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Abstract. The purpose of this paper is to obtain the notion of crossed module over group-groupoids con-
sidering split extensions and prove a categorical equivalence between these types of crossed modules and
double group-groupoids. This equivalence enables us to produce various examples of double groupoids.
We also prove that crossed modules over group-groupoids are equivalent to crossed squares.

1. Introduction

In this paper we are interested in crossed modules of group-groupoids associated with the split exten-
sions and producing new examples of double groupoids in which the sets of squares, edges and points are
group-groupoids.

The idea of crossed module over groups was initially introduced by Whitehead in [29, 30] during the
investigation of the properties of second relative homotopy groups for topological spaces. The categori-
cal equivalence between crossed modules over groups and group-groupoids which are widely called in
literature 2-groups [3], G-groupoids or group objects in the category of groupoids [9], was proved by Brown
and Spencer in [9, Theorem 1]. Following this equivalence normal and quotient objects in these two cate-
gories have been recently compared and associated objects in the category of group-groupoids have been
characterized in [22]. This categorical equivalence has also been extended by Porter in [26, Section 3] to
a more general algebraic category C called category of groups with operations whose idea goes back to
Higgins [15] and Orzech [24, 25]. This result is used for example in [1] as a tool to extend some results
about topological groups to the topological groups with operations. Recently, group-groupoid aspect of the
monodromy groupoid was developed in [19]. Also monodromy groupoids of internal groupoids within
topological groups with operations were investigated in [18].

Double groupoids which can be thought as a groupoid objects in the category of groupoids were
introduced by Ehresmann in [12, 13]. Double categories have been used in mathematical physics as an
application of categorical methods to deeper understanding of genuine features of some problems. As an
example, one can see the reference [16] for an extension of topological quantum field theories via double
categories. Also according to [6, Chapter 6], the structure of crossed module is inadequate to give a proof
of 2-dimensional Seifert-van-Kampen Theorem and hence one needs the idea of double groupoid. For the
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purpose of obtaining some examples of double groupoids, Brown and Spencer in [9] proved the categorical
equivalence between crossed modules over groups and special double groupoids in the sense that the
horizontal and vertical groupoids agree and the set of points is singleton. Then the categorical equivalence
of crossed modules over groupoids and double groupoids with thin structures was proved in [6, Chapter
6].

From Loday [17] we know that cat1-groups are equivalent to crossed modules over groups and cat2-
groups to crossed squares. More generally Ellis and Steiner in [14] proved that catn-groups are equivalent
to crossed n-cubes. The readers are also refereed to [4] for algebraic structures related to groupoids and
algebraic descriptions of homotopy n-types. Groupoid versions of Lemma 2.2 and Proposition 5.2 in [17]
were given by Temel in [28]. In addition, a similar result in the category of groupoids was obtained by
Aytekin [2] in terms of simplicial objects. He proved that the category of crossed modules over groupoids
is naturally equivalent to that of simplicial groupoids with Moore complex of length 1.

In this paper following Porter’s methods in [26] we introduce the notion of crossed module over
group-groupoids via split extensions of short exact sequences and obtain the double groupoids associated
with these crossed modules. Moreover we have a categorical equivalence between these types of crossed
modules and double group-groupoids, which enables us to have some varieties of examples for double
groupoids. We finally prove that crossed modules over group-groupoids is also equivalent to the crossed
squares and therefore to cat2-groups. With the help of the above-mentioned equivalence, we believe that
this study will shed light on the (co)homology theory of crossed squares.

2. Preliminaries

Let C be a finitely complete category. By an internal category D = (D0,D1, d0, d1, ε,m) in C we mean a
class of objects D0 called object of objects and a class of morphisms D1 called object of arrows, together with
initial and final point maps; d0, d1 : D1 → D0, object inclusion map ε : D0 → D1 in C (for x ∈ D0 the element
x denoted by 1x) as morphisms of C,

D1
d0 //
d1

// D0

εuu

such that d0ε = d1ε = 1D0 and a morphism m : D1 ×D0 D1 → D1 of C called the composition map (usually
expressed as m(a, b) = b ◦ a) where D1 ×D0 D1 is the pullback of d0, d1 such that εd0(a) ◦ a = a = a ◦ εd0(a). An
internal groupoid in C is an internal category with a morphism η : D1 → D1, η(a) = a−1 of C called inverse
such that a−1

