Bounded Pseudo-Amenability and Contractibility of Certain Banach Algebras

Hasan Pourmahmood-Aghababa ${ }^{\text {a }}$, Mohammad Hossein Sattari ${ }^{\text {b }}$, Hamid Shafie-Asl ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Tabriz, Tabriz, Iran
${ }^{b}$ Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

The notion of bounded pseudo-amenability was introduced by Y. Choi and et al. [CGZ]. In this paper, similarly, we define bounded pseudo-contractibility and then investigate bounded pseudoamenability and contractibility of various classes of Banach algebras including ones related to locally compact groups and discrete semigroups. We also introduce a multiplier bounded version of approximate biprojectivity for Banach algebras and determine its relation to bounded pseudo-amenability and contractibility.

1. Introduction

Let A be a Banach algebra and X a Banach A-bimodule. A bounded linear map $D: A \rightarrow X$ is called a derivation if

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in A)
$$

and it is termed inner if there is $x \in X$ such that

$$
D(a)=a \cdot x-x \cdot a \quad(a \in A)
$$

The notion of amenability of Banach algebras was established by B. E. Johnson in 1972 ([Joh2]). If every bounded derivation from A into the dual Banach A-bimodule X^{*} is inner for all Banach A-bimodules X, then A is said to be amenable. A Banach algebra A is called contractible, if every bounded derivation from A into any Banach A-bimodule is inner. In 2004, Ghahramani and Loy developed these concepts and introduced new notions of amenability and contractibility ([GhL]). The basic definition of their notions is referred to be approximately inner derivation. For an A-bimodule X, a derivation $D: A \rightarrow X$ is called approximately inner if there is a net of inner derivations $\left\{D_{\alpha}: A \rightarrow X\right\}_{\alpha}$ such that $D(a)=\lim _{\alpha} D_{\alpha}(a)$ for any $a \in A$. The Banach algebra A is said to be (boundedly) approximately amenable if for any A-bimodule X, every derivation $D: A \rightarrow X^{*}$ is the pointwise limit of a (bounded) net of inner derivations from A into X^{*}. In a similar manner (boundedly) approximate contractibility was defined. All notions of amenability are characterized in terms of approximate diagonals. We recall definitions needed in this article.

[^0]Definition 1.1. Let A be a Banach algbera. A net $\left\{m_{i}\right\} \subset A \hat{\otimes} A$ satisfying

$$
a m_{i}-m_{i} a \rightarrow 0, \quad a \pi\left(m_{i}\right) \rightarrow a,
$$

is called an approximate diagonal, where $\pi: A \hat{\otimes} A \rightarrow A$ is the diagonal map determined by $\pi(a \otimes b)=a b$. According to [CGZ], we say that the diagonal $\left\{m_{i}\right\}$ is multiplier-bounded if there exists a constant $K>0$ such that for all $a \in A$ and all i,

$$
\left\|a m_{i}-m_{i} a\right\| \leq K\|a\|, \quad\left\|a \pi\left(m_{i}\right)-a\right\| \leq K\|a\|, \quad\left\|\pi\left(m_{i}\right) a-a\right\| \leq K\|a\| .
$$

Johnson proved in [Joh1] that a Banach algebra A is amenable if and only if there exists a bounded approximate diagonal, i.e. an approximate diagonal $\left\{m_{i}\right\}$ satisfying $\sup _{\alpha}\left\|m_{i}\right\|<\infty$.

According to [GhZh] a Banach algebra A is called pseudo-amenable if it has an approximate diagonal, and it is pseudo-contractible if it possesses a central approximate diagonal $\left\{m_{i}\right\}$, i.e. $a m_{i}=m_{i} a$ for all $a \in A$ and all i.

Definition 1.2. A Banach algebra A is called boundedly pseudo-amenable if it has a multiplier-bounded approximate diagonal. The term "K-pseudo-amenable" refers to bounded pseudo-amenability with multiplier bound $K>0$.

Like Definition 1.2 we introduce the concept of bounded pseudo-contractibility.
Definition 1.3. A Banach algebra A is called boundedly pseudo-contractible if it has a central multiplier-bounded approximate diagonal, that is to say there are a central approximate diagonal $\left\{m_{i}\right\}$ and a constant $K>0$ such that

$$
\left\|a \pi\left(m_{i}\right)-a\right\| \leq K\|a\| \quad(a \in A) .
$$

Similarly, the term "K-pseudo-contractible" refers to bounded pseudo-contractibility with multiplier bound $K>0$.
It is needless to say that every boundedly pseudo-contractible Banach algebra is boundedly pseudoamenable.

Motivated by the earlier investigations, in this paper, we verify bounded pseudo-amenability and contractibility of some important Banach algebras in harmonic analysis such as group and measure algebras of a locally compact group, Fourier algebra of a discrete group and some algebras constructed on discrete semigroups. We also introduce a multiplier-bounded approximate biprojectivity for Banach algebras and verify its relation with bounded pseudo-amenability and contractibility.

2. Bounded pseudo-amenability and contractibility

In this section we give some general properties of bounded pseudo-amenable and contractible Banach algebras including hereditary properties.

