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Abstract. Multisplitting methods are useful to solve differential-algebraic equations. In this connection,
we discuss the theory of matrix splittings and multisplittings, which can be used for finding the iterative
solution of a large class of rectangular (singular) linear system of equations of the form Ax = b. In
this direction, many convergence results are proposed for different subclasses of proper splittings in the
literature. But, in some practical cases, the convergence speed of the iterative scheme is very slow. To
overcome this issue, several comparison results are obtained for different subclasses of proper splittings.
This paper also presents a few such results. However, this idea fails to accelerate the speed of the iterative
scheme in finding the iterative solution. In this regard, Climent and Perea [J. Comput. Appl. Math. 158
(2003), 43-48: MR2013603] introduced the notion of proper multisplittings to solve the system Ax = b on
parallel and vector machines, and established convergence theory for a subclass of proper multisplittings.
With the aim to extend the convergence theory of proper multisplittings, this paper further adds a few
results. Some of the results obtained in this paper are even new for the iterative theory of nonsingular
linear systems.

1. Introduction

1.1. Background and motivation
Mathematical methods like simulations of the power systems, constrained mechanical systems, sin-

gular perturbations are based on combination of differential and algebraic equations (see [3] for more
details). Geiser [14] very recently used waveform-relaxation methods and multisplitting methods to solve
differential-algebraic equations. Multisplitting methods have their benefits in parallelizing their procedure.
Motivated by the recent use of multisplitting methods, we discuss the theory of matrix splittings and
multisplittings in a more general setting.

Historically, much of the progress in the iterative methods for finding the least squares solution of
minimum norm of the rectangular system of linear equations of the form

Ax = b, (1)

2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F15, 65F20
Keywords. Moore-Penrose inverse; Proper splitting; Multisplitting; Non-negativity; Convergence theorem; Comparison theorem.
Received: 16 January 2019; Revised: 08 May 2019; Accepted: 26 April 2020
Communicated by Predrag Stanimirović
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where A ∈ Rm×n and b ∈ Rm has been driven by the notion of proper splitting A = U−V which is introduced
by Berman and Plemmons [6] and states that a splitting A = U − V of A ∈ Rm×n is called a proper splitting
if R(U) = R(A) and N(U) = N(A), where R(A) and N(A) denote the range space and the null space of A,
respectively. Berman and Neumann [5] first gave a method construction of proper splittings. Different
methods for constructing such splittings are also reported in [28] and [25]. Very recently, Mishra and Mishra
[22] showed the uniqueness of a proper splitting under different sufficient conditions. Different extensions
of proper splitings can be found in the articles [13] and [29]. The authors of [6] proved that the iterative
scheme:

xk+1 = U†Vxk + U†b, k = 0, 1, 2, . . . (2)

converges to A†b, the least squares solution of minimum norm for a proper splitting A = U−V, for any initial
vector x0 if and only if ρ(U†V) < 1 (see Corollary 1, [6]). Here ρ(A) denotes the spectral radius of a matrix
A ∈ Rn×n. The above iterative scheme is said to be convergent if the spectral radius of the iteration matrix
U†V is strictly less than 1. The advantage of the iterative technique for computing the least squares solution
of the rectangular system of linear equations is that it avoids the use of the normal system ATAx = ATb,
where ATA is frequently ill-conditioned and influenced greatly by roundoff errors (see [19]). Such systems
appear in deconvolution problems with a smooth kernel. Singular linear systems also appear in problems
like the finite difference representation of Neumann problems.

1.2. Statement of Results
Improving the speed of the iterative scheme (2) is one of the challenging and interesting problems. In

this context, many authors presented many comparison results. However, comparison results are not that
much advantageous if a matrix has many matrix splittings as one can compare two matrix splittings at a
time. To get rid of this problem, O’leary and White [26] introduced the theory of multisplittings. The triplet
(Ul,Vl,El)

p
l=1 is called a multisplitting of A ∈ Rn×n if

(i) A = Ul − Vl, for each l = 1, 2, . . . , p, where each Ul is invertible,
(ii)

∑p
l=1 El = I, where the matrices El are diagonal and El ≥ 0.

(B ≥ 0 (B > 0) means all entries of the matrix B are non-negative (positive).) A multisplitting is called as a
weak regular multisplitting of type I or type II if each A = Ul −Vl is a weak regular splitting of type I or type II,
respectively. Then, they [26] showed that the iterative scheme:

xk+1 = Hxk + Gb, k = 0, 1, 2, . . . , (3)

where H =
∑p

l=1 ElU−1
l Vl and G =

∑p
l=1 ElU−1

l , is convergent if (Ul,Vl,El)
p
l=1 is a weak regular multisplitting

of type I and A is monotone. (A ∈ Rn×n is called monotone if Ax ≥ 0 ⇒ x ≥ 0.) The book by Collatz [12] has
details of how monotone matrices arise naturally in the study of finite difference approximation methods
for certain elliptic partial differential equations. He also showed that A is monotone if and only if A−1 exists
and A−1

≥ 0. Later on, Climent and Perea [10] extended the same theory for weak regular multisplitting of
type II. In particular, they obtained the following result (which is a part of Theorem 3.2, [10]) among others.

Theorem 1.1 ([10]). Let (Ul,Vl,El)
p
l=1 be a weak regular multisplitting of type II of A ∈ Rn×n with ElA = AEl, for

each l = 1, 2, . . . , p. If A is monotone, then ρ(H) < 1.

The notion of multisplittings for rectangular and singular matrices was first put forth in [11] by Climent
and Perea. It was then carried forward by Baliarsingh and Jena [1] and Giri and Mishra [16]. A drawback
of the multisplitting theory discussed in [1], [11] and [16] is that it works only for proper weak regular
splittings of type I (see Section 2 for its definition). The authors did not address the problem of convergence
when the matrix A does not have a matrix splitting of the above type.

1.3. Objective
The main objective of this paper is to short out the above-discussed issue. This can be done by showing

that how the results involving weak regular multisplittings of type II in [10] can be extended to the case
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of the Moore-Penrose inverse. By doing so, we not only can expand convergence theory of multisplittings
for rectangular/singular matrices but also can have a new characterization of an extension of a monotone
matrix. Besides these, we prove a few new comparison results for matrix splittings even for nonsingular
matrix case. In addition to these results, some new results on multisplittings theory are established.

