribution
and the growth of order of meromorphic solutions of difference equations, see, e.g.[3, 4, 11, 19–21].

Chen and Li[4], Lan and Chen[20] considered the difference counterpart of form∆3 f (z)
∆ f (z)

−
3
2

(
∆2 f (z)
∆ f (z)

)2k

= R(z, f ), (3)

which is originated from the Schwarzian differential equation (1), they obtained that the value distribution
of meromorphic solutions of (3). Furthermore, Lan and Chen[21] considered the difference equation∆3 f (z)

∆ f (z)
−

3
2

(
∆2 f (z)
∆ f (z)

)2k

= R(z), (4)

which is a special type of equation (3), where k is a positive integer and R(z) is a nonconstant rational
function. They obtain

Theorem 1.2. [21, Theorem 1.3] Let R(z) =
P(z)
Q(z) be an irreducible rational function with deg P(z) = p and deg Q(z) =

q. Then

(i) every transcendental meromorphic solution of (4) satisfies σ( f ) ≥ 1; if p − q + 2k > 0, then (4) has no rational
solutions;

(ii) if f (z) is a meromorphic solution of (4) with finite order, then ∆2 f (z)
∆ f (z) and ∆3 f (z)

∆ f (z) in (4) are nonconstant rational
functions;

(iii) every transcendental meromorphic solution f (z) with finite order has at most one Borel exceptional value unless

f (z) = b + R0(z)eaz,

where a, b are complex numbers with a , 0 and R0(z) is a nonzero rational function.
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(iv) if p − q + 2k > 0, σ( f ) < ∞, then ∆ f (z) has at most one Borel exceptional value unless

∆ f (z) = R1(z)eaz,

where a is complex number with a , i2k1π for any k1 ∈ Z, and R1(z) is a nonzero rational function.

Remark 1.3. ¿From Theorem 1.2, we see if f (z) is a transcendental meromorphic solution of (4) with finite order,
then f (z) cannot have two finite Borel exceptional values.

We note that ∆ f (z) lies in the denominator in (4), and so ∆ f (z) . 0. Thus, f (z) cannot be a merommorphic
function with period c. If we remove this restriction, we investigate the properties of meromorphic solutions
of equation[

∆3 f (z)∆ f (z) −
3
2

(∆2 f (z))2
]k

= R(z)(∆ f (z))2k, (5)

and obtain

Theorem 1.4. Let f (z) be a transcendental meromorphic solution of equation (5) with finite order, where R(z) is a
nonconstant rational function. Let 1(z) be a meromorphic function and a, b be two distinct constants. If f (z) and 1(z)
share a, b,∞ CM, then one of the following statements holds:

(i) f (z) ≡ 1(z);

(ii) f (z) = Aemz + B, 1(z) = L( f ), where A(, 0),B are constants, mc = 2k1πi for some nonzero integer k1, L( f ) is a
Möbius transformation of f ;

(iii) f (z) = a + (b − a) Aenz
−1

Bemz−1 , 1 = b +
(b−a)

A
A−Be(m−n)z

Bemz−1 , where A,B are nonzero constants, n
m (, 1) means a rational

constant, mc = 2k1πi for some nonzero integer k1.

2. Lemmas

We now give some preparations.

Lemma 2.1. [3, 11] Let f (z) be a meromorphic function with order σ = σ( f ), σ < ∞, and let η be a fixed nonzero
complex number, then for each ε > 0,

T(r, f (z + η)) = T(r, f (z)) + O
(
rσ−1+ε

)
+ O(log r).

Lemma 2.2. [3] Let A0(z), . . . ,An(z) be entire functions such that there exists an integer l, 0 ≤ l ≤ n, such that

σ(Al) > max
1≤ j≤n

j,l

{σ(A j)}.

If f (z) is a meromorphic solution to

An(z)y(z + n) + · · · + A1(z)y(z + 1) + A0(z)y(z) = 0,

then we have σ( f ) ≥ σ(Al) + 1.