Let A be a Banach algebra. We say that a net $\left(e_{\alpha}\right)$ is an approximate identity for A, if $\left\|a e_{\alpha}-a\right\| \rightarrow 0$ and $\left\|e_{\alpha} a-a\right\| \rightarrow 0$ for all $a \in A$. It is called central if $a e_{\alpha}=e_{\alpha} a$ for each $a \in A$. We call $\left(e_{\alpha}\right)$ a bounded approximate identity for A, if it is also bounded. The net $\left(e_{\alpha}\right)$ is termed a multiplier-bounded approximate identity for A if there exists a constant $k>0$ such that $\left\|a e_{\alpha}\right\| \leq k\|a\|$ and $\left\|e_{\alpha} a\right\| \leq k\|a\|$ for all $a \in A$ and all α. It is clear that boundedly pseudo-amenable Banach algebras possess a multiplier-bounded approximate identity and pseudo-contractible Banach algebras have a multiplier-bounded central approximate identity.

The unitization of a Banach algebra A is denoted by $A^{\#}$ which is $\mathcal{A} \oplus \mathbb{C}$ with the following product:

$$
(a, \lambda) \cdot(b, \mu)=(a b+\mu a+\lambda b, \lambda \mu) \quad(a, b \in A, \lambda, \mu \in \mathbb{C})
$$

It is obvious that with l^{1}-norm $A^{\#}$ is a Banach algebra as well.
Proposition 2.1. ([CGZ, Proposition 2.2]) A Banach algebra A is boundedly approximately contractible if and only if its unitization $A^{\#}$ is boundedly pseudo-amenable.

The next proposition provide an example of a pseudo-amenable Banach algebra which is not boundedly pseudo-amenable.

Proposition 2.2. There is a unital Banach algebra which is pseudo-amenable but not boundedly pseudo-amenable.
Proof. Consider the Banach algebra A constructed in [GhR] which is boundedly approximately amenable but not boundedly approximately contractible. Then it follows from [CGZ, Proposition 2.4] that $A^{\#}$ is boundedly approximately amenable and so $A^{\#}$ is pseudo-amenable by [Pou1, Corollary 3.7]. Using Proposition 2.1 and the fact that A is not boundedly approximately contractible we conclude that $A^{\#}$ is not boundedly pseudo-amenable.

Theorem 2.3. Let A be a K-pseudo-amenable (-contractible) Banach algebra, B a Banach algebra and $\theta: A \rightarrow B$ a continuous epimorphism. Then B is boundedly pseudo-amenable (-contractible) with bound $K^{\prime}=\max \left\{K\|\theta\|^{2}, K\|\theta\|\right\}$.

Proof. By the assumption there is a net $\left\{m_{i}\right\}$ in $A \hat{\otimes} A$ such that

$$
\begin{array}{ll}
a m_{i}-m_{i} a \rightarrow 0, & a \pi\left(m_{i}\right) \rightarrow a, \\
\left\|a m_{i}-m_{i} a\right\| \leq K\|a\|, & \left\|a \pi\left(m_{i}\right)-a\right\| \leq K\|a\|, \quad\left\|\pi\left(m_{i}\right) a-a\right\| \leq K\|a\| .
\end{array}
$$

For each $i \in \mathbb{N}$ let $\left\{a_{n}^{i}\right\}_{n=1}^{\infty},\left\{b_{n}^{i}\right\}_{n=1}^{\infty} \subset A$ be sequences such that $m_{i}=\sum_{n=1}^{\infty} a_{n}^{i} \otimes b_{n}^{i}$ and $\sum_{n=1}^{\infty}\left\|a_{n}^{i}\right\|\| \| b_{n}^{i} \|<\infty$. Set $C=\|\theta\|$ and define

$$
M_{i}=(\theta \otimes \theta)\left(m_{i}\right)=\sum_{n=1}^{\infty} \theta\left(a_{n}^{i}\right) \otimes \theta\left(b_{n}^{i}\right)
$$

Then $\left\|M_{i}\right\| \leq C^{2}\left\|m_{i}\right\|$ and for each $a \in A$,

$$
\begin{aligned}
\left\|\theta(a) M_{i}-M_{i} \theta(a)\right\| & =\left\|(\theta \otimes \theta)\left(a m_{i}-m_{i} a\right)\right\| \leq C^{2}\left\|a m_{i}-m_{i} a\right\| \leq C^{2} K\|a\| \\
\left\|\theta(a) \pi\left(M_{i}\right)-\theta(a)\right\| & =\left\|\theta(a) \pi\left(\theta \otimes \theta\left(m_{i}\right)\right)-\theta(a)\right\|=\left\|\theta(a) \theta\left(\pi\left(m_{i}\right)\right)-\theta(a)\right\| \\
& =\left\|\theta\left(a \pi\left(m_{i}\right)-a\right)\right\| \leq C\left\|a \pi\left(m_{i}\right)-a\right\| \leq C K\|a\|
\end{aligned}
$$

and similarly

$$
\left\|\pi\left(M_{i}\right) \theta(a)-\theta(a)\right\| \quad \leq C K\|a\| .
$$

Therefore, $\left\{M_{i}\right\}$ is a multiplier-bounded approximate diagonal for B, with bound $K^{\prime}=\max \left\{K C^{2}, K C\right\}$.
Corollary 2.4. Let A be a K-pseudo-amenable (contractible) Banach algebra and I be a closed two-sided ideal of A. Then A/I is K-pseudo-amenable (contractible).