1.4. Outline

The rest of the paper is broken down as follows. In Section 2, we define mathematical constructs
including non-negative matrices, Moore-Penrose inverse and proper splittings which are required to state
and prove the results in the subsequent sections. In Section 3, we prove several convergence and comparison
results of proper weak regular splittings of different types. Section 4 discusses a few applications of these
results to multisplitting theory of rectangular matrices. Finally, we end up with a conclusion section.

2. Preliminaries

This section contains basic constructs required to prove our main results. We begin with the notation
Rm×n which represents the set of all real matrices of order m×n. We denote the transpose of A ∈ Rm×n by AT.
Let r(A) and n(A) stand for the rank and nullity of a matrix A, respectively. Let L and M be complementary
subspaces of Rn, and PL,M be a projection onto L along M. Then PL,MA = A if and only if R(A) ⊆ L, and
APL,M = A if and only if N(A) ⊇ M. Two vectors x and y in Rn are orthogonal (perpendicular) if the angle
between them is a right angle. It is denoted by x ⊥ y. By L ⊥ M, we mean every vector in L is orthogonal
to every vector in M. In the case of L ⊥M, PL,M will be denoted by PL for notational simplicity. σ(A) stands
for the set of all eigenvalues of A ∈ Rn×n. It is well-known that ρ(AB) = ρ(BA) for any two matrices A and
B of appropriate order such that the products AB and BA are defined.

2.1. Non-negative matrices

A ∈ Rm×n is called non-negative if A ≥ 0. Let B,C ∈ Rm×n. We write B ≥ C if B − C ≥ 0. The next results
deal with non-negativity of a matrix and the spectral radius.

Theorem 2.1 (Theorem 2.20, [30]). Let B ∈ Rn×n and B ≥ 0. Then
(i) B has a non-negative real eigenvalue equal to its spectral radius.
(ii) There exists a non-negative eigenvector for its spectral radius.

Theorem 2.2 (Theorem 2.1.11, [8]). Let B ∈ Rn×n, B ≥ 0, x ≥ 0 (x , 0) and α be a positive scalar.
(i) If αx ≤ Bx, then α ≤ ρ(B). Moreover, if Bx > αx, then ρ(B) > α.
(ii) If Bx ≤ αx, x > 0, then ρ(B) ≤ α.

2.2. Moore-Penrose inverse

For A ∈ Rm×n, the unique matrix Z ∈ Rn×m satisfying the following four equations known as Penrose
equations:

AZA = A, ZAZ = Z, (AZ)T = AZ and (ZA)T = ZA

is called the Moore-Penrose inverse of A. It always exists, and is denoted by A†. Certainly, when the matrix
A is nonsingular, then A† = A−1. A matrix A ∈ Rm×n is said to be semi-monotone if A† ≥ 0 (see [8]). Different
characterizations of the notion of semi-monotonicity can be found in [7] and [25]. The following properties
of A† will be frequently used in the proofs of the next section: R(AT) = R(A†); N(AT) = N(A†); AA† =
PR(A) and A†A = PR(AT). For the historical note and for a detailed study of generalized inverses and its
applications, one is referred to the excellent book [4]. Next result of this subsection characterizes the
“reverse order law” for the Moore-Penrose inverse.

Theorem 2.3 (Theorem 1, [20]). Let K and L be arbitrary matrices such that KL is defined. Then (KL)† = L†K† if
and only if K†KLLTKT = LLTKT and LL†KTKL = KTKL.
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A few properties of proper splittings are summarized in the following theorem.

Theorem 2.4 (Theorem 1, [6]). Let A = U − V be a proper splitting of A ∈ Rm×n. Then
(i) A = U(I −U†V),
(ii) I −U†V is invertible,
(iii) A† = (I −U†V)−1U†.

Similarly, we have A = (I − VU†)U,A† = U†(I − VU†)−1 (see Theorem 1, [9]), and U†VA† = A†VU† (see
Theorem 2.2 (f), [24]).

3. Main Results

In this section, we will discuss comparison results for proper weak regular splittings of different types
and proper weak splittings of different types.

3.1. Comparison of proper weak regular splittings of different types

We begin with the definitions of proper weak regular splittings of type I and type II. Then convergence
results are recalled before proving a comparison result for two different linear systems.

Definition 3.1. A proper splitting A = U − V of A ∈ Rm×n is called a
(i) proper weak regular splitting of type I if U† ≥ 0 and U†V ≥ 0 (Definition 1.2, [21])
(ii) proper weak regular splitting of type II if U† ≥ 0 and VU† ≥ 0 (Definition 3.5, [15]).

The convergence results for a proper weak regular splittings of above types are combined (see Corollary
4, [6] and Theorem 3.7, [15]), and is stated below.

Theorem 3.2. Let A = U −V be any of the above type of proper splittings. Then, A† ≥ 0 if and only if ρ(U†V) < 1.

Once the convergence criteria are fixed for a given class of splittings, we face another problem, i.e.,
which splitting one should pick if two or more splittings of the same class are known. This is again settled
by many authors in the literature by the introduction of several comparison results. These results usually
compare the spectral radius of each of the iteration matrix formed by two different splittings of the same
class. The splitting which leads to the iteration matrix having the smaller spectral radius is preferred most.
The major drawback of this theory is that it can compare only two splittings of the same class or even
different class at a time. When a matrix has more splittings, it consumes more time for comparison. We
discuss proper multisplitting theory in this paper which may avoid the above issue as well as give the
iterative solution in a faster way. The next result deals with the rate of convergence of proper weak regular
splittings of different types of two different matrices. The proof of the result is routine, therefore we omit it.

Theorem 3.3. Let A1 = U1 −V1 and A2 = U2 −V2 be two proper weak regular splittings of different types of semi-
monotone matrices A1 ∈ Rm×n and A2 ∈ Rm×n such that A†2 − A†1 ≥ 0. If U†1 ≥ U†2, then ρ(U†1V1) ≤ ρ(U†2V2) < 1.

Corollary 3.4. Let A1 = U1 − V1 and A2 = U2 − V2 be two weak regular splittings of different types of monotone
matrices A1 ∈ Rn×n and A2 ∈ Rn×n such that A−1

2 − A−1
1 ≥ 0. If U−1

1 ≥ U−1
2 , then ρ(U−1

1 V1) ≤ ρ(U−1
2 V2) < 1.

3.2. Comparison of proper weak splittings of different types

Here we discuss comparison results of a more general class of matrices than the previous two mentioned
in the last subsection. We next reproduce the same definitions along with their convergence criteria.