Lemma 2.3. [29] Suppose that n ≥ 2, and let f j(z)( j = 1, . . . ,n) be meromorphic functions and 1 j(z)( j = 1, . . . ,n)
be entire functions such that

(i)
n∑

j=1
f j(z)e1 j(z)

≡ 0;

(ii) when 1 ≤ j < k ≤ n, 1 j(z) − 1k(z) is not a constant;
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(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T(r, f j) = o{T(r, e1h−1k )} (r→∞, r < E),

where E ⊂ (1,∞) is of finite logarithmic measure.

Then f j(z) ≡ 0. ( j = 1, . . . ,n)

Lemma 2.4. Let f (z) be a finite order meromorphic solution of equation (4), then ∆ f (z) is a meromorphic solution of
equation

w(z + c) = Q(z)w(z),

where Q(z) is a nonconstant rational function.

Proof. Set

Q(z) =
∆ f (z + c)

∆ f (z)
. (6)

We then prove that Q(z) is a nonconstant rational function.
Since f (z) is of finite order, (6) shows Q(z) is also of finite order and

∆ f (z + c) = Q(z)∆ f (z), ∆ f (z + 2c) = Q(z + c)∆ f (z + c) = Q(z + c)Q(z)∆ f (z).

Hence,∆2 f (z) = ∆ f (z + c) − ∆ f (z) = (Q(z) − 1)∆ f (z),

∆3 f (z) = ∆2(∆ f (z)) = ∆ f (z + 2c) − 2∆ f (z + c) + ∆ f (z) = (Q(z + c)Q(z) − 2Q(z) + 1)∆ f (z).
(7)

We see from (4) that

∆3 f (z)
∆ f (z)

−
3
2

(
∆2 f (z)
∆ f (z)

)2

= R1(z), (8)

where R1(z) is some nonconstant rational function. Thus, (7) and (8) show that

Q(z + c)Q(z) − 2Q(z) + 1 −
3
2

(Q(z) − 1)2 = R1(z), (9)

that is,

Q(z + c) =
3
2 Q2(z) −Q(z) + R1(z) + 1

2

Q(z)
. (10)

Since R1(z) is a nonconstant rational function, we deduce from (9) that Q(z) cannot be a constant.
If Q(z) is transcendental, noting that 3

2 Q2(z) − Q(z) + R1(z) + 1
2 and Q(z) are irreducible, then we apply

Valiron-Mohon’ko Theorem to (10), and deduce

T(r,Q(z + c)) = 2T(r,Q(z)) + S(r,Q),

which contradicts to Lemma 2.1. Hence, Q(z) is a nonconstant rational function.

Lemma 2.5. Let a, b be two distinct constants, β, γ be nonconstant polynomials with deg β , degγ, and

f (z) = a + (b − a)
eβ − 1
eγ − 1

. (11)

Then f (z) cannot be a meromorphic solution of equation (4).
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Proof. Assume that f is a meromorphic solution of equation (4). Lemma 2.4 shows

∆ f (z + c) = Q(z)∆ f (z). (12)

Without loss of generality, we assume Q(z) is a nonconstant polynomial. Otherwise, we just multiply the
dominator of Q(z) of both sides of (12). We now divide our proof into two cases.

Case 2.1. deg β > degγ. Rewriting (11) as

f (z) = a01(z)eβ(z) + a00(z), (13)

where

a01(z) =
b − a
eγ − 1

, a00(z) = a −
b − a
eγ − 1

.

Obviously,

σ(a01) = σ(a00) = degγ < deg β. (14)

Since eβ is of regular growth order deg β, we see a01, a00 are small functions of eβ. We conclude from (13) that

∆ f (z) =a01(z + c)eβ(z+c) + a00(z + c) − a01(z)eβ(z)
− a00(z)

=(a01(z + c)eβ(z+c)−β(z)
− a01(z))eβ(z) + a00(z + c) − a00(z)

=a11(z)eβ(z) + a10(z), (15)

where{
a11(z) = a01(z + c)eβ(z+c)−β(z)

− a01(z),
a10(z) = a00(z + c) − a00(z).