Corollary 2.5. Let A and B be two Banach algebras such that $A \hat{\otimes} B$ is boundedly pseudo-amenable (contractible) and B has a non-zero character. Then A is boundedly pseudo-amenable (contractible).

Proof. Suppose that $A \hat{\otimes} B$ is K-pseudo amenable, φ is a non-zero character of B and consider the epimorphism $\theta(A \hat{\otimes} B) \rightarrow A$ by $\theta(a \otimes b)=\varphi(b) a$. Now Theorem 2.3 implies that A is K-pseudo-amenable.

Theorem 2.6. Suppose that A is a boundedly pseudo-amenable Banach algebra and J is a two-sided closed ideal of A. Suppose also $\left\{e_{\alpha}\right\} \subseteq A$ is a central approximate identity for J that is multiplier-bounded in A. Then J is also boundedly pseudo-amenable.

Proof. By the assumption there is a constant $M \geq 1$ such that for all α and $a \in A$,

$$
\left\|a e_{\alpha}\right\| \leq M\|a\|, \quad\left\|e_{\alpha} a\right\| \leq M\|a\| .
$$

So for each α and $m \in A \hat{\otimes} A$ we infer that

$$
\left\|m e_{\alpha}\right\| \leq M\|m\|, \quad\left\|e_{\alpha} m\right\| \leq M\|m\| .
$$

Let $\left\{m_{i}\right\} \subset A \hat{\otimes} A$ be a net satisfying conditions of Definition 1.2 with bound $K>0$. For any $\varepsilon>0$ and finite set $F \subset J$, there are i and α such that

$$
\left\|a m_{i}-m_{i} a\right\| M^{2} \leq \varepsilon / 2, \quad\left\|\pi\left(m_{i}\right) a-a\right\| M \leq \varepsilon / 2 \quad(a \in F)
$$

and

$$
\left\|e_{\alpha} a-a\right\| \leq \varepsilon / 4, \quad\left\|\pi\left(m_{i}\right)\left(e_{\alpha} a-a\right)\right\| M \leq \varepsilon / 4 \quad(a \in F) .
$$

Similar to the proof of [GhZh, Proposition 2.6], we obtain

$$
\left\|a e_{\alpha} m_{i} e_{\alpha}-e_{\alpha} m_{i} e_{\alpha} a\right\| \leq \varepsilon, \quad\left\|\pi\left(e_{\alpha} m_{i} e_{\alpha}\right) a-a\right\|<\varepsilon \quad(a \in F) .
$$

Passing to a subnet we may suppose that $\left\{e_{\alpha} m_{i} e_{\alpha}\right\} \subset J \hat{\otimes} J$ constitutes an approximate diagonal for J. Since $\left\{e_{\alpha}\right\}$ is central, for each i and $a \in J$ we have

$$
\begin{aligned}
\left\|a e_{\alpha} m_{i} e_{\alpha}-e_{\alpha} m_{i} e_{\alpha} a\right\| & =\left\|e_{\alpha} a m_{i} e_{\alpha}-e_{i} m_{i} a e_{\alpha}\right\|=\left\|e_{\alpha}\left(a m_{i}-m_{i} a\right) e_{\alpha}\right\| \\
& \leq M^{2}\left\|a m_{i}-m_{i} a\right\| \leq M^{2} K\|a\|,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\pi\left(e_{\alpha} m_{i} e_{\alpha}\right) a-a\right\| & =\left\|e_{\alpha} \pi\left(m_{i}\right) e_{\alpha} a-a\right\| \\
& =\left\|e_{\alpha} \pi\left(m_{i}\right) e_{\alpha} a-e_{\alpha} e_{\alpha} a+e_{\alpha} e_{\alpha} a-a\right\| \\
& \leq\left\|e_{\alpha}\left(\pi\left(m_{i}\right) e_{\alpha} a-e_{\alpha} a\right)\right\|+\left\|e_{\alpha} e_{\alpha} a-a\right\| \\
& \leq M\left\|\pi\left(m_{i}\right) e_{\alpha} a-e_{\alpha} a\right\|+\left\|e_{\alpha} e_{\alpha} a\right\|+\|a\| \\
& \leq M K\left\|e_{\alpha} a\right\|+M\left\|e_{\alpha} a\right\|+\|a\| \\
& \leq M^{2} K\|a\|+M^{2}\|a\|+\|a\| \\
& =\left(M^{2} K+M^{2}+1\right)\|a\| .
\end{aligned}
$$

Likewise, $\left\|a \pi\left(e_{\alpha} m_{i} e_{\alpha}\right)-a\right\| \leq\left(M^{2} K+M^{2}+1\right)\|a\|$. These imply that J is $\left(M^{2} K+M^{2}+1\right)$-pseudo-amenable.
Corollary 2.7. Suppose that A is a boundedly pseudo-amenable Banach algebra, J a closed two-sided ideal of A with a bounded central approximate identity. Then J is boundedly pseudo-amenable.