Definition 3.5. A proper splitting A = U − V of A ∈ Rm×n is called a
(i) proper weak splitting of type I if U†V ≥ 0 (Definition 3.1, [23] & [18])
(ii) proper weak splitting of type II if VU† ≥ 0 (Definition 3.14, [2] & [18]).
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Lemma 3.6. (i) Let A = U − V be a proper weak splitting of type I of A ∈ Rm×n and A†U ≥ 0. Then ρ(U†V) =
ρ(A†U) − 1
ρ(A†U)

< 1. (Lemma 3.4, [23])

(ii) Let A = U − V be a proper weak splitting of type I (or type II) of A ∈ Rm×n. Then A†V (or VA†) ≥ 0 if and only

if ρ(U†V) =
ρ(A†V)

1 + ρ(A†V)
< 1. (Lemma 3.5, [23] & Remark 2, [9])

We begin with an example which points out a mistake in the proof of Theorem 3.15, [2] and is then rectified.
Before that, we first recall the same result below.

Theorem 3.7 (Theorem 3.15, [2]). Let A1,A2 ∈ Rm×n. Let A1 = U1 − V1 be a proper weak splitting of type II and
0 , A2 = U2 − V2 be a proper weak splitting of type I . Suppose that A1 and A2 are semi-monotone matrices and
A†1 ≥ A†2. If A†2V2 ≥ 0 and U†1 −U†2 ≥ A†1 − A†2, then ρ(U†1V1) ≤ ρ(U†2V2) < 1.

We remark that in the proof of Theorem 3.15, [2] the irreducibility of matrices εJA†2+V1U†1 and εA†1 J+U†2V2
with ε > 0 is not very obvious. By a simple example, we show that this assertion is incorrect.

Example 3.8. Let A =

(
6 −2 0
−3 4 0

)
. Then for U =

(
7 −1 0
−3 4 0

)
, we have A = U − V is a proper

weak splitting of both type I and type II. Let J =

(
1 1 1
1 1 1

)
. Then for ε = 0.001, we have εA† J + U†V = 0.1603 0.1603 0.0003

0.1205 0.1205 0.0005
0 0 0

 which is reducible.

A modified proof of Theorem 3.15, [2] is presented below.

Theorem 3.9. Let A1,A2 ∈ Rm×n. Let A1 = U1 − V1 be a proper weak splitting of type II and 0 , A2 = U2 − V2 be
a proper weak splitting of type I . Suppose that A1 and A2 are semi-monotone matrices and A†1 ≥ A†2. If A†2V2 ≥ 0
and U†1 −U†2 ≥ A†1 − A†2, then ρ(U†1V1) ≤ ρ(U†2V2) < 1.

Proof. By Lemma 3.6, we have ρ(U†2V2) < 1 as A2 = U2−V2 is a proper weak splitting of type I and A†2V2 ≥ 0.
Using the condition U†1 −U†2 ≥ A†1 − A†2, we obtain

U†2V2A†2 = U†2(U2 − A2)A†2
= U†2U2A†2 −U†2A2A†2
= A†2 −U†2
≥ A†1 −U†1
= U†1(U1 − A1)A†1
= U†1V1A†1.

Since A†1 ≥ A†2, we get U†2V2A†1 ≥ U†2V2A†2. By using the above inequality we thus have

U†2V2A†1 ≥ U†1V1A†1 = A†1V1U†1. (4)

Also V1U†1 ≥ 0. So, there exists an eigenvector x ≥ 0 such that V1U†1x = ρ(V1U†1)x by Theorem 2.1. Hence,
x ∈ R(V1) ⊆ R(A1). Now, post-multiplying (4) by x, we get

U†2V2A†1x ≥ ρ(V1U†1)A†1x

which implies that ρ(U†1V1) ≤ ρ(U†2V2) < 1 by Theorem 2.2. Note that A†1x ≥ 0 and A†1x , 0. Otherwise
x ∈ R(A1) ∩N(AT

1 ), a contradiction.
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We again remark that Example 3.17, [2] is also presented in an incorrect form. In the same example,
considered splittings are not proper weak splittings of both types. The example given below is a replacement
of the same one.

Example 3.10. Let A1 =

(
−3 6 −3
6 −3 6

)
=

(
−5 10 −5
8 −4 8

)
−

(
−2 4 −2
2 −1 2

)
= U1 − V1. We have A†1 = 0.0556 0.1111

0.2222 0.1111
0.0556 0.1111

 . Let A2 =

(
−2 6 −2
6 −2 6

)
=

(
−3 12 −3
12 −3 12

)
−

(
−1 6 −1
6 −1 6

)
= U2 − V2. Then

A†2 =

 0.0313 0.0938
0.1875 0.0625
0.0312 0.0938

, A†1 − A†2 =

 0.0243 0.0174
0.0347 0.0486
0.0243 0.0174

 and U†1 − U†2 =

 0.0222 0.0389
0.0444 0.0611
0.0222 0.0389

 . Here, we have

A1 = U1 − V1 is a proper weak splitting of type II and A2 = U2 − V2 is a proper weak splittings of type I. We also
have ρ(U†1V1) = 0.4000 ≤ 0.5556 = ρ(U†2V2) < 1, but U†1 −U†2 � A†1 − A†2.

The next result drops one additional sufficient condition in Theorem 3.13, [15] that deals with the
comparison of spectral radii of the iteration matrices of the above two types of splittings.

Theorem 3.11. Let A = U1 − V1 be a proper weak splitting of type I and A = U2 − V2 be a proper weak regular
splitting of type II of a semi-monotone matrix A ∈ Rm×n. If U†1 ≥ U†2, then ρ(U†1V1) ≤ ρ(U†2V2) < 1.

Proof. By Theorem 3.2, it follows that ρ(U†1V1) < 1 and ρ(U†2V2) < 1. It remains to show that ρ(U†1V1) ≤
ρ(U†2V2). Since U†1V1 ≥ 0, there exists an eigenvector x ≥ 0 such that xTU†1V1 = ρ(U†1V1)xT. Hence,
x ∈ R(VT

1 ) ⊆ R(AT). The condition U†1 ≥ U†2 yields

(I −U†1V1)A† ≥ A†(I − V2U†2),

i.e.,

U†1V1A† ≤ A†V2U†2. (5)

Pre-multiplying (5) by xT gives
ρ(U†1V1)xTA† ≤ xTA†V2U†2.

Clearly, xTA† ≥ 0 and xTA† , 0. Otherwise x ∈ R(AT) ∩ N(A), a contradiction. Thus, by Theorem 2.2 (i),
ρ(U†1V1) ≤ ρ(U†2V2). This completes the proof.

The following is an immediate consequence of the above theorem when nonsingular matrices are
considered.