(16)

We deduce from (14), (16), Lemma 2.1 and deg(β(z + c) − β(z)) = deg β − 1 that

σ(a11) ≤ max{σ(a01),deg β − 1} < deg β, σ(a10) ≤ σ(a00) < deg β. (17)

We assert that a11(z) . 0. Otherwise, (16) shows

a01(z + c)eβ(z+c)−β(z)
− a01(z) = 0. (18)

Applying Lemma 2.2 to equation (18), we have

σ(a01) ≥ σ(eβ(z+c)−β(z)) + 1 = (deg β − 1) + 1 = deg β,

which contradicts with (14).
Substituting (15) into (12), we obtain

(a11(z + c)eβ(z+c)−β(z)
−Q(z)a11(z))eβ(z) + a10(z + c) −Q(z)a10(z) = 0.

By (17) and deg(β(z + c) − β(z)) = deg β − 1 , applying Lemma 2.3 to the last equality, we have

a11(z + c)eβ(z+c)−β(z)
−Q(z)a11(z) = 0. (19)

Applying Lemma 2.2 to equation (19), we get

σ(a11) ≥ σ(eβ(z+c)−β(z)) + 1 = (deg β − 1) + 1 = deg β,

which contradicts with (17).
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Case 2.2. deg β < degγ. Rewriting (11) as

f (z) = a +
b00(z)

eγ(z) − 1
, (20)

where

b00(z) = (b − a)(eβ(z)
− 1). (21)

Thus, we conclude from (20) that

∆ f (z) =
b00(z + c)
eγ(z+c) − 1

−
b00(z)

eγ(z) − 1
=

b00(z + c)eγ(z)
− b00(z)eγ(z+c)

− b00(z + c) + b00(z)
(eγ(z+c) − 1)(eγ(z) − 1)

=
b11(z)eγ(z) + b10(z)

(eγ(z+c) − 1)(eγ(z) − 1)
, (22)

whereb10(z) = −b00(z + c) + b00(z)

b11(z) = b00(z + c) − b00(z)eγ(z+c)−γ(z) (23)

By (21), (23) and Lemma 2.1, we haveσ(b10) ≤ σ(b00) = deg β < degγ

σ(b11) ≤ max{σ(b00), σ(eγ(z+c)−γ(z))} = max{deg β,degγ − 1} < degγ.
(24)

We again assert that b11(z) . 0. Otherwise, (23) shows

b00(z + c) − eγ(z+c)−γ(z)b00(z) = 0. (25)

Applying Lemma 2.2 to equation (25), we have

σ(b00) ≥ σ(eγ(z+c)−γ(z)) + 1 = (degγ − 1) + 1 = degγ,

a contradiction. Substituting (22) into (12), we have

b11(z + c)eγ(z+c) + b10(z + c)
(eγ(z+2c) − 1)(eγ(z+c) − 1)

= Q(z)
b11(z)eγ(z) + b10(z)

(eγ(z+c) − 1)(eγ(z) − 1)
,

or

b11(z + c)eγ(z+c) + b10(z + c)
eγ(z+2c) − 1

= Q(z)
b11(z)eγ(z) + b10(z)

eγ(z) − 1
,

or

b11(z + c)eγ(z+c)+γ(z)
−Q(z)b11(z)eγ(z+2c)+γ(z)

−Q(z)b10(z)eγ(z+2c)

− b11(z + c)eγ(z+c) + (Q(z)b11(z) + b10(z + c))eγ(z) + Q(z)b10(z) − b10(z + c) = 0.

That is,

A2(z)e2γ(z) + A1(z)eγ(z) + A0(z)e0 = 0, (26)

where
A0(z) =Q(z)b10(z) − b10(z + c)

A1(z) = −Q(z)b10(z)eγ(z+2c)−γ(z)
− b11(z + c)eγ(z+c)−γ(z) + Q(z)b11(z) + b10(z + c),

A2(z) =b11(z + c)eγ(z+c)−γ(z)
−Q(z)b11(z)eγ(z+2c)−γ(z).