The proof of the next proposition is the same as that of [GhZh, Proposition 3.3] and is omitted.
Proposition 2.8. Let A be a M-boundedly approximately contractible Banach algebra. If A has a bounded central approximate identity $\left\{e_{\alpha}\right\}$ with bound K, then A is $\left(2 K^{2}+M\right)$-pseudo-amenable.

Corollary 2.9. Let A be a boundedly approximately contractible commutative Banach algebra. Then A is boundedly pseudo-amenable.

Proof. Every boundedly approximately contractible Banach algebra has a bounded approximate identity.

Theorem 2.10. Suppose that A is a boundedly pseudo-amenable Banach algebra and X is a Banach A-bimodule for which each multiplier bounded left (right) approximate identity of A is a mutiplier bounded left (right) approximate identity for X. Then

1. Every derivation $D: A \rightarrow X$ is boundedly approximately inner.
2. Every derivation $D: A \rightarrow X^{*}$ is boundedly weak* approximately inner.

Proof. (1): Let $\Phi: A \hat{\otimes} A \rightarrow X$ be defined by $\Phi(a \otimes b)=D(a) \cdot b$ and let $\left\{m_{i}\right\}$ be a net satisfying conditions of Definition 1.2 with corresponding bound $K>0$. If we set $\psi_{i}=-\Phi\left(m_{i}\right)$, then as in [GhZh, Proposition 3.5] for each $a \in A$ we obtain

$$
D(a)=\lim _{i}\left(a \psi_{i}-\psi_{i} a\right),
$$

and also we get

$$
\begin{aligned}
\left\|a \cdot \psi_{i}-\psi_{i} \cdot a\right\|-\left\|D(a) \pi\left(m_{i}\right)\right\| & \leq\left\|a \cdot \psi_{i}-\psi_{i} \cdot a-D(a) \pi\left(m_{i}\right)\right\|=\left\|\Phi\left(a \cdot m_{i}-m_{i} \cdot a\right)\right\| \\
& \leq\|\Phi\|\left\|a \cdot m_{i}-m_{i} \cdot a\right\| \leq K\|\Phi\|\|a\| \leq K\|D\|\|a\|,
\end{aligned}
$$

and so

$$
\left\|a \cdot \psi_{i}-\psi_{i} \cdot a\right\| \leq K\|D \mid\|\|a\|+\left\|D(a) \pi\left(m_{i}\right)\right\| \leq K\|D\|\|a\|+\left(K^{\prime}+1\right)\|D(a)\| \leq K^{\prime \prime}\|D(a)\| .
$$

Whence D is boundedly approximately inner.
(2) can be proven similarly.

Obviously, every contractible Banach algebra is boundedly pseudo-contractible. We end this section by presenting an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently not contractible.

Example 2.11. For $1 \leq p<\infty$ let ℓ^{p} be the usual Banach sequence algebra with pointwise multiplication. Since ℓ^{p} does not have a bounded approximate identity, it is not amenable. Now for each $i \in \mathbb{N}$ let δ_{i} be the characteristic function of the singleton $\{i\}$. Then every $f \in \ell^{p}$ is of the form $\sum_{i=1}^{\infty} f(i) \delta_{i}$. For each $n \in \mathbb{N}$ put $u_{n}:=\sum_{i=1}^{n} \delta_{i} \otimes \delta_{i}$. It is seen that

$$
f \cdot u_{n}=\sum_{i=1}^{n} f(i) \delta_{i} \otimes \delta_{i}=\sum_{i=1}^{n} \delta_{i} \otimes \delta_{i} f(i)=u_{n} \cdot f
$$

and

$$
\left\|f \pi\left(u_{n}\right)-f\right\|_{p}=\left\|\sum_{i=1}^{n} f(i) \delta_{i}-\sum_{i=1}^{\infty} f(i) \delta_{i}\right\|_{p} \rightarrow 0, \quad\left\|f \pi\left(u_{n}\right)\right\| \leq\|f\|
$$

Hence, ℓ^{p} is 1-pseudo-contractible. We also remark that ℓ^{p} is not approximately amenable[DLZh]. Therefore ($\left.\ell^{p}\right)^{\#}$ is not approximately amenable and thus $\left(\ell^{p}\right)^{\#}$ is not pseudo-amenable by [GhZh, Proposition 3.2]. Therefore, bounded pseudo-contractibility of a Banach algebra A does not imply not only bounded pseudo-contractibility but also bounded pseudo-amenability of $A^{\#}$.

3. Banach algebras on locally compact groups

In this section we will verify Bounded pseudo-amenability and contractibility of some important Banach algebras on locally compact groups. We commence with the convolution group and measure algebras $L^{1}(G)$ and $M(G)$ and their second duals.

Proposition 3.1. For a locally compact group $G, L^{1}(G)$ is boundedly pseudo-amenable if and only if G is amenable.
Proof. If G is amenable then $L^{1}(G)$ is amenable and so it is boundedly pseudo-amenable. If $L^{1}(G)$ is boundedly pseudo-amenable, then it is pseudo-amenable. Thus G is amenable by [GhZh, Proposition 4.1].

The next proposition is a consequence of [GhZh, Proposition 4.2].
Proposition 3.2. Let G be a locally compact group. Then

1. the convolution measure algebra $M(G)$ is boundedly pseudo-amenable if and only if G is discrete and amenable.
2. $L^{1}(G)^{* *}$ is boundedly pseudo-amenable if and only if G is finite.