Corollary 3.12. (Theorem 3.7, [31]) Let A = U1−V1 be a weak splitting of type I and A = U2−V2 be a weak regular
splitting of type II of a monotone matrix A ∈ Rn×n. If U−1

1 ≥ U−1
2 , then ρ(U−1

1 V1) ≤ ρ(U−1
2 V2) < 1.

The next three results talk about the comparison of proper weak splittings of type I in different situations.

Theorem 3.13. Let A = U1 − V1 = U2 − V2 be two proper weak splittings of type I of A ∈ Rm×n. Let P,Q ∈ Rm×n

such that R(A) = R(P) = R(Q) and N(A) = N(P) = N(Q). Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1

provided the following conditions hold:
(a) A†U1 ≥ 0, PA†U1P† ≥ 0, A†U2 ≥ 0, QA†U2Q† ≥ 0.
(b) There exist integers i ≥ 0 and j ≥ 1 such that

P(A†U1) jP†Q(A†U2)iQ† ≤ Q(A†U2)i+ jQ† (6)

or

Q(A†U2)iQ†P(A†U1) jP† ≤ Q(A†U2)i+ jQ†. (7)
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Proof. Assume that (6) is true. Since PA†U1P† ≥ 0, there exists an eigenvector x ≥ 0 such that

xTPA†U1P† = ρ(PA†U1P†)xT = ρ(A†U1P†P)xT = ρ(A†U1)xT

by Theorem 2.1. From the above expression, we get x ∈ R(A). Pre-multiplying (6) by xT, we obtain

[ρ(A†U1)] jxTQ(A†U2)iQ† ≤ xTQ(A†U2)i+ jQ†,

i.e.,
[ρ(A†U1)] jyT

≤ yTQ(A†U2) jQ†,

where yT = xTQ(A†U2)iQ†. Clearly, yT
≥ 0 and yT , 0. Otherwise 0 = yT = xTQ(A†U2)iQ†. Post-

multiplying Q, we obtain 0 = xTQ(A†U2)i−1A†U2Q†Q = xTQ(A†U2)i−1A†U2. Post-multiplying U†2, we
have 0 = xTQ(A†U2)i−1A†U2U†2 = xTQ(A†U2)i−1A†. Repeating the above process, we get 0 = xTQA†.
Post-multiplying A, we get 0 = xTQ. Finally, post-multiplying Q† and taking the transpose, we have
0 = x = QQ†x and is a contradiction. Hence, by Theorem 2.2, we obtain [ρ(A†U1)] j

≤ [ρ(A†U2)] j, i.e.,
ρ(A†U1) ≤ ρ(A†U2). By Lemma 3.6 the required inequality holds. When (7) is true, one can similarly prove
the required inequality.

The following example illustrates the above theorem.

Example 3.14. Let A = U1 − V1 = U2 − V2 be proper weak splittings of type I, with A =

5 2
3 8
1 2

, U1 =

25 16
15 30
5 8

,
V1 =

20 14
12 22
4 6

, U2 =

56 10
54 40
16 10

 and V2 =

51 8
51 32
15 8

. Let P =

80 64
65 86
20 24

 and Q =

29 19
31 −9
9 −1

. Then R(A) =

R(P) = R(Q) and N(A) = N(P) = N(Q). We have A†U1 =

[
5 2
0 3

]
≥ 0, A†U2 =

[
10 0
3 5

]
≥ 0, PA†U1P† =4.2092 0.8366 0.4444

0.9512 3.5547 0.8924
0.4714 0.8856 0.2361

 ≥ 0 and QA†U2Q† =

7.0565 4.1859 1.4
1.2481 7.4324 1.8222
0.7088 1.9950 0.5111

 ≥ 0. Also, for i = 0 and j = 1, we have

P(A†U1) jP†Q(A†U2)iQ† =

4.2090 0.8361 0.4465
0.9511 3.5545 0.8934
0.4714 0.8855 0.2365

 ≤
7.0565 4.1859 1.4
1.2481 7.4324 1.8222
0.7088 1.9950 0.5111

 = Q(A†U2)i+ jQ†. Therefore

ρ(U†1V1) = 0.8 ≤ 0.9 = ρ(U†2V2) < 1.

Theorem 3.15. Let A = U1 − V1 = U2 − V2 be two proper weak splittings of type I of A ∈ Rm×n. Let P,Q ∈ Rm×n

such that R(A) = R(P) = R(Q) and N(A) = N(P) = N(Q). Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1

provided the following conditions hold:
(a) A†V1 ≥ 0, PA†V1P† ≥ 0, A†V2 ≥ 0, QA†V2Q† ≥ 0 and is irreducible.
(b) There exist integers i ≥ 0 and j ≥ 1 such that

P(A†V1) jP†Q(A†V2)iQ† ≤ Q(A†V2)i+ jQ† (8)

or

Q(A†V2)iQ†P(A†V1) jP† ≤ Q(A†V2)i+ jQ†. (9)

Proof. Assume that (8) is true. Since QA†V2Q† ≥ 0 and is irreducible, there exists an eigenvector z > 0 such
that QA†V2Q†z = ρ(A†V2)z by Theorem 2.7, [30]. Post-multiplying (8) by z, we obtain

[ρ(A†V2)]iP(A†V1) jP†z ≤ [ρ(A†V2)]i+ jz, i.e., P(A†V1) jP†z ≤ [ρ(A†V2)] jz.

Hence, by Theorem 2.2, we have ρ(P(A†V1) jP†) = [ρ(A†V1)] j
≤ [ρ(A†V2)] j, i.e., ρ(A†V1) ≤ ρ(A†V2). By

Lemma 3.6 (ii), the required inequality holds. The proof is similar in the case of the assumption (9).
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The example given below demonstrates the above theorem.

Example 3.16. Let A = U1 − V1 = U2 − V2 be proper weak splittings of type I, with

A =

 4 −3
−5 6
4 −3

, U1 =

 8 −6
−10 12

8 −6

, V1 =

 4 −3
−5 6
4 −3

, U2 =

 8 −12
−10 24

8 −12

 and V2 =

 4 −9
−5 18
4 −09

. Let P =

−2 5
7 −4
−2 5


and Q =

−5 1.4
13 0.5
−5 1.4

. Then R(A) = R(P) = R(Q) and N(A) = N(P) = N(Q). We have A†V1 =

[
1 0
0 1

]
≥ 0,

A†V2 =

[
1 0
0 3

]
≥ 0, PA†V1P† =

0.5 0 0.5
0 1 0

0.5 0 0.5

 ≥ 0 and QA†V2Q† =

1.3792 0.6763 1.3792
0.3140 1.2415 0.3140
1.3792 0.6763 1.3792

 ≥ 0. Also, for

i = 0 and j = 1, we have Q(A†V2)iQ†P(A†V1) jP† =

0.5 0 0.5
0 1 0

0.5 0 0.5

 ≤
1.3792 0.6763 1.3792
0.3140 1.2415 0.3140
1.3792 0.6763 1.3792

 = Q(A†V2)i+ jQ†.