◦ a = 1s(a), a ◦ a−1 = 1t(a).
A group-groupoid G is an internal groupoid in the category of groups, i.e., G and G0 are groups with the

property that the initial and final point maps, object inclusion map, the inversion and partial composition
(Gd0 ×d1 G → G) are group morphisms. An alternative name used in literature for a group-groupoid
is 2-group [3]. In a group-groupoid the group operation is written additively while the composition in
the groupoid by “ ◦ ” as above. Group-groupoid morphisms are usual functors which are also group
homomorphisms. We recall that a crossed module over groups originally defined by Whitehead [29, 30],
consists of two groups A and B, an action of B on A denoted by b · a for a ∈ A and b ∈ B; and a morphism
∂ : A → B of groups such that ∂(b · a) = b + ∂(a) − b and ∂(a) · a1 = a + a1 − a for all a, a1 ∈ A and b ∈ B.
We denote such a crossed module by (A,B, ∂). A morphism ( f1, f2) from (A,B, ∂) to (A′,B′, ∂′) is a pair of
morphisms of groups f1 : A→ A′ and f2 : B→ B′ such that f2∂ = ∂′ f1 and f1(b · a) = f2(b) · f1(a) for a ∈ A and
b ∈ B.

A double groupoid denoted by G = (S,H,V,P) has the sets S, H, V and P of squares, horizontal edges,
vertical edges and points, respectively. The set S of the squares has groupoid structures on H and on V.
Also H and V are groupoids on P and these four groupoid structures are compatible with each other. In a
double groupoid a square u has bounding edges as follows
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u dh
1udh

0u

dv
0u

dv
1u

��

// ◦h

◦v

and the horizontal and vertical compositions of the squares are denoted by v ◦h u and v ◦v u [5].
In particular, if the horizontal and vertical groupoids coincide, then it is said to be a special double groupoid.

According to Brown and Spencer [9] crossed modules over groups and special double groupoids where the
set of points is singleton are categorically equivalent. By the detail of the proof for given a crossed module
∂ : A→ B there is a special double groupoid G in which the set S of squares consists of the elements(

α ;
(
a

c
b d

))
for a, b, c, d ∈ B with ∂(α) = b−1a−1cd.

The horizontal and vertical compositions of squares are respectively defined to be(
β ; c

f
h 1

)
◦h

(
α ; a

b
d c

)
=

(
αβd−1

; a
b f
dh 1

)
(
τ ; j

d
i h

)
◦v

(
α ; a

b
d c

)
=

(
α jτ ; aj

b
i ch

)
.

See [6, Chapter 6] for more discussions on double groupoids in which horizontal and vertical edges are
same.

3. Extensions and Crossed Modules of Group-Groupoids

The idea of groups with operations goes back to [15] and [24] (see also [25]) and it is adapted in [26] and
[11, p.21] as follows:

A category C of groups with a set of operations Ω and with a set E of identities such that E includes the
group laws, and the following conditions hold for the set Ωi of i-ary operations in Ω is said to be a category
of groups with operations:

(a) Ω = Ω0 ∪Ω1 ∪Ω2;
(b) The group operations written additively 0,− and + are the elements of Ω0, Ω1 and Ω2, respectively.

Let Ω′2 = Ω2\{+}, Ω′1 = Ω1\{−} and assume that if ? ∈ Ω′2, then ?◦ defined by a ?◦ b = b ? a is also in Ω′2.
Also assume that Ω0 = {0};

(c) For each ? ∈ Ω′2, E includes the identity a ? (b + c) = a ? b + a ? c;
(d) For each ω ∈ Ω′1 and ? ∈ Ω′2, E includes the identities ω(a + b) = ω(a) + ω(b) and ω(a) ? b = ω(a ? b).
Topological version of this definition was given in [20].
According to [26] for groups with operations A and B an extension of A by B is an exact sequence

0 // A ı // E
p // B // 0

in which p is surjective and ı is the kernel of p. It is split if there exists a morphism s : B → E such that
ps = 1B. For given such a split extension an action of B on A called derived action which is due to Orzech [24,
p.293] is defined by

b · a = s(b) + a − s(b)
b ? a = s(b) ? a. (3.1)
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for b ∈ B, a ∈ A and ? ∈ Ω′2.
In the rest of this section applying the methods of [26] to the group-groupoids we obtain the notion of

crossed modules for them: Let G and H be two group-groupoids. We define an extension of H by G to be a
short exact sequence of group-groupoids

E : 1 // G ι // K
p // H // 1

where 1 represents a singleton group-groupoid. Hence G = Ker p and p is an epimorphism; and therefore
G can be considered as a normal subgroup-groupoid of K. For given such an extension we have the group
extensions

E1 : 0 // G
ι1 // K

p1 // H // 0

E0 : 0 // G0
ι0 // K0

p0 // H // 0

along with the morphisms of them

E1 : 0 // G
ι1 //

d0

��
d1

��

K
p1 //

d0

��
d1

��

H

d0

��
d1

��

// 0

E0 : 0 // G0 ι0
//

ε

AA

K0 p0
//

ε

BB

H

ε

BB

// 0

Hence a group-groupoid extension E can be thought as an internal groupoid in the category of group
extensions.