The following proposition determines the bounded pseudo-amenability and contractibility of the Fourier algebra $A(G)$ of a discrete group G which provides an example of a non-amenable, boundedly pseudocontractible Banach algebra.

Proposition 3.3. Let G be a discrete group and $A(G)$ be its Fourier algebra. Then the following are equivalent.

1. $A(G)$ has a multiplier-bounded approximate identity.
2. $A(G)$ is boundedly pseudo-contractible.
3. $A(G)$ is boundedly pseudo-amenable.

Proof. (1) $\Longrightarrow(2)$: Let $\left\{e_{\alpha}\right\}$ be a multiplier-bounded approximate identity of $A(G)$ with bound M. As it is mentioned in Remark 3.4 of [GhS], we may suppose that every e_{α} has finite support, say S_{α}. Now let

$$
m_{\alpha}=\sum_{x \in S_{\alpha}} e_{\alpha}(x) \delta_{x} \otimes \delta_{x}
$$

where δ_{x} is the evaluational function at x. For each $f \in A(G)$ and $x \in G$ we have

$$
\begin{aligned}
f \cdot\left(\delta_{x} \otimes \delta_{x}\right)-\left(\delta_{x} \otimes \delta_{x}\right) \cdot f & =\left(f \delta_{x}\right) \otimes \delta_{x}-\delta_{x} \otimes\left(\delta_{x} f\right) \\
& =\left(f(x) \delta_{x}\right) \otimes \delta_{x}-\delta_{x} \otimes\left(\delta_{x} f(x)\right) \\
& =f(x)\left(\delta_{x} \otimes \delta_{x}-\delta_{x} \otimes \delta_{x}\right)=0 .
\end{aligned}
$$

Therefore, $f \cdot m_{\alpha}=m_{\alpha} \cdot f$. Since $\pi\left(m_{\alpha}\right)=e_{\alpha}$, for all $f \in A(G)$ we have $\pi\left(m_{\alpha}\right) f-f \rightarrow 0$. Hence $\left\{m_{\alpha}\right\}$ is central approximate diagonal for $A(G)$. Furthermore, for any $f \in A(G)$ we have

$$
\left\|f \pi\left(m_{\alpha}\right)-f\right\|=\left\|f e_{\alpha}-f\right\| \leq(M+1)\|f\| .
$$

Hence, $A(G)$ is $(M+1)$-pseudo-contractible.
$(2) \Longrightarrow(3)$ is clear.
$(3) \Longrightarrow(1)$: This is immediate inasmuch as every boundedly pseudo-amenable Banach algebras has a multiplier-bounded approximate identity.

The following example shows that bounded pseudo-contractibility does not imply amenability.
Example 3.4. Let G be a free group. It is shown in [Haa, Theorem 2.1] that $A(G)$ has a multiplier-bounded approximate identity consisting of functions with finite support. Thus the Fourier algebra of a free group is boundedly pseudo-contractible. Nonetheless, free groups with at least 2 generators are not amenable and so, by Leptin's theorem, their Fourier algebras lack a bounded approximate identity; consequently they are not amenable.

For a locally compact group G, let $P F_{p}(G)$ denote the Banach algebra of p-pseudofunctions on G which is the norm closure of the image of $L^{1}(G)$ in $B\left(L^{p}(G)\right)$, the space of bounded operators on $L^{p}(G)$, under the left regular representation. It is shown in [CGZ, Theorem 7.1] that for a discrete group G, amenability and pseudo amenability of $P F_{p}(G)$ is equivalent to the amenability of G. We therefore have the following proposition.

Proposition 3.5. Let G be a discrete group and $p \in(1, \infty)$. Then $P F_{p}(G)$ is boundedly pseudo-amenable if and only if G is amenable.

4. Banach algebras on discrete semigroups

This section is devoted to the Bounded pseudo-amenability and contractibility of many significant Banach algebras constructed on semigroups.

Like Example 3.4, the following is an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently is not contractible.

Example 4.1. Let Λ be non-empty, totally ordered set which is a semigroup if the product of two elements is defined to be their maximum. In fact it is a semilattice and is denoted by Λ_{V}. Proposition 6.2 of [CGZ] shows that the semigroup algebra $\ell^{1}\left(\Lambda_{V}\right)$ is boundedly pseudo-amenable.

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of Banach algebras and $1 \leq q<\infty$. Then their ℓq-direct sum

$$
A=\ell^{q}-\bigoplus_{i \in I} A_{i}=\left\{a=\left(a_{i}\right)_{i \in I} \mid a_{i} \in A_{i},\|a\|_{A}=\left(\sum_{i \in I}\left\|a_{i}\right\|_{A_{i}}^{q}\right)^{1 / q}<\infty\right\}
$$

is a Banach algebra under componentwise product.
Theorem 4.2. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras, $1 \leq q<\infty$ and $A=$ $\ell^{q}-\oplus_{i \in I} A_{i}$. Then A is $(K+1)$-pseudo-amenable (contractible).