Therefore ρ(U†1V1) = 0.5 ≤ 0.75 = ρ(U†2V2) < 1.

Theorem 3.17. Let A = U1 − V1 = U2 − V2 be two proper weak splittings of type I of A ∈ Rm×n. Let P,Q ∈ Rm×n

such that R(A) = R(P) = R(Q) and N(A) = N(P) = N(Q).
Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1

provided that the following conditions hold:
(a) A†U1 ≥ 0, PA†U1P† ≥ 0, A†U2 ≥ 0, QA†U2Q† ≥ 0.
(b) There exist integers i ≥ 0 and j ≥ 1 such that

P(A†U1)i+ jP† ≤ P(A†U1)iP†Q(A†U2) jQ† (10)

or

P(A†U1)i+ jP† ≤ Q(A†U2) jQ†P(A†U1)iP†. (11)

Proof. Assume that (a) and (10) hold. By Lemma 3.6, ρ(U†i Vi) < 1 for i = 1, 2. Again, by Theorem 2.1, there
exists an eigenvector x ≥ 0 such that xTPA†U1P† = ρ(PA†U1P†)xT = ρ(A†U1)xT. Pre-multiplying (10) by xT,
we obtain

[ρ(A†U1)]i+ jxT
≤ [ρ(A†U1)]ixTQ(A†U2) jQ†, i.e., [ρ(A†U1)] jxT

≤ xTQ(A†U2) jQ†.

Hence, by Theorem 2.2, we obtain [ρ(A†U1)] j
≤ [ρ(A†U2)] j, i.e., ρ(A†U1) ≤ ρ(A†U2). By Lemma 3.6 (i), we

have the required inequality. The proof with the hypothesis of the other condition goes parallel.

The following example illustrates the above theorem.

Example 3.18. Let A = U1−V1 = U2−V2 be proper weak splittings of type I, with A =

 1 2
−1 5
1 2

, U1 =

 2.2 11
−1.5 24
2.2 11

,
V1 =

 1.2 9
−0.5 19
1.2 9

, U2 =

 11 30
−11 75
11 30

 and V2 =

 10 28
−10 70
10 28

. Let P =

 1 4
−1 10
1 4

 and Q =

 2 6
−2 15
2 6

. Then R(A) =

R(P) = R(Q) and N(A) = N(P) = N(Q). We have A†U1 =

[
2 1

0.1 5

]
≥ 0, A†U2 =

[
11 0
0 15

]
≥ 0, PA†U1P† =1.6071 0.8143 1.6071

1.3929 3.7857 1.3929
1.6071 0.8143 1.6071

 ≥ 0 and QA†U2Q† =

6.0714 1.1429 6.0714
1.4286 13.8571 1.4286
6.0714 1.1429 6.0714

 ≥ 0. Also, for i = 0 and j = 1,
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we have P(A†U1)i+ jP† =

1.6071 0.8143 1.6071
1.3929 3.7857 1.3929
1.6071 0.8143 1.6071

 ≤
6.0714 1.1429 6.0714
1.4286 13.8571 1.4286
6.0714 1.1429 6.0714

 = P(A†U1)iP†Q(A†U2) jQ†.

Therefore ρ(U†1V1) = 0.8013 ≤ 0.9333 = ρ(U†2V2).

The next result can be proved analogously.

Theorem 3.19. Let A = U1 − V1 = U2 − V2 be two proper weak splittings of type I of A ∈ Rm×n. Let P,Q ∈ Rm×n

such that R(A) = R(P) = R(Q) and N(A) = N(P) = N(Q). Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1

provided the following conditions hold:
(a) A†V1 ≥ 0, PA†V1P† ≥ 0, A†V2 ≥ 0, QA†V2Q† ≥ 0.
(b) There exist integers i ≥ 0 and j ≥ 1 such that

P(A†V1)i+ jP† ≤ P(A†V1)iP†Q(A†V2) jQ†

or

P(A†V1)i+ jP† ≤ Q(A†V2) jQ†P(A†V1)iP†.

The following example illustrates the above theorem.

Example 3.20. Let A = U1 − V1 = U2 − V2 be proper weak splittings of type I, with A =

3 −1
2 3
4 5

, U1 =

 9 2
6 5

12 9

,
V1 =

6 3
4 2
8 4

, U2 =

14 4
13 10
25 18

 and V2 =

11 5
11 7
21 13

. Let P =

−3 1
−2 −3
−4 −5

 and Q =

−6 2
−4 −6
−8 −10

. Then R(A) =

R(P) = R(Q) and N(A) = N(P) = N(Q). We have A†V1 =

[
2 1
0 0

]
≥ 0, A†V2 =

[
4 2
1 1

]
≥ 0, PA†V1P† =0.9753 0.2654 0.6358

0.6502 0.1770 0.4239
1.3004 0.3539 0.8477

 ≥ 0 and QA†V2Q† =

1.8889 0.4444 1.1111
1.4856 0.6132 1.3292
2.9095 1.1399 2.4979

 ≥ 0. Also, for i = 0 and j = 1, we have

P(A†V1)i+ jP† =

0.9753 0.2654 0.6358
0.6502 0.1770 0.4239
1.3004 0.3539 0.8477

 ≤
1.8889 0.4444 1.1111
1.4856 0.6132 1.3292
2.9095 1.1399 2.4979

 = Q(A†V2) jQ†P(A†V1)iP†. Therefore

ρ(U†1V1) = 0.6667 ≤ 0.8202 = ρ(U†2V2).