(27)



S. Lan et al. / Filomat 34:6 (2020), 2003–2015 2009

By (24), (27) and Lemma 2.1, we have
σ(A0) ≤ σ(b10) < degγ

σ(A1) ≤ max{σ(b10), σ(b11), σ(eγ(z+2c)−γ(z)), σ(eγ(z+c)−γ(z))} = max{σ(b10), σ(b11),degγ − 1} < degγ,

σ(A2) ≤ max{σ(b11), σ(eγ(z+c)−γ(z)), σ(eγ(z+2c)−γ(z))} = max{σ(b11),degγ − 1}} < degγ.

Thus, σ(A j) < degγ ( j = 0, 1, 2). Since eγ is of regular growth order degγ, we obtain

T(r,A j) = o{T(r, eγ)} = o{T(r, e2γ)}, j = 0, 1, 2.

Applying Lemma 2.3 to (26), we have

A2(z) ≡ 0, A1(z) ≡ 0, A0(z) ≡ 0.

By A2(z) ≡ 0 and (27), we obtain

b11(z + c)eγ(z+c)−γ(z)
−Q(z)b11(z)eγ(z+2c)−γ(z)

≡ 0,

or

b11(z + c) −Q(z)eγ(z+2c)−γ(z+c)b11(z) ≡ 0, (28)

Applying Lemma 2.2 to equation (28), we have

σ(b11) ≥ σ(eγ(z+2c)−γ(z+c)) + 1 = (degγ − 1) + 1 = degγ.

which contradicts with (24).
Thus, f (z) of the form (12) cannot be a meromorphic solution of equation (4).

Lemma 2.6. [19] Let A0(z), . . . ,An(z) be entire functions of finite order such that among those coefficitets having the
maximal order σ = max{σ(Ak), 0 ≤ k ≤ n}, exactly one has its type strictly greater than the others. If f (z) . 0 is a
meromorphic solution of equation

An(z) f (z + ωn) + · · · + A1(z) f (z + ω1) + A0(z) f (z) = 0, (29)

then σ( f ) ≥ σ + 1.

Lemma 2.7. [11, 19] Let w be a transcendental meromorphic solution with finite order of difference equation

P(z,w) = 0,

where P(z,w) is a difference polynomial in w(z). If P(z, a) . 0 for a meromorphic function a, where a is a small
function with respect to w, then

m
(
r,

1
w − a

)
= S(r,w).

3. Proof of Theorem 1.4

Proof. (i) We first support that ∆ f (z) . 0. Then equation (5) can be changed into equation (4).
Since f (z) and 1(z) share a, b,∞ CM, we have

N
(
r,

1
f − a

)
= N

(
r,

1
1 − a

)
, N

(
r,

1
f − b

)
= N

(
r,

1
1 − b

)
, N(r, f ) = N(r, 1).
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By the second fundamental Nevanlinna Theorem, we have

T(r, 1) ≤N(r, 1) + N
(
r,

1
1 − a

)
+ N

(
r,

1
1 − b

)
+ S(r, 1)

=N(r, f ) + N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ S(r, 1)

≤3T(r, f ) + S(r, 1).

Thus, 1(z) is of finite order.
Since f (z) and 1(z) share a, b,∞ CM, we see again that

f (z) − a
1(z) − a

= eα(z), (30)

and

f (z) − b
1(z) − b

= eβ(z), (31)

where α(z) and β(z) are polynomials.
Assume, to the contrary, that f (z) . 1(z). Then from (30) and (31), we obtain

eα . 1, eβ . 1, eα . eβ, α(z) . β(z).

Again by (30) and (31), we get

f (z) = a + (b − a)
eβ − 1

eβ−α − 1
, (32)

or

f (z) = a + (b − a)
eβ − 1
eγ − 1

, (33)

where γ = β − α is a nonzero polynomial.
If β and γ are both constants, then f is a constant from (33), a contradiction.
If β is a constant and denoting A = eβ, then A , 1. (32) shows

f (z) = a + (b − a)
A − 1

Ae−α − 1
.

Hence, f (z) has two distinct finite Borel exceptional values a and a + (b − a)(1 − A), which contradicts with
Remark 1.3.