Replacing groups with operations in [26] with group-groupoids we define an extension to be split if
there exists a morphism s : H→ K of group-groupoids such that ps = 1H

E : 1 // G ι // K p
// H

s
vv // 1

In this case both extensions of groups E1 and E0 above become split.
We now obtain semidirect product of group-groupoids as follows: Let E be a split extension of H by

G. Then the functor θ : G × H → K defined by θ(a, b) = a + s(b) on arrows and by θ(x, y) = x + s(y) on
objects has an inverse θ−1(c) = (c − sp(c), p(c)) for c ∈ K where G ×H is the product category; and G ×H is a
group-groupoid with the group addition defined by

(a, b) + (a1, b1) = θ−1 (θ ((a, b) + (a1, b1)))

= θ−1 (θ(a, b) + θ(a1, b1))

= θ−1 (a + s(b) + a1 + s(b1))
= (a + (s(b) + a1 − s(b)), b + b1)

for all a, a1 ∈ G and b, b1 ∈ H. Moreover θ is an isomorphism of group-groupoids. Hence G × H becomes
a group-groupoid inherited by H. We call the group-groupoid G ×H obtained semidirect product of group-
groupoids G and H and denote by G oH. So we have a split extension

EGoH : 1 // G ι // G oH p
// H

srr
// 1

associated with G oH.

Lemma 3.1. For a split extension E of H by G, the group H acts on the group G.
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Proof. The action of H on G is defined by

b · a = s(b) + a − s(b)

for a ∈ G, b ∈ H.

We call such an action derived action of group-groupoids.

Lemma 3.2. For group-groupoids G and H, if the group H acts on G, then H0 also acts on G0 by an action

y · x = d0(ε(y · x)) = d0(ε(y) · ε(x))

for all y ∈ H0 and x ∈ G0.

Proof. It is a consequence of the fact that 1y · 1x = 1y·x for x ∈ G0 and y ∈ H0.

Hence we can define group-groupoid action as follows:

Definition 3.3. Let G and H be two group-groupoids. If there is a group action of H on G, then we say that
H acts on G.

Lemma 3.4. An action of H on G is a derived action if and only if GoH is a group-groupoid with the group addition
given by

(a, b) + (a1, b1) = (a + b · a1, b + b1)

for all a, a1 ∈ G, b, b1 ∈ H.

Example 3.5. For any group-groupoid G, the conjugation action of G on itself given by a · a1 = a + a1 − a for
all a, a1 ∈ G is a derived action. Hence there is a split extension of G by G

EG : 1 // G ι // G o G p
// G

srr
// 1

associated with the conjugation action, where ι(a) = (a, 0), p(a, a1) = a1, s(a) = (0, a) for all a, a1 ∈ G.

Definition 3.6. Let

E : 1 // G ι // K p
// H

s
vv // 1

and

E
′ : 1 // G′ ι // K′ p

// H′
suu // 1

be two split extensions of group-groupoids. We define a morphism (α, β, γ) : E → E′ of split extensions to be
consisting of morphisms α : G→ G′, β : K→ K′ and γ : H→ H′ such that the following diagram commutes.

E :

(α,β,γ)
��

1 // G ι //

α

��

K p
//

β

��

H
s

vv //

γ

��

1

E
′ : 1 // G′ ι′ // K′

p′
// H′

s′uu // 1
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Remark 3.7. If there is a derived action of H on G, then the morphism (1G, θ, 1H) : EGoH → E of split
extensions denoted below is an isomorphism of split extensions.

EGoH :

(1G,θ,1H)
��

1 // G ι //

1G

��

G oH p
//

θ
��

H

1H

��

srr
// 1

E : 1 // G ι // K p
// H

s
uu // 1

Following the idea in [26] we now define crossed module of group-groupoids as follows:

Definition 3.8. Let G and H be two group-groupoids with an action of H on G. We call a morphism
∂ : G→ H of group-groupoids crossed module of them whenever

(1G, 1G × ∂, ∂) : EG → EGoH and (∂, ∂ × 1H, 1H) : EGoH → EH

denoted below are morphisms of split extensions.

EG :

(1G,1G×∂,∂)
��

1 // G ι //

1G

��

G o G p
//

1G×∂

��

G
srr

//

∂

��

1

EGoH :

(∂,∂×1H ,1H)
��

1 // G ι //

∂

��

G oH p
//

∂×1H

��

H

1H

��

srr
// 1

EH : 1 // H ι // H oH p
// H

srr
// 1

We write (G,H, ∂) for such a crossed module. By the assessment of the above morphisms of split
extensions we can state the crossed module over group-groupoids as follows:

Proposition 3.9. Let ∂ : G→ H be a morphism of group-groupoids such that H acts on G. Then (G,H, ∂) is a crossed
module over group-groupoids if and only if (G,H, ∂1) is a crossed module over groups.