Proof. We follow the proof of Proposition 2.1 of [GhZh]. For arbitrary $\varepsilon>0$ and a finite set $F \subset A$, there is a finite set $J \subset I$ such that $\left\|P_{J}(a)-a\right\|_{A}<\frac{\varepsilon}{2}$ for $a \in A$, where $P_{J}: A \rightarrow \ell^{q}-\oplus_{i \in J} A_{i}$ is the natural projection and P_{i} is defined to be $P_{\{i\}}$. Since A_{i} is K-pseudo-amenable, there are $i \in J$ and $u_{i} \in A_{i} \hat{\otimes} A_{i}$ such that

$$
\left\|P_{i}(a) u_{i}-u_{i} P_{i}(a)\right\|<\frac{\varepsilon}{|J|^{\frac{1}{a}}}, \quad\left\|\pi_{i}\left(u_{i}\right) P_{i}(a)-P_{i}(a)\right\|<\frac{\varepsilon}{2|J|^{\frac{1}{q}}} \quad(a \in F)
$$

and for all $b \in A$,

$$
\left\|P_{i}(b) u_{i}-u_{i} P_{i}(b)\right\|<K\left\|P_{i}(b)\right\|, \quad\left\|\pi_{i}\left(u_{i}\right) P_{i}(b)-P_{i}(b)\right\|<K\left\|P_{i}(b)\right\|, \quad\left\|P_{i}(b) \pi_{i}\left(u_{i}\right)-P_{i}(b)\right\|<K\left\|P_{i}(b)\right\|,
$$

where $\pi_{i}: A_{i} \hat{\otimes} A_{i} \rightarrow A_{i}$ is also the diagonal map. Setting $u=\left\{x_{i}\right\}_{i \in I}$ where $x_{i}=u_{i}$ for $i \in J$ and $x_{i}=0$ for $i \in I \backslash J$ implies that $u a=u P_{J}(a)$ and $a u=P_{J}(a) u$. Hence for each $a \in F$,

$$
\|a u-u a\|_{A}=\left\|P_{J}(a) u-u P_{J}(a)\right\|_{A}=\left(\sum_{i \in J}\left\|P_{i}(a) u_{i}-u_{i} P_{i}(a)\right\|^{q}\right)^{\frac{1}{q}}<\varepsilon ;
$$

and

$$
\begin{aligned}
\|a \pi(u)-a\|_{A} & =\left\|P_{J}(a) \pi(u)-P_{J}(a)+P_{J}(a)-a\right\|_{A} \\
& \leq\left\|P_{J}(a) \pi(u)-P_{J}(a)\right\|_{A}+\left\|P_{J}(a)-a\right\|_{A} \\
& =\sum_{i \in J}\left(\left\|P_{i}(a) \pi_{i}(u)-P_{i}(a)\right\|^{q}\right)^{\frac{1}{a}}+\left\|P_{J}(a)-a\right\|_{A} \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Also for each $b \in A$ we have

$$
\begin{align*}
\|b u-u b\|_{A} & =\left\|P_{J}(b) u-u P_{J}(b)\right\|_{A}=\left(\sum_{i \in J}\left\|P_{i}(b) u-u P_{i}(b)\right\|_{A_{i}}^{q}\right)^{\frac{1}{q}} \\
& \leq\left(\sum_{i \in J} K^{q}\left\|P_{i}(b)\right\|_{A_{i}}^{q}\right)^{\frac{1}{q}}=K\left\|P_{J}(b)\right\|_{A} \leq K\|b\|_{A} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\|b \pi(u)-b\|_{A} & \leq\left\|P_{J}(b) \pi(u)-P_{J}(b)\right\|_{A}+\left\|P_{J}(b)-b\right\|_{A} \\
& \leq\left(\sum_{i \in J}\left\|P_{i}(b) \pi_{i}(u)-P_{i}(b)\right\|_{A_{i}}^{q}\right)^{\frac{1}{q}}+\|b\|_{A} \\
& \leq\left(\sum_{i \in J} K^{q}\left\|P_{i}(b)\right\|_{A_{i}}^{q}\right)^{\frac{1}{9}}+\|b\|_{A}=K\left\|P_{J}(b)\right\|_{A}+\|b\|_{A} \\
& \leq(k+1)\|b\|_{A}, \tag{2}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\|\pi(u) b-b\|_{A} \leq(K+1)\|b\|_{A}, \quad(b \in A) \tag{3}
\end{equation*}
$$

So Theorem 4.2 shows that there are a large class of bounded pseudo-amenable(contractible) Banach algebras that are not amenable. We remark that $A=\ell^{q}-\oplus_{i \in I} A_{i}$ is amenable if and only if $|I|<\infty$ and each A_{i} is amenable.

Example 4.3. Since $\ell^{p}=\ell^{p}-\bigoplus_{1}^{\infty} \mathbb{C}$, it is 2-pseudo-amenable invoking Theorem 4.2. Notice that, it is in fact ℓ^{p} is 1-pseudo-contractible by Example 2.11.

Proposition 4.4. Let A be a Banach algebra and $\mathbb{M}_{n}(A)$ be its $\ell^{1}-M u n n$ algebra $(n \in \mathbb{N})$. Then $\mathbb{M}_{n}(A)$ is K - p seudoamenable if and only if A is K -pseudo-amenable.