If α is a constant and denoting B = e−α, then B , 1. (32) shows

f (z) = a + (b − a)
eβ − 1

Beβ − 1
.

Thus, f (z) has two distinct finite Borel exceptional values b and a + b−a
B , which contradicts with Remark 1.3

again.
If γ is a constant and denoting A = b−a

eγ−1 ,B = a − A, then A,B are constants. By (33), we have

f (z) = a + Aeβ − A = Aeβ + B.

It is easy to see that f (z) has two Borel values B and ∞. Theorem 1.2 (iii) shows deg β = 1. Without loss of
generality, we assume β(z) = mz, then f (z) = Aemz + B, where m is a nonzero constant. Thus,

∆ f (z) = A(emc
− 1)emz, ∆ f (z + c) = Aemc(emc

− 1)emz. (34)
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We note that ∆ f (z) . 0 from (4). Thus, emc
− 1 , 0 and ∆ f (z + c) = emc∆ f (z), which contradicts with Lemma

2.4.
We deduce from (33) and Lemma 2.5 that deg β = degγ, and

∆ f (z) = (b − a)
(

eβ(z+c)
− 1

eγ(z+c) − 1
−

eβ(z)
− 1

eγ(z) − 1

)
. (35)

Without loss of generality, we assume Q(z) is a nonconstant polynomial in Lemma 2.4. By (35) and
Lemma 2.4, we conclude that

eβ(z+2c)
− 1

eγ(z+2c) − 1
−

eβ(z+c)
− 1

eγ(z+c) − 1
= Q(z)

(
eβ(z+c)

− 1
eγ(z+c) − 1

−
eβ(z)
− 1

eγ(z) − 1

)
,

or

eβ(z+2c)
− 1

eγ(z+2c) − 1
+ Q(z)

eβ(z)
− 1

eγ(z) − 1
= (Q(z) + 1)

eβ(z+c)
− 1

eγ(z+c) − 1
,

that is,

eβ(z+2c)+γ(z+c)+γ(z) + Q(z)eβ(z)+γ(z+2c)+γ(z+c)
− (Q(z) + 1)eβ(z+c)+γ(z+2c)+γ(z)

− eβ(z+2c)+γ(z+c)
−Q(z)eβ(z)+γ(z+c)

− eβ(z+2c)+γ(z)
−Q(z)eβ(z)+γ(z+2c)

+ (Q(z) + 1)eβ(z+c)+γ(z+2c) + (Q(z) + 1)eβ(z+c)+γ(z)
− eγ(z+c)+γ(z)

−Q(z)eγ(z+2c)+γ(z+c) + (Q(z) + 1)eγ(z+2c)+γ(z) + eβ(z+2c)
− (Q(z) + 1)eβ(z+c)

+ Q(z)eβ(z)
− eγ(z+2c) + (Q(z) + 1)eγ(z+c)

−Qeγ(z) = 0.

Rewriting the above equality as

A4(z)eβ(z)+2γ(z) + A3(z)eβ(z)+γ(z) + A2(z)e2γ(z) + A1(z)eβ(z) + A0(z)eγ(z) = 0, (36)

where

A4(z) =eβ(z+2c)−β(z)+γ(z+c)−γ(z) + Q(z)eγ(z+2c)+γ(z+c)−2γ(z)
− (Q(z) + 1)eβ(z+c)−β(z)+γ(z+2c)−γ(z),

A3(z) = − eβ(z+2c)−β(z)+γ(z+c)−γ(z)
−Q(z)eγ(z+c)−γ(z)

− eβ(z+2c)−β(z)
−Q(z)eγ(z+2c)−γ(z)

+ (Q(z) + 1)eβ(z+c)−β(z)+γ(z+2c)−γ(z) + (Q(z) + 1)eβ(z+c)−β(z),

A2(z) = − eγ(z+c)−γ(z)
−Q(z)eγ(z+2c)+γ(z+c)−2γ(z) + (Q(z) + 1)eγ(z+2c)−γ(z), (37)

A1(z) =eβ(z+2c)−β(z)
− (Q(z) + 1)eβ(z+c)−β(z) + Q(z), (38)

A0(z) = − eγ(z+2c)−γ(z) + (Q(z) + 1)eγ(z+c)−γ(z)
−Q(z). (39)

Obviously,{
σ(A4) ≤ max{deg β − 1,degγ − 1}, σ(A3) ≤ max{deg β − 1,degγ − 1},
σ(A2) ≤ degγ − 1, σ(A1) ≤ deg β − 1, σ(A0) ≤ degγ − 1.