We should point out that in a crossed module (G,H, ∂) over group-groupoids, ∂0 : G0 → H0 is also a
crossed module of groups.

Lemma 3.10. Let (G,H, ∂) be a crossed module over group-groupoids. Then H0 acts on G by

y · a = εH(y) · a = 1y · a

for a ∈ G, y ∈ H0 and H acts on G0 by

b · x = dH
1 (b) · x

for all b ∈ H, x ∈ G0 .

Proof. These can be seen by easy calculations. So proof is omitted.

We now give the following examples of crossed modules for group-groupoids:

Example 3.11. Let G be a group-groupoid and N a normal subgroup-groupoid of G in the sense of [22], i.e.,
H is a normal subgroup of N and hence N0 is a subgroup of G0. Then (N,G, inc) is a crossed module over
group-groupoids where inc : N ↪→ G is the inclusion functor and the action of G on N is conjugation. In
particularly (G,G, 1G) and (1,G, 0) are crossed modules over group-groupoids.
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Example 3.12. Let (A,B, ∂) be a crossed module over groups. Then AoA and BoB are group-groupoids on
A and on B, respectively; and then (A o A,B o B, α × α) becomes a crossed module over group-groupoids.

To give a topological example of crossed modules over group-groupoids we first recall that by a topological
crossed module we a mean a crossed module (A,B, ∂) in which A and B are topological groups, the action of
B on A is continuous and ∂ is a continuous morphism of topological groups.

Example 3.13. It is known from [10] that if X is a topological group, then the fundamental groupoid πX
is a group-groupoid . Therefore if (A,B, ∂) is a topological crossed module, then (πA, πB, π(∂)) becomes a
crossed module of group-groupoids.

Example 3.14. A group can be thought as a discrete group-groupoid in which the arrows are only identities.
Hence every crossed module over groups (A,B, ∂) can be considered as a crossed module over group-
groupoids.

Example 3.15. For a group A, the direct product G = A×A becomes a group-groupoid on A with d0(a, b) = a,
d1(a, b) = b, ε(a) = (a, a), n(a, b) = (b, a) and (b, c) ◦ (a, b) = (a, c). Hence a crossed module over groups (A,B, ∂)
gives rise to a crossed module over group-groupoids replacing A and B with the associated group-groupoids.

A morphism ( f , 1) : (G,H, ∂)→ (G′,H′, ∂′) between crossed modules over group-groupoids is defined to
be a pair of group-groupoid morphisms f : G→ G′ and 1 : H→ H′ with the property that ( f , 1) : (G,H, ∂)→
(G′,H′, ∂′) is a morphisms of crossed modules over groups. We write XMod(GpGd) for the category of
crossed modules over group-groupoids and morphisms between them to be the morphisms defined above.

4. Crossed Modules and Double Group-Groupoids

In this section we define a double group-groupoid to be an internal groupoid in the category of group-
groupoids; and then prove that these are categorically equivalent to associated crossed modules.

If G is an internal groupoid in the category of group-groupoids, then the following structural groupoid
maps are morphisms of group-groupoids provided G0 = H

Gd0×d1 G m // G

n

YY
d0 //
d1

// H

ε

��

Here we have four different but compatible group-groupoid structures (G,G0), (H,H0), (G,H) and (G0,H0).

G:

G
d0 //

d1

//

d1

��

d0

��

Hε1oo

d1

��

d0

��
G0

ε

OO

d0 //

d1

// H0ε0oo

ε

OO

Hence we define a double group-groupoid to be consisting of four different, but compatible, group-
groupoids (S,H), (S,V), (H,P) and (V,P) such that the following diagram of group-groupoids commutes

G:

S
dh

0 //

dh
1

//

dv
1

��

dv
0

��

Hεhoo

dH
1

��

dH
0

��
V

εv

OO

dV
0 //

dV
1

// PεVoo

εH

OO
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Horizontal and vertical compositions together with group operations have the following interchange
laws:

(β ◦v α) ◦h (β1 ◦v α1) = (β ◦h β1) ◦v (α ◦h α1)
(β ◦v α) + (β1 ◦v α1) = (β + β1) ◦v (α + α1) (4.1)
(β ◦h α) + (β1 ◦h α1) = (β + β1) ◦h (α + α1)

whenever one side of the equations make sense.
We can now give the following examples of double group-groupoids:

Example 4.1. If G is a group-groupoid, then G = (G,G,G0,G0) is a double group-groupoid with the trivial
structural maps