4. Applications to Proper Multisplitting Theory

In this section, we first recall the theory of proper multisplittings [11], and then using convergence and
comparison results introduced in Section 3 for a single splitting as a tool, we introduce convergence and
comparison results for proper multisplittings. The definition of a proper multisplitting of a rectangular
matrix introduced by Climent and Perea [11] is as follows:

Definition 4.1 (Definition 2, [11]). The triplet (Ul,Vl,El)
p
l=1 is a proper multisplitting of A ∈ Rm×n if

(i) A = Ul − Vl is a proper splitting, for each l = 1, 2, . . . , p,

(ii) El ≥ 0, for each l = 1, 2, . . . , p is a diagonal n × n matrix, and
p∑

l=1

El = I, where I is the n × n identity matrix.
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We say a proper multisplitting, a proper weak regular multisplitting of type I or a proper weak regular
multisplitting of type II, if each one of the proper splitting A = Ul − Vl is a proper weak regular splitting of
type I or type II, respectively. Climent and Perea [11] considered the following parallel iterative scheme:

xk+1 = Hxk + Gb, k = 1, 2, . . . , (12)

where (Ul,Vl,El)
p
l=1 is a proper multisplitting of A ∈ Rm×n, H =

p∑
l=1

ElU†l Vl and G =

p∑
l=1

ElU†l . The same

authors [11] obtained the following result for a proper weak regular multisplitting of type I.

Lemma 4.2 (Lemma 1, [11]). Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type I of A ∈ Rm×n with

H =

p∑
l=1

ElU†l Vl. Then

(i) H ≥ 0 and therefore H j
≥ 0, for j = 0, 1, . . .,

(ii)
p∑

l=1

ElU†l A = GA = (I −H)A†A,

(iii) (I + H + H2 + · · · + Hn)(I −H) = I −Hn+1.

We next prove a lemma for a proper weak regular multisplitting of type II of a real square singular
matrix A with the assumption of an additional condition AEl = ElA for each l = 1, 2, ..., p.

Lemma 4.3. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of A ∈ Rn×n with S =

p∑
l=1

ElVlU†l

and AEl = ElA, for each l = 1, 2, . . . , p. Then
(i) S ≥ 0 and therefore S j

≥ 0, for j = 0, 1, . . .,

(ii) A
p∑

l=1

ElU†l = AG = (I − S)AA†,

(iii) (I + S + S2 + · · · + Sn)(I − S) = I − Sn+1.

Proof. (i) Clearly, as VlU†l ≥ 0. Hence S j
≥ 0, for j = 0, 1, . . ..

(ii) Using AEl = ElA, we have

AG = A
p∑

l=1

ElU†l

=

p∑
l=1

AElU†l

=

p∑
l=1

ElAU†l

=

p∑
l=1

El(I − VlU†l )UlU†l

= (I −
p∑

l=1

ElVlU†l )UlU†l

= (I −
p∑

l=1

ElVlU†l )AA†

= (I − S)AA†.
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(iii) This follows from (i).

Another lemma which will be used to prove Theorem 4.9 is presented below.

Lemma 4.4. Let A,B ∈ Rn×n such that AB = BA. If R(A) ⊆ R(BT) and R(AT) ⊆ R(B), then AB† = B†A.

Proof. The condition R(A) ⊆ R(BT) implies B†BA = PR(BT)A = A. Similarly, the other condition R(AT) ⊆ R(B)
yields ABB† = APR(B) = A. Therefore, AB† = B†BAB† = B†ABB† = B†A.

Putting A = E, a diagonal matrix and B = A in the above lemma, we have the following corollary.

Corollary 4.5. Let A ∈ Rn×n and E ∈ Rn×n be a diagonal matrix such that EA = AE. If R(E) ⊆ R(A)∩R(AT), then
EA† = A†E.

A real square matrix A is called EP (or range symmetric) if R(A) = R(AT). This class of matrices contains
many subclasses like the symmetric matrices, skew-symmetric matrices, normal matrices and all nonsingu-
lar matrices. Several extensions of this class can be found out in the literature. A characterization of an EP
matrix is the following. A matrix A is EP if and only if it commutes with its Moore-Penrose inverse A†. This
is one of the main reasons for studying the class of EP matrices. Another interesting property of this class, is
that the Moore-Penrose inverse of an EP matrix coincides with two other types of generalized inverses, the
Drazin inverse and the Group inverse (see [4]). Therefore, the computation of the Moore-Penrose inverse
is very useful for many types of applications such as the system of linear equations, the system of linear
differential equations and linear difference equations. All our next results are for the above class of matrices.
In the case of an EP matrix A, the condition R(El) ⊆ R(A) ∩ R(AT) will simply reduce to R(El) ⊆ R(A). By
adding another hypothesis EA = AE to Corollary 4.5, we have the following result and can be proved easily.

Lemma 4.6. Let A be an EP matrix and E be a diagonal matrix. If EA = AE and R(E) ⊆ R(A), then
(i) EA†A = A†AE.
(ii) EAA† = AA†E.

We are now ready to prove the following result which contains a few properties of H =

p∑
l=1

ElU†l Vl and

S =

p∑
l=1

ElVlU†l .

Lemma 4.7. Let (Ul,Vl,El)
p
l=1 be a proper multisplitting of an EP matrix A ∈ Rn×n such that R(El) ⊆ R(A) and

ElA = AEl, for each l = 1, 2, . . . , p. Then
(i) AA†S = S = SAA† and A†AH = H = HA†A.
(ii) S = AHA†, H = A†SA, and ρ(S) = ρ(H).

Proof. (i) Lemma 4.6 yields A†AEl = ElA†A and AA†El = ElAA†, for each l = 1, 2, . . . , p. So

AA†S = AA†
p∑

l=1

ElVlU†l

=

p∑
l=1

ElAA†VlU†l

=

p∑
l=1

ElVlU†l (= S)
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=

p∑
l=1

ElVlU†l UlU†l

=

p∑
l=1

ElVlU†l AA†

= SAA†.

Again,

A†AH = A†A
p∑

l=1

ElU†l Vl

=

p∑
l=1

ElA†AU†l Vl

=

p∑
l=1

ElU†l Vl(= H)

=

p∑
l=1

ElU†l VlA†A

= HA†A.

(ii) Using the conditions U†l VlA† = A†VlU†l and AEl = ElA, we have

AHA† = A
p∑

l=1

ElU†l VlA†

=

p∑
l=1

ElAA†VlU†l

=

p∑
l=1

ElVlU†l

= S.

Also, H = A†AHA†A = A†SA, by using (i).
To prove ρ(S) = ρ(H), let λ be an eigenvalue of S corresponding to the eigenvector x. Then λx = Sx =

AHA†x, so x ∈ R(A). Now, pre-multiplying A† to λx = AHA†x, we get λy = A†AHy = Hy, where y = A†x.
Suppose that 0 = y = A†x. Then x ∈ N(A†) = N(AT). But x ∈ R(A). Thus x = 0, a contradiction. Hence y , 0.
Therefore y is an eigenvector of H corresponding to the eigenvalue λ and thus σ(S) \ {0} ⊆ σ(H) \ {0}. The
other way can be proved similarly by considering µ, an eigenvalue of H corresponding to the eigenvector
z. Therefore ρ(S) = ρ(H).