That is,

σ(A j) < deg β = degγ, ( j = 0, 1, 2, 3, 4). (40)

Thus, equation (36) can be rewritten as

A4(z)eβ(z)+γ(z) + A3(z)eβ(z) + A2(z)eγ(z) + A1(z)eβ(z)−γ(z) + A0(z) = 0. (41)
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In the following, we divide our proof into four cases.
Case 3.1. deg(β + γ) < degγ. Combining this with deg β = degγ, we get

deg(β − γ) = degγ, deg(β − 2γ) = degγ.

Thus, eβ, eγ, eβ−γ, eβ−2γ are of regular growth order degγ.
Equation (41) shows that

A3(z)eβ(z) + A2(z)eγ(z) + A1(z)eβ(z)−γ(z) + B0(z) = 0, (42)

where

B0(z) = A4(z)eβ(z)+γ(z) + A0(z).

By this and (40), we obtain σ(B0) ≤ max{σ(A4), σ(A0),deg(β + γ)} < degγ = deg β. ThenT(r,A j) = o{T(r, eβ)} = o{T(r, eγ)} = oT(r, eβ−γ) = o{T(r, eβ−2γ)} ( j = 1, 2, 3)

T(r,B0) = o{T(r, eβ)} = o{T(r, eγ)} = o{T(r, eβ−γ)} = o{T(r, eβ−2γ)}

Together with (42) and Lemma 2.3, we have

B0(z) ≡ 0, A j(z) ≡ 0, j = 1, 2, 3.

By A2(z) ≡ 0 and (37), we have

−eγ(z+c)−γ(z)
−Q(z)eγ(z+2c)+γ(z+c)−2γ(z) + (Q(z) + 1)eγ(z+2c)−γ(z)

≡ 0.

or

−Q(z)eγ(z+2c)−γ(z) + (Q(z) + 1)eγ(z+2c)−γ(z+c)
− 1 ≡ 0. (43)

In Case 3.1, we again split two subcases.
Subcase 3.1.1. degγ ≥ 2. Let H(z) = eγ(z+c)−γ(z), then

eγ(z+2c)−γ(z) = eγ(z+2c)−γ(z+c)+γ(z+c)−γ(z) = H(z + c)H(z).

Thus, equation (43) can be written as

−Q(z)H(z + c)H(z) + (Q(z) + 1)H(z + c) − 1 = 0.

For any given meromorphic function w(z), set

P(z,w) = −Q(z)w(z + c)w(z) + (Q(z) + 1)w(z + c) − 1.

Then P(z,H(z)) ≡ 0. Moreover, P(z, 0) = −1 . 0. By this and Lemma 2.7, we have m
(
r, 1

H

)
= S(r,H). But

m
(
r,

1
H

)
= m(r, eγ(z)−γ(z+c)) = T

(
r,

1
H

)
= T(r,H) + O(1).

Thus, T(r,H) = S(r,H), a contradiction.
Subcase 3.1.2. degγ = 1. Let γ(z) = mz + n1, where m , 0,n1 are complex constants. Then γ(z + 2c) −

γ(z + c) = mc, γ(z + 2c) − γ(z) = 2mc. Substituting these into (43), we have

(emc
− 1)(emcQ(z) − 1) = 0.
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Since Q(z) is a nonconstant polynomial, we have emc = 1. Then eγ(z+c) = eγ(z). By deg β = degγ,
deg(β + γ) < deg β, we may assume β(z) = −mz + n2, where n2 is a complex constant. So, eβ(z+c) = eβ(z). By
eβ(z+c) = eβ(z), eγ(z+c) = eγ(z) and (32), we see f (z + c) = f (z). Thus, ∆ f (z) = 0. This contradicts with ∆ f (z) . 0.