Proof. Suppose that $\left\{\Psi_{\alpha}\right\}$ is an approximate diagonal of $M_{n}(A)$ with bound K. Keeping $\mathbb{M}_{n}(A) \hat{\otimes} \mathbb{M}_{n}(A) \cong$ $\mathbb{M}_{n^{2}}(A \hat{\otimes} A)$ in mind, we may assume that

$$
\Psi_{\alpha}=\left[\begin{array}{cccc}
m_{11}^{\alpha} & m_{12}^{\alpha} & \ldots & m_{1 n^{2}}^{\alpha} \\
m_{21}^{\alpha} & m_{22}^{\alpha} & \ldots & m_{2 n^{2}}^{\alpha} \\
\vdots & \vdots & \vdots & \vdots \\
m_{n^{2} 1}^{\alpha} & m_{n^{2} 2}^{\alpha} & \ldots & m_{n^{2} n^{2}}^{\alpha}
\end{array}\right],
$$

where $m_{i j}^{\alpha} \in A \hat{\otimes} A$. For each $a \in A$ we have

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & a & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & a
\end{array}\right] \Psi_{\alpha}-\Psi_{\alpha}\left[\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & a & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & a
\end{array}\right]=} \\
\\
{\left[\begin{array}{cccc}
a m_{11}^{\alpha} & a m_{12}^{\alpha} & \ldots & a m_{11^{2}}^{\alpha} \\
a m_{21}^{\alpha} & a m_{22}^{\alpha} & \ldots & a m_{2 n^{2}}^{\alpha} \\
\vdots & \vdots & \vdots & \vdots \\
a m_{n^{2} 1}^{\alpha} & a m_{n^{2} 2}^{\alpha} & \ldots & a m_{n^{2} n^{2}}^{\alpha}
\end{array}\right]-\left[\begin{array}{cccc}
m_{11}^{\alpha} a & m_{12}^{\alpha} a & \ldots & m_{1 n^{2}}^{\alpha} a \\
m_{21}^{\alpha} a & m_{22}^{\alpha} a & \ldots & m_{2 n^{2}}^{\alpha} a \\
\vdots & \vdots & \vdots & \vdots \\
m_{n^{2} 1}^{\alpha} a & m_{n^{2} 2}^{\alpha} a & \ldots & m_{n^{2} 2^{2}}^{\alpha} a
\end{array}\right]}
\end{gathered}
$$

Hence $a m_{11}^{\alpha}-m_{11}^{\alpha} a \rightarrow 0$ and $\left\|a m_{11}^{\alpha}-m_{11}^{\alpha} a\right\| \leq K\|a\|$. With a similar fashion we can get $a \pi\left(m_{11}^{\alpha}\right) \rightarrow a, \pi\left(m_{11}^{\alpha}\right) a \rightarrow a$, $\left\|a \pi\left(m_{11}^{\alpha}\right)-a\right\| \leq K\|a\|$ and $\left\|\pi\left(m_{11}^{\alpha}\right) a-a\right\| \leq K\|a\|$.

Conversely, suppose that A is K-pseudo-amenable and $\left\{m_{\alpha}\right\}$ is an approximate diagonal for it, and set

$$
\Psi_{\alpha}=\left[\begin{array}{cccc}
m_{\alpha} & 0 & \ldots & 0 \\
0 & m_{\alpha} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & m_{\alpha}
\end{array}\right] .
$$

Obviously $\left\{\Psi_{\alpha}\right\}$ is an approximate diagonal for $\mathbb{M}_{n}(A)$ and for any $M \in \mathbb{M}_{n}(A)$ we have

$$
\left\|\Psi_{\alpha} M-M \Psi_{\alpha}\right\| \leq K\|M\|, \quad\left\|\bar{\pi}\left(\Psi_{\alpha}\right) M-M\right\| \leq K\|M\|, \quad\left\|M \bar{\pi}\left(\Psi_{\alpha}\right)-M\right\| \leq K\|M\|
$$

where $\bar{\pi}: \mathbb{M}_{n}(A) \hat{\otimes} \mathbb{M}_{n}(A) \rightarrow \mathbb{M}_{n}(A)$ is the diagonal map.
Definition 4.5. A (discrete) semigroup S is called an inverse semigroup if for any $s \in S$ there exists a unique $s^{*} \in S$ such that $s^{*} s s^{*}=s^{*}$ and $s s^{*} s=s$. The set of idempotent elements of S is denoted by $E(S)$, that is $E(S)=\left\{s s^{*}: s \in S\right\}$.

Let S be a inverse semigroup. For $e \in E(S), G_{e}=\left\{s \in S: s s^{*}=s^{*} s=e\right\}$ constitutes a group called maximal subgroup of G at e.

For all $s, t \in S$ the relation \mathcal{D} defined on an inverse semigroup S by $s \mathcal{D} t$ if and only if there exists $x \in S$ with

$$
S s \cup\{s\}=S x \cup\{x\}, \quad t S \cup\{t\}=x S \cup\{x\},
$$

is an equivalence relation. There is also a natural partial order on S given by $s \leq t \Leftrightarrow s=s s^{*} t$. For $p \in S$ we set $(p]=\{q \in S: q \leq p\}$.