For nonsingular matrices, the above result reduces to the following corollary.

Corollary 4.8. Let (Ul,Vl,El)
p
l=1 be a multisplitting of a nonsingular matrix A ∈ Rn×n such that ElA = AEl, for

each l = 1, 2, . . . , p. Then S = AHA−1, H = A−1SA and ρ(S) = ρ(H).

We are now in a position to address the main problem stated in the introduction (i.e., Theorem 1.1).
This is answered in the next result, and this result provides a characterization of semi-monotone matrices
in terms of proper multisplittings. Further, the same result yields convergence criteria of a proper weak
regular multisplitting of type II of a real square singular matrix.
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Theorem 4.9. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of an EP matrix A ∈ Rn×n with

R(El) ⊆ R(A) and ElA = AEl, for each l = 1, 2, . . . , p. Then, A is semi-monotone if and only if ρ(S) < 1, where

S =

p∑
l=1

ElVlU†l .

Proof. By Lemma 4.6, we get A†AEl = ElA†A. Hence A†AG = A†A
p∑

l=1

ElU†l =

p∑
l=1

ElA†AU†l =

p∑
l=1

ElU†l = G.

From Lemma 4.3 (ii), we obtain AG = (I − S)AA†. So, G = A†AG = A†(I − S)AA† = A† − A†S = A†(I − S), as
SAA† = S by Lemma 4.7 (i). Since G ≥ 0 and S ≥ 0, we have

0 ≤ G(I + S + S2 + · · · + Sn)

= A†(I − S)(I + S + S2 + · · · + Sn)

= A†(I − Sn+1) ≤ A†.

So, the partial sum of the series
∞∑

m=0

Sm is uniformly bounded and hence ρ(S) < 1. Conversely, S ≥ 0 and

ρ(S) < 1 imply (I − S)−1
≥ 0. Hence A† = G(I − S)−1

≥ 0.

We now have Theorem 3.2, [10] as a corollary.

Corollary 4.10 (Theorem 3.2, [10]). Let (Ul,Vl,El)
p
l=1 be a weak regular multisplitting of type II of A ∈ Rn×n with

ElA = AEl, for each l = 1, 2, . . . , p. Then, A is monotone if and only if ρ(S) < 1, where S =

p∑
l=1

ElVlU−1
l .

Recently, Giri and Mishra [16] have shown that the iteration matrix H in (12) induces a unique proper
weak regular splitting of type I under some sufficient conditions, and the same result is recalled next.

Theorem 4.11 (Theorem 3.17, [16]). Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type I of a semi-

monotone matrix A ∈ Rm×n. Then the unique splitting A = B−C induced by H with B = A(I−H)−1 is a convergent
proper weak regular splitting of type I if R(El) ⊆ R(AT), for each l = 1, 2, . . . , p.

An obvious question arises at this stage is that what can we say about the type of the induced splitting
A = X − Y induced by S. This is settled next.

Theorem 4.12. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of a semi-monotone and EP

matrix A ∈ Rn×n. Then the unique splitting A = X − Y induced by S with X = (I − S)−1A is a convergent proper
weak regular splitting of type II if R(El) ⊆ R(A) and ElA = AEl, for each l = 1, 2, . . . , p.

Proof. We have ElA†A = A†AEl and ElAA† = AA†El, for each l = 1, 2, . . . , p by Lemma 4.6. By Lemma 4.7 (i),
we obtain A†AS = S = SAA†. Therefore, pre-multiplying Lemma 4.3 (ii) by A†, we get G = A†(I − S)AA†.
From equation (12), we obtain X† = G = A†(I − S). Also, Theorem 4.9 shows that ρ(S) < 1 and hence (I − S)
is invertible. Let K = A† and L = I − S. We then have

K†KLLTKT = AA†(I − S)(I − S)TA†
T

= (AA† − AA†S)(I − S)TA†
T

= (I − S)(AA†)T(I − S)TA†
T

= (I − S)(A†(I − S)AA†)T

= (I − S)(A†AA†(I − S))T

= (I − S)(I − S)TA†
T

= LLTKT.
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The other condition of the reverse order law (Theorem 2.3) follows clearly. Hence X = (I − S)−1A.
Next, we have to prove R(X) = R(A) and N(X) = N(A). To show R(X) = R(A), it is sufficient to obtain

N(XT) = N(AT). Let x ∈ N(XT) = N(X†). Then X†x = A†(I − S)x = 0. Pre-multiplying A†(I − S)x = 0 by
(I − S)−1A, we get (I − S)−1AA†(I − S)x = (I − S)−1(I − S)AA†x = AA†x = 0. Then 0 = A†AA†x = A†x = 0.
Hence N(XT) ⊆ N(AT). Also,

r(AT) ≥ r(XT) = r(XT(I − S)T) = r(AT).

Which implies n(AT) = n(XT) and thus N(XT) = N(AT). As X = (I − S)−1A, so N(X) = N(A).
To prove uniqueness, suppose that there exists another induced proper splitting A = X̃ − Ỹ such that

X̃† = G. Then ỸX̃† = (X̃ −A)X̃† = X̃X̃† −AX̃† = AA† −AA†(I − S) = AA†S = S and SX̃ = ỸX̃†X̃ = Ỹ = X̃ −A.
So X̃ = A + SX̃, i.e., (I − S)X̃ = A. Hence, X̃ = (I − S)−1A = X and thus, S induces the unique proper splitting
A = X − Y.

Therefore, X† = G ≥ 0 and YX† = (X − A)X† = XX† − AX† = AA† − AA†(I − S) = AA†S = S ≥ 0.
Henceforth, the splitting A = X − Y induced by S is a proper weak regular of type II. By Theorem 4.9, we
thus have ρ(YX†) = ρ(S) < 1.

The above theorem admits the following corollary in the case of nonsingular matrices.

Corollary 4.13. Let (Ul,Vl,El)
p
l=1 be a weak regular multisplitting of type II of a monotone matrix A ∈ Rn×n with

ElA = AEl. Then the unique splitting A = X − Y induced by S with X = (I − S)A−1 is a convergent weak regular
splitting of type II.