Case 3.2. deg(β − γ) < degγ. Equation (41) shows that(
A4(z)eβ−γ

)
e2γ +

(
A3(z)eβ−γ + A2(z)

)
eγ +

(
A1(z)eβ−γ + A0(z)

)
e0 = 0, (44)

By (40), (44), deg(β − γ) < degγ and Lemma 2.3, we obtain

A4(z)eβ−γ ≡ 0, A3(z)eβ−γ + A2(z) ≡ 0, A1(z)eβ−γ + A0(z) ≡ 0.

Substituting (38), (39) and β(z) = α(z) + γ(z) into the last equality A1(z)eβ−γ + A0(z) ≡ 0, we have

eγ(z+2c)−γ(z)
(
eα(z+2c)

− 1
)
− (Q + 1)eγ(z+c)−γ(z)

(
eα(z+c)

− 1
)

+ Q
(
eα(z)
− 1

)
= 0.

That is to say, y(z) = eα(z)
− 1 is a meromorphic solution of equation

eγ(z+2c)−γ(z)y(z + 2c) − (Q + 1)eγ(z+c)−γ(z)y(z + c) + Qy(z) = 0. (45)

Since α cannot be a constant, by deg(β − γ) = degα < degγ, then degγ ≥ 2. Set

γ(z) = akzk + ak−1zk−1 + · · · + a0,

where k ≥ 2 is an integer, ak , 0, ak−1, . . . , a0 are constant. Then

γ(z + 2c) − γ(z) = 2kcakzk−1 + · · · , γ(z + c) − γ(z) = kcakzk−1 + · · · .

By these, we see in the equation (45), the coefficient eγ(z+2c)−γ(z) is of order k−1 with type |2kcak|, the coefficient
−(Q + 1)eγ(z+c)−γ(z) is of order k − 1 with type |kcak|. By these and applying Lemma 2.6 to equation (45), we
have σ(y) ≥ (k − 1) + 1 = k = degγ. But σ(y) = σ(eα − 1) = degα = deg(β − γ) < degγ, a contradiction.

Case 3.3. deg(β − 2γ) < degγ. Equation (41) can be rewritten as

A4(z)eβ(z) + A3(z)eβ(z)−γ(z) + A0(z)e−γ(z) +
(
A2(z) + A1(z)eβ(z)−2γ(z)

)
= 0. (46)

By deg β = degγ and deg(β − 2γ) < degγ, we have deg(β − γ) = deg(β + γ) = degγ. By this and (40), we
have T(r,A j) = o{T(r, eβ)} = o{T(r, eγ)} = o{T(r, eβ−γ)} = o{T(r, eβ+γ)} ( j = 0, 3, 4)

T(r,A2 + A1eβ−2γ) = o{T(r, eβ)} = o{T(r, eγ)} = o{T(r, eβ−γ)} = o{T(r, eβ+γ)}.

Combining this with (46) and Lemma 2.3, it follows

A4(z) ≡ 0, A3(z) ≡ 0, A0(z) ≡ 0, A2(z) + A1(z)eβ(z)−2γ(z)
≡ 0.

By A0(z) ≡ 0 and (39), we have

−eγ(z+2c)−γ(z) + (Q(z) + 1)eγ(z+c)−γ(z)
−Q(z) ≡ 0. (47)

If degγ ≥ 2, then deg(γ(z + 2c) − γ(z)) = deg(γ(z + c) − γ(z)) = degγ − 1 ≥ 1. Set H(z) = eγ(z+c)−γ(z), then
eγ(z+2c)−γ(z) = H(z + c)H(z). Equation (47) can be written as

−H(z + c)H(z) + (Q(z) + 1)H(z) −Q(z) = 0.

For any given meromorphic function w(z), set

P(z,w) = −w(z + c)w(z) + (Q(z) + 1)w(z) −Q(z).
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Hence, P(z,H(z)) = 0. It is easy to see P(z, 0) = −Q(z) . 0, by this and Lemma 2.7, we have m
(
r, 1

H

)
= S(r,H).