G:

G
1 //

1
//

dG
1

��

dG
0

��

G1oo

dG
1

��

dG
0

��
G0

εG

OO

1 //

1
// G01oo

εG

OO

Example 4.2. Let (A,B, ∂) be a topological crossed module. Then π(A,B, ∂) = (π(A o B), π(B),A o B,B)
becomes a double group-groupoid

G:

π(A o B)
dh

0 //

dh
1

//

dv
1

��

dv
0

��

π(B)εhoo

dH
1

��

dH
0

��
A o B

εv

OO

dV
0 //

dV
1

// BεVoo

εH

OO

Example 4.3. Let (G,H, ∂) be a crossed module over group-groupoids. Then we have a double group-
groupoid as follows

G oH
dh

0 //

dh
1

//

dG
1 ×dH

1

��

dG
0 ×dH

0

��

Hεhoo

dH
1

��

dH
0

��
G0 oH0

εv
×εH

OO

dV
0 //

dV
1

// H0εVoo

εH

OO

where dh
0(a, b) = b, dh

1(a, b) = ∂1(a) + b, εh(b) = (0, b), mh((a1, b1), (a, b)) = (a1 + a, b) for b1 = ∂1(a) + b and
dV

0 (x, y) = y, dV
1 (x, y) = ∂0(x) + y, εV(y) = (0, y), mV((x1, y1), (x, y)) = (x1 + x, y) for y1 = ∂0(x) + y. A square

(a, b) in G oH is

y

(x,y)

��

b // y1

(x1,y1)

��

(a, b)

∂0(x) + y
∂1(a)+b

// ∂0(x1) + y1
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for a ∈ G(x, x1) and b ∈ H(y, y1). If (a, b), (a1, b1) and (a′, b′) are squares in GoH with a ∈ G(x, x1), a1 ∈ G(x1, x2),
a′ ∈ G(x′, x′1), b ∈ H(y, y1), b1 ∈ H(y1, y2) and b′ = ∂1(a) + b then

(a1, b1) ◦h (a, b) = (a1 ◦ a, b1 ◦ b),
(a′, b′) ◦v (a, b) = (a′ + a, b).

Let G and G′ be two double group-groupoids. A morphism form G to G′ is a double groupoid
morphism F = ( fs, fh, fv, fp) : G → G′ such that fs : S → S′, fh : H → H′, fv : V → V′ and fp : P → P′ are
group homomorphisms. Such a morphism of double group-groupoids may be denoted by a diagram as
follows:

H

����

{{

fh // H′

zz

����

S
fs //

;;
;;

����

S′

::
::

����

P
fp

//

{{

OO

P′

OO

zz
V

OO

;;
;;

fv
// V′

OO

::
::

We write DbGpGd for the category with objects double groupoids and morphisms as arrows.

Lemma 4.4. In a double group-groupoid, as a consequence of interchange laws (Eq. 4.1), the vertical and horizontal
compositions of squares can be written in terms of the group operations as

β1 ◦h β = β1 − ε
hdh

1(β) + β = β − εhdh
1(β) + β1,

α1 ◦v α = α1 − ε
vdv

1(α) + α = α − εvdv
1(α) + α1

for all α, α1, β, β1 ∈ G such that dv
1(α) = dv

0(α1) and dh
1(β) = dh

0(β1).

Thus the horizontal inverse of β ∈ S is

β−h = εhdh
0(β) − β + εhdh

1(β) = εhdh
1(β) − β + εhdh

0(β)

and the vertical inverse of α ∈ S is

α−v = εvdv
0(α) − α + εvdv

1(α) = εvdv
1(α) − α + εvdv

0(α).

In particular, if α ∈ Ker dv
0 and β ∈ Ker dh

0 then

β−h = −β + εhdh
1(β) = εhdh

1(β) − β (4.2)

and

α−v = −α + εvdv
1(α) = εvdv

1(α) − α. (4.3)

In Lemma 4.4 if we take β with dh
1(β) = 0 and α with dv

1(α) = 0 then we obtain the following result.

Corollary 4.5. LetG be a double group-groupoid andα, α1, β, β1 ∈ S with dv
1(α) = 0 = dv

0(α1) and dh
1(β) = 0 = dh

0(β1).
Then

β1 ◦h β = β1 + β = β + β1,

α1 ◦v α = α1 + α = α + α1

i.e. squares in Ker dv
0 (resp. Ker dh

0) and in Ker dv
1 (resp. Ker dh

1) are commutative.
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Following corollary is a consequence of Equations (4.2),(4.3) and Corollary 4.5.