Remark 4.14. One can observe that, the matrices H and S in Theorem 4.12 induce the same proper splitting. To
prove this, let B = A(I − H)−1. As S = SAA† = AA†S, H = A†AH = HA†A and S = AHA†, so Sk = AHkA†, for

any positive integer k. Since ρ(S) < 1, then X = (I−S)−1A =

∞∑
k=0

SkA =

∞∑
k=0

AHkA†A =

∞∑
k=0

AHk = A(I−H)−1 = B,

as ρ(S) = ρ(H) by Lemma 4.7 (ii). Hence R(X) = R(B) = R(A) and N(X) = N(B) = N(A), and thus A = X − Y is a
proper splitting.

The spectral radii of the iteration matrices of two different proper weak regular multisplittings of the
same coefficient matrix A is compared below.

Theorem 4.15. Let (U(1)
l ,V

(1)
l ,El)

p
l=1 be a proper weak regular multisplitting of type I and let (U(2)

l ,V
(2)
l ,El)

p
l=1 be a

proper weak regular multisplitting of type II of a semi-monotone and EP matrix A ∈ Rn×n such that R(El) ⊆ R(A)
and ElA = AEl, for each l = 1, 2, . . . , p. If

(U(2)
l )† ≤ (U(1)

l )†, for each l = 1, 2, . . . , p,

then
ρ(H1) ≤ ρ(H2) < 1.

Proof. By Theorem 4.11 and Theorem 4.12, the splittings A = B1 − C1 = B2 − C2 induced by H1 and S2 are
convergent proper weak regular splittings of type I and type II, respectively. We also have ρ(S2) = ρ(H2) by
Lemma 4.7. So, we need to prove that ρ(H1) ≤ ρ(H2). From the given condition (U(2)

l )† ≤ (U(1)
l )†, we obtain

p∑
l=1

El(U
(2)
l )† ≤

p∑
l=1

El(U
(1)
l )†.

This implies G2 ≤ G1, i.e., B†2 ≤ B†1. By Theorem 3.11, we thus have

ρ(H1) ≤ ρ(H2) < 1.
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The first part of Theorem 2.21, [27] is obtained as a corollary to the above result.

Corollary 4.16 (Theorem 2.21, [27]). Let (U(1)
l ,V

(1)
l ,El)

p
l=1 be a weak regular multisplitting of type I and let

(U(2)
l ,V

(2)
l ,El)

p
l=1 be a weak regular multisplitting of type II of a monotone matrix A ∈ Rn×n such that ElA = AEl, for

each l = 1, 2, . . . , p. If

(U(2)
l )−1

≤ (U(1)
l )−1, for each l = 1, 2, . . . , p,

then

ρ(H1) ≤ ρ(H2) < 1.

Theorem 4.17. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of a semi-monotone and EP

matrix A ∈ Rn×n such that R(El) ⊆ R(A) and ElA = AEl, for each l = 1, 2, . . . , p. If there exists a non-negative
matrix M ∈ Rn×n such that VlU†l (A + M) ≥M, for each l = 1, 2, . . . , p, then the unique splitting A = X−Y induced
by S with X = (I − S)−1A is proper regular.

Proof. By Theorem 4.12, we have ρ(S) < 1 and the unique splitting A = X − Y induced by S is proper weak
regular of type II. Then

Y = X − A

= (I − S)−1A − A

= (I − S)−1SA
≥M ≥ 0

and thus A = X − Y is proper regular.

Theorem 4.17 admits the following corollary in the case of nonsingular matrices.

Corollary 4.18. Let (Ul,Vl,El)
p
l=1 be a weak regular multisplitting of type II of a monotone matrix A ∈ Rn×n. If

there exists a non-negative matrix M ∈ Rn×n such that VlU−1
l (A + M) ≥M, for each l = 1, 2, . . . , p, then the unique

splitting A = X − Y induced by S with X = (I − S)−1A is a regular splitting.

By substituting M = 0 in Theorem 4.17, we obtain the next result.

Corollary 4.19. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of a semi-monotone EP matrix

A ∈ Rn×n. If VlU†l Vl ≤ Vl, for each l = 1, 2, . . . , p, then the unique splitting A = X − Y induced by S with
X = (I − S)−1S is a proper regular splitting.

We further obtain the same conclusion as in Theorem 4.17 under different set of assumptions.

Theorem 4.20. Let (Ul,Vl,El)
p
l=1 be a proper weak regular multisplitting of type II of a semi-monotone EP matrix

A ∈ Rn×n. Assume that, for each l, El = αlI with αl > 0 and
∑p

l=1 αl = 1. Let Va =
∑p

l=1 αlVl, and Vl ≤ Vb, for
each l = 1, 2, . . . , p. If there exists a non-negative matrix U ∈ Rn×n such that VlU†l (Vb −U) ≤ Va −U, for each l =

1, 2, . . . , p, then the unique splitting A = X − Y induced by S with X = (I − S)−1A is a proper regular splitting.
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Proof. As Y = X − A = (I − S)−1SA, we have

Y = (I − S)−1
p∑

l=1

αlVlU†l A

= (I − S)−1
p∑

l=1

αlVlU†l (I − VlU†l )Ul

= (I − S)−1
p∑

l=1

αlVl(I −U†l Vl)

= (I − S)−1
p∑

l=1

αlVl − (I − S)−1
p∑

l=1

αlVlU†l Vl

≥ (I − S)−1Va − (I − S)−1
p∑

l=1

αlVlU†l Vb

= (I − S)−1Va − (I − S)−1SVb

= (I − S)−1(Va − SVb) ≥ U ≥ 0.

As a corollary, we have the following for nonsingular matrices.

Corollary 4.21. Let (Ul,Vl,El)
p
l=1 be a weak regular multisplitting of type II of a monotone matrix A ∈ Rn×n. Assume

that, for each l, El = αlI with αl > 0 and
∑p

l=1 αl = 1. Let Va =
∑p

l=1 αlVl, and Vl ≤ Vb, for each l = 1, 2, . . . , p. If
there exists a non-negative matrix U ∈ Rn×n such that VlU−1

l (Vb − U) ≤ Va − U, for each l = 1, 2, . . . , p, then the
unique splitting A = X − Y induced by S with X = (I − S)−1A is a regular splitting.

5. Conclusion

This paper adds many new results to the convergence theory of proper multisplittings. The important
findings are summarized as follows:

• Comparison results for proper weak regular splittings of same and different types are presented.

• Some of these results are then used to prove a few comparison results for proper multisplittings.

• Characterizations of semi-monotone matrices are obtained using proper weak regular multisplittings
of different types.

• The induced splitting is also shown to be a convergent proper weak regular splitting of type II under
some sufficient conditions.
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