Thus, N
(
r, 1

H

)
= T(r,H) + S(r,H). But N

(
r, 1

H

)
= N

(
r, 1

eγ(z+c)−γ(z)

)
= 0, a contradiction.

If degγ = 1, let γ(z) = mz + n1, where m , 0,n1 are constants. Hence, γ(z + 2c) − γ(z) = 2mc,
γ(z + c) − γ(z) = mc, substituting these into (47), we get

(emc
− 1)(Q(z) − emc) = 0.

Thus, emc = 1. So, eγ(z+c) = eγ(z).
By deg(β − 2γ) < deg β = degγ, we may assume β(z) = 2mz + n2, where n2 is a constant. Then

eβ(z+c) = e2mz+2mc+n2 = e2mz+n2 = eβ(z). By eβ(z+c) = eβ(z), eγ(z+c) = eγ(z) and (32), we see f (z + c) = f (z). Then
∆ f (z) ≡ 0, a contradiction again.

Case 3.4. deg(β + γ) = deg(β − γ) = deg(β − 2γ) = degγ. By this and (40), for j = 0, 1, 2, 3, 4, we have

T(r,A j) = o{T(r, eβ)} = o{T(r, eγ)} = o{T(r, eβ−γ)} = o{T(r, eβ+γ)} = o{T(r, eβ−2γ)}.

Combining this with Lemma 2.3, we have

A j(z) ≡ 0, j = 0, 1, 2, 3, 4.

By A2(z) ≡ 0 and (37), we also obtain (43).
If degγ ≥ 2, using the same method as the above Case 3.1.1, we get a contradiction.
If degγ = 1, then deg β = degγ = 1. Let γ(z) = mz + n1, β(z) = nz + n2, where m , 0,n , 0,n1,n2 are

complex constants. Then γ(z + 2c) − γ(z + c) = mc, γ(z + 2c) − γ(z) = 2mc. Substituting these into (43), we
have

(emc
− 1)(emcQ(z) − 1) = 0.

Since Q(z) is a nonconstant polynomial, we have emc = 1. Then eγ(z+c) = eγ(z).
By A1(z) ≡ 0, (38) and β(z + 2c) − β(z) = 2nc, β(z + c) − β(z) = nc, we have

(enc
− 1)(enc

−Q(z)) = 0.

Since Q(z) is a nonconstant polynomial, we have enc = 1. Then eβ(z+c) = eβ(z). By eβ(z+c) = eβ(z), eγ(z+c) = eγ(z)

and (32), we see f (z + c) = f (z). Then ∆ f (z) ≡ 0, a contradiction.
(ii) We second support that ∆ f (z) ≡ 0. By checking the proof of Theorem 1.4 (i), we also obtain (30)–

(34). Thus, we deduce from (34) and ∆ f (z) ≡ 0 that emc = 1, and mc = 2k1πi for some nonzero integer k1.
Therefore, we obtain from (31), β(z) = mz and f (z) = Aemz + B that

1(z) =
(b + A) f − b(A + B)

f − B
= L( f ),

where L( f ) is a Möbius transformation of f . Thus, (ii) holds.
(iii) We third support that ∆ f (z) ≡ 0. By checking the proof of subcase 3.1.2, Case 3.3 and Case 3.4 in

the Theorem 1.4 (i), we see γ(z) = mz + n1, β(z) = nz + n2, where mc = 2k1πi,nc = 2k2πi for some nonzero
integer k1, k2. Substituting γ(z) = mz + n1, β(z) = nz + n2 into (33), we have

f (z) = a + (b − a)
enz+n2 − 1
emz+n1 − 1

= a + (b − a)
Aenz

− 1
Bemz − 1

, (48)

where A = en2 ,B = en1 are nonzero constants, and n
m = k1

k2
is a rational number. Substituting (48), β(z) = nz+n2

into (31), we have

1 = b +
(b − a)

A
A − Be(m−n)z

Bemz − 1
.

By α(z) = β(z) − γ(z) cannot be a constant, we see n
m , 1. Thus, (iii) holds.
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