Corollary 4.6. Let G be a double group-groupoid. Then

α + α1 − α = εvdv
1(α) + α1 − ε

vdv
1(α)

and

β + β1 − β = εhdh
1(β) + β1 − ε

hdh
1(β)

for all α, α1 ∈ Ker dv
0 and β, β1 ∈ Ker dh

0.

Theorem 4.7. The category XMod(GpGd) of crossed modules over group-groupoids is equivalent to the category
DbGpGd of double group-groupoids.

Proof. Example 4.3 gives rise to a functor θ : XMod(GpGd)→ DbGpGd which associates a crossed module
over group-groupoids with a double groupoid.

Conversely, for a double group-groupoidG = (S,H,V,P), we define a crossed module (K,H, ∂) associated
with Gwhere

K = (Ker dh
0,Ker dV

0 , d
v
0, d

v
1, ε

v,mv,nv),

H = (H,P, dH
0 , d

H
1 , ε

H,mH,nH)

and ∂ = (∂1 = dh
1, ∂0 = dV

1 ). Such a crossed module can be visualized as in the following diagram

Ker dh
0

∂1 //

dv
1

��

dv
0

��

H

dH
1

��

dH
0

��
Ker dV

0

εv

OO

∂0 // P

εH

OO

Here the action of H on Ker dh
0 is given by

b · a = εh(b) + a − εh(b)

for b ∈ H and a ∈ Ker dh
0. Hence we have a functor γ : DbGpGd→ XMod(GpGd)

We now show that these functors are equivalences of categories. In order to define a natural equivalence
S : θγ ⇒ 1DbGpGd, for an object G in DbGpGd a morphism SG = ( fs, 1, fv, 1) : θγ(G) → G is defined by
fv(a, x) = a + εV(x) and fs(α, b) = α − εh(b) for (a, x) ∈ V o P and (α, b) ∈ S oH.

Conversely, a natural equivalence T : 1XMod(GpGd) ⇒ γθ can be defined such a way that for a crossed
module C = (G,H, ∂), the morphism TC = ( f , 1) : C → γθ(C) is given by f1(a) = (0, a) for a ∈ G and 1 is the
identity.

Other details are straightforward and so are omitted.

5. Crossed Modules and Crossed Squares

In this section we prove that the category XMod(GpGd) of crossed modules over group-groupoids and
the category X2Mod(Gp) of crossed squares over groups are equivalent.

We now recall the definition of crossed squares from [7]. Further we will prove that the category
XMod(GpGd) of crossed modules over group-groupoids and the category X2Mod(Gp) of crossed squares
over groups are equivalent.



S. Temel et al. / Filomat 34:6 (2020), 1755–1769 1765

Definition 5.1. A crossed square over groups

X:

L λ //

λ′

��

M

µ

��
N ν

// P
consists of four morphisms of groups λ : L → M, λ′ : L → N, µ : M → P and ν : N → P, such that νλ′ = µλ
together with actions of the group P on L, M, N on the left, conventionally, (and hence actions of M on L
and N via µ and of N on L and M via ν) and a function h : M × N → L. These are subject to the following
axioms:

[CS 1] λ, λ′ are P-equivariant and µ, ν and κ = µλ are crossed modules,

[CS 2] λh(m,n) = m + n · (−m), λ′h(m,n) = m · n − n,

[CS 3] h(λ(l),n) = l + n · (−l), h(m, λ′(l)) = m · l − l,

[CS 4] h(m + m′,n) = m · h(m′,n) + h(m,n), h(m,n + n′) = h(m,n) + n · h(m,n′),

[CS 5] h(p ·m, p · n) = p · h(m,n) and

for all l ∈ L, m,m′ ∈M, n,n′ ∈ N and p ∈ P.

A normal subcrossed module denotes a crossed square whilst a normal subgroup denotes a crossed
module. With this idea a normal subcrossed square will be in form a crossed 3-cube, and so on.

Example 5.2. Let (A,B, ∂) be crossed module and (S,T, σ) a normal subcrossed module of (A,B, ∂). Then

S� _

inc

��

σ // T� _

inc

��
A

∂
// B

forms a crossed square of groups where the action of B on S is induced action from the action of B on A and
the action of B on T is conjugation. The h map is defined by

h : T × A → S
(t, a) 7→ h(t, a) = t · a − a

for all t ∈ T and a ∈ A.

A topological example of crossed squares is the fundamental crossed square which is defined in [17] as
follows: Suppose given a commutative square of spaces

X :

C
f //

1

��

A

a

��
B

b
// X

Let F( f ) be the homotopy fibre of f and F(X) the homotopy fibre of F(1)→ F(a). Then the commutative
square of groups
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ΠX :

π1F(X) //

��

π1F(1)

��
π1F( f ) // π1(C)

associated to X is naturally equipped with a structure of crossed square. ΠX is called the fundamental
crossed square of X [7].

Example 5.3. Let (A,B, α) be a topological crossed module. Then we know that (πA,A, dA
0 , d

A
1 , ε

A,mA) and
(πB,B, dB

0 , d
B
1 , ε

B,mB) are fundamental group-groupoids. Then

Ker dA
0

πα //

dA
1

��

Ker dB
0

dB
1

��
A α

// B

has a crossed square structure where h([β], a) = [β · a − a] for all [β] ∈ Ker dB
0 and a ∈ A. Here the path

(β · a − a) : [0, 1]→ A is given by (β · a − a)(r) = β(r) · a − a for all r ∈ [0, 1].

A morphism of crossed squares from X1 to X2 consists of four group homomorphisms fL : L1 → L2,
fM : M1 → M2, fN : N1 → N2 and fP : P1 → P2 which are compatible with the actions and the functions h1
and h2.

M1

µ1 ��

fM // M2

µ2

��

L1

λ′1

��

fL //

λ1
::

L2

λ′2

��

λ2

::

P1 fP
// P2

N1 fN
//

ν1
::

N2

ν2

::

Category of crossed squares over groups with morphisms between crossed squares defined above is
denoted by X2Mod(Gp). Crossed squares are equivalent to the crossed modules over crossed modules.

Theorem 5.4. The category XMod(GpGd) of crossed modules over group-groupoids is equivalent to the category
X2Mod(Gp) of crossed squares over groups.

Proof. Define a functor δ : XMod(GpGd) → X2Mod(Gp) as in the following way: Let (G,H, ∂) be a crossed
module over group-groupoids. If we set L = Ker dG

0 , M = Ker dH
0 , N = G0, P = H0, λ = ∂1, λ′ = dG

1 , µ = dH
1

and ν = ∂0 then

δ((G,H, ∂)) = X :

L λ //

λ′

��

M

µ

��
N ν

// P
is a crossed square. Here the action of P on N is already given and the action of M on L is induced action.

Actions of P on M and on L are given by

p ·m = εH(p) + m − εH(p) and p · l = εH(p) · l
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respectively, for p ∈ P, m ∈M and l ∈ L. Moreover,

h : M ×N → L
(m,n) 7→ h(m,n) = m · εG(n) − εG(n).

Now we will verify that X satisfies the conditions [CS1]-[CS6] of Definition 5.1. Let l ∈ L, m,m′ ∈ M,
n,n′ ∈ N and p ∈ P. Then

[CS 1] It is easy to see that µ, ν and κ = µλ are crossed modules. Now we will show that λ and λ′ are
P-equivariant. Let p ∈ P and l ∈ L. Then

λ(p · l) = ∂1(εH(p) · l) = εH(p) + ∂1(l) − εH(p) = p · λ(l)

and

λ′(p · l) = dG
1 (εH(p) · l) = dH

1 ε
H(p) · dG

1 (l) = p · λ′(l)

[CS 2] Let m ∈M and n ∈ N. Then

λh(m,n) = ∂1(m · εG(n) − εG(n))

= ∂1(m · εG(n)) − ∂1(εG(n))

= m + ∂1(εG(n)) −m − ∂1(εG(n))
= m + n · (−m)

and

λ′h(m,n) = dG
1 (m · εG(n) − εG(n))

= dG
1 (m · εG(n)) − dG

1 (εG(n))

= dH
1 (m) · dG

1 (εG(n)) − dG
1 (εG(n))

= dH
1 (m) · n − n

= m · n − n

[CS 3] Let l ∈ L and n ∈ N. Then

h(λ(l),n) = ∂1(l) · εG(n) − εG(n)

= l + εG(n) − l − εG(n)
= l + n · (−l)

and

h(m, λ′(l)) = m · εG(dG
1 (l)) − εG(dG

1 (l))

= (m · εG(dG
1 (l)) − εG(dG

1 (l)) + l) − l

= (m · εG(dG
1 (l)) ◦ l) − l

= ((m · εG(dG
1 (l))) ◦ (10 · l)) − l

= ((m ◦ 10) · (εG(dG
1 (l)) ◦ l)) − l

= m · l − l
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[CS 4] Let m,m′ ∈M and n ∈ N. Then

h(m + m′,n) = (m + m′) · εG(n) − εG(n)

= m · (m′ · εG(n)) − εG(n)

= m · (m′ · εG(n)) + m · (−εG(n) + εG(n)) − εG(n)

= m · (m′ · εG(n) − εG(n)) + m · εG(n) − εG(n)
= m · h(m′,n) + h(m,n)

and

h(m,n + n′) = m · εG(n + n′) − εG(n + n′)

= m · (εG(n) + εG(n′)) − εG(n′) − εG(n)

= (m · εG(n) − εG(n)) + εG(n) + (m · εG(n′) − εG(n′)) − εG(n)
= h(m,n) + n · h(m,n′)

[CS 5] Let m ∈M, n ∈ N and p ∈ P. Then

h(p ·m, p · n) = h(εH(p) + m − εH(p), p · n)

= (εH(p) + m − εH(p)) · εG(p · n) − εG(p · n)

= (εH(p) + m − εH(p)) · (εH(p) · εG(n)) − (εH(p) · εG(n))

= (εH(p) + m) · εG(n) − (εH(p) · εG(n))

= εH(p) · (m · εG(n)) + εH(p) · (−εG(n))

= εH(p) · (m · εG(n) − εG(n))
= p · h(m,n)

Now let ( f = ( f1, f0), 1 = (G, 10)) : (G,H, ∂) → (G′,H′, ∂′) be a morphism in XMod(GpGd) then δ1( f , 1) =
( fL = f1, fM = G, fN = f0, fP = 10) is a morphism of crossed modules over group-groupoids.

Conversely, define a functor η : X2Mod(Gp) → XMod(GpGd) by following way: Let X = (L,N,M,P)
be a crossed square over groups. Let G and H be the corresponding group-groupoids to crossed modules
(L,N, λ′) and (M,P, µ), respectively. That is G = L oN, G0 = N, H = M o P and H0 = P. Moreover, ∂1 = λ× ν
and ∂0 = ν whilst the action of H on G is given by

(M o P) × (L oN) → (L oN)(
(m, p), (l.n)

)
7→ (m, p) · (l,n) =

(
m · (p · l) + h(m, p · n), p · n

)
.

Here (L o N,M o P, λ × ν) becomes a crossed module with the action given above. This crossed module
is called the semi-direct product of crossed modules. Hence η0(X) = (G,H, ∂) is a crossed module over
group-groupoids. Now, let ( fL, fM, fN, fP) be a morphism in X2Mod(Gp). Then η1( fL, fM, fN, fP) = ( f =
( fL × fN, fN), 1 = ( fM × fP, fP)) is morphism in XMod(GpGd).

A natural equivalence S : ηδ ⇒ 1XMod(GpGd) is given by the map S(G,H,∂) : ηδ(G,H, ∂) → (G,H, ∂) where
S(G,H,∂) is identity on both G0 and H0, and defined by a 7→ (a − εG(dG

1 (a)), dG
1 (a)) on G and b 7→ (b −

εH(dH
1 (b)), dH

1 (b)) on H.
Conversely, for a crossed square over groups X, a natural equivalence T : 1X2Mod(Gp) ⇒ δη is given by

the map TX : X → δη(X) where TX is identity on P and M and and defined by m 7→ (m, 0) and l 7→ (l, 0).
Other details are straightforward and so is omitted.

Since, by Loday [17], cat2-groups are equivalent to crossed squares we can state that crossed modules
over group-groupoids are equivalent to cat2-groups.
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6. Conclusion

Results obtained in this paper can be given in a more generic cases such as for an arbitrary category
of groups with operations, or for an arbitrary modified category of interest etc. Moreover, notions of
lifting [21, 27], covering [8] and actor crossed module [23] and homotopy of crossed module morphisms
(particularly derivations) can be interpreted in the categories mentioned in this manuscript. As in the
(co)homology theory of crossed modules over groups one can study on the (co)homology theory of crossed
squares using the equivalence given in Theorem 5.4.
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[1] H.F. Akiz, N. Alemdar, O. Mucuk, T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups with
operations, Georgian Math. J. 20 (2013) 223–238.

[2] A. Aytekin, A note on simplicial groupoids, Erciyes Univ. J. Inst. Sci. Tech. 36 (2020) 82–87.
[3] J.C. Baez, A.D. Lauda, Higher-dimensional algebra V: 2-groups, Theory Appl. Categ. 12 (2004) 423–491.
[4] R. Brown, Computing homotopy types using crossed n-cubes of groups, In: N. Ray & G. Walker (Eds.), Adams Memorial

Symposium on Algebraic Topology (London Mathematical Society Lecture Note Series, pp. 187-210). Cambridge: Cambridge
University Press, 1992.

[5] R. Brown, Topology and Groupoids, BookSurge LLC, North Carolina, 2006.
[6] R. Brown,P.J. Higgins, R. Sivera, Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy

groupoids, European Mathematical Society Tracts in Mathematics 15, 2011.
[7] R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311–335.
[8] R. Brown, O. Mucuk, Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc. 115 (1994)

97–110.
[9] R. Brown, C.B. Spencer, Double groupoids and crossed modules, Cah. Topol. Géom. Différ. Categ. 17 (1976) 343–362.
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