Definition 4.6. An inverse semigroup S is called locally finite whenever $|(p]|<\infty$ for all $p \in S$, and it is called uniformly locally finite (ULF) if $\sup _{p \in S}|(p]|<\infty$.

We recall that a Banach algebra A is called biflat if there exists a Banach A-bimodule morphim $\rho:(A \hat{\otimes} A)^{*} \rightarrow A^{*}$ such that $\rho \circ \pi^{*}(\gamma)=\gamma$ for all $\gamma \in A^{*}$, where $\pi^{*}: A^{*} \rightarrow(A \hat{\otimes} A)^{*}$ is adjoint of the diagonal map π.
Proposition 4.7. Let S be a ULF inverse semigroup and $\left\{D_{\lambda}: \lambda \in \Lambda\right\}$ be the family of its \mathcal{D}-classes such that for all $\lambda \in \Lambda,\left|E\left(D_{\lambda}\right)\right|<\infty$. For each $\lambda \in \Lambda$ let $p_{\lambda} \in E\left(D_{\lambda}\right)$. Then the following statements are equivalent.

1. For each $\lambda \in \Lambda$ the maximal subgroup $G_{p_{\lambda}}$ is amenable.
2. $\ell^{1}(S)$ is pseudo-amenable.
3. $\ell^{1}(S)$ is boundedly pseudo-amenable.

Moreover, in this case $\ell^{1}(S)$ is biflat.
Proof. From [Ram, Theorem 2.18] we have the following isometric isomorphism

$$
\ell^{1}(S) \cong \ell^{1}-\bigoplus\left\{\mathbb{M}_{E\left(D_{\lambda}\right)}\left(\ell^{1}\left(G_{p_{\lambda}}\right)\right): \lambda \in \Lambda\right\} .
$$

The proposition now follows from Propositions 3.1, 4.4, Theorem 4.2, and [Ram, Therem 3.7].
Definition 4.8. An inverse semigroup S is called a Clifford semigroup if for all $s \in S, s s^{*}=s^{*} s$.
Theorem 4.9. Let S be a Clifford semigroup and $A(S)$ be its Fourier algebra introduced in [MP]. Then the following statements are equivalent.

1. $A(S)$ has a multiplier-bounded approximate identity.
2. $A(S)$ is boundedly pseudo-contractible.
3. $A(S)$ is boundedly pseudo-amenable.

Proof. $(1) \Longrightarrow(2)$: Suppose that $A(S)$ has a multiplier-bounded approximate identity with bound M. By [MP] we have the following useful decomposition

$$
A(S)=\ell^{1}-\bigoplus_{e \in E(S)} A\left(G_{e}\right)
$$

Thus it can be readily seen that for each $e \in E(S), A\left(G_{e}\right)$ has a mutiplier-bounded approximate identity with bound M. From Proposition 3.3 we conclude that $A\left(G_{e}\right)$ is $(M+1)$-pseudo-contractible for all $e \in E(S)$. Now Theorem 4.2 implies that $A(S)$ is $(M+2)$-pseudo-contractible. The other parts of proof are obvious.

Applying the above decomposition, as it is done in [MP], for a Clifford semigroup S with abelian maximal subgroups G_{e}, we obtain $A(S) \cong \ell^{1}-\bigoplus_{e \in E(S)} L^{1}\left(\hat{G}_{e}\right)$, where \hat{G}_{e} is the Pontrjagin dual of G_{e}. Since \hat{G}_{e} is compact, it is amenable and so $L^{1}\left(\hat{G}_{e}\right)$ is 1-amenable. Hence $L^{1}\left(\hat{G}_{e}\right)$ is 1-pseudo-amenable for all $e \in E(S)$. From Theorem 4.2 it can be inferred that $A(S)$ is 2-pseudo-amenable.

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of Banach algebras. Their c_{0}-direct sum

$$
A=c_{0}-\bigoplus_{i \in I} A_{i}=\left\{a=\left(a_{i}\right)_{i \in I} \mid a_{i} \in A_{i},\left\|a_{i}\right\|_{A_{i}} \rightarrow 0,\|a\|_{A}=\sup _{i \in I}\left\|a_{i}\right\|_{A_{i}}\right\}
$$

is a Banach algebra under componentwise product.
The next theorem gives the c_{0}-analogue of Theorem 4.2. Since the proof is similar, we omit it.
Theorem 4.10. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras and $A=c_{0}-\oplus_{i \in I} A_{i}$. Then A is $(K+1)$-pseudo-amenable (contractible).

Corollary 4.11. Let S be a Clifford semigroup and consider the Banach algebra $P F_{P}(S)$ of p-pseudofunctions on S introduced in [Pou2]. Then $P F_{p}(S)$ is boundedly pseudo-amenable if and only if every maximal subgroup G_{e} of S is amenable.

Proof. By [Pou2] we have the following decomposition

$$
P F_{p}(S) \cong c_{0}-\bigoplus_{e \in E(S)} P F_{p}\left(G_{e}\right)
$$

Combining Theorem 4.10 and Proposition 3.5 the corollary follows.

5. Multiplier-bounded approximate biprojectivity

In this section we introduce an approximate version of biprojectivity and then investigate its relation with (bounded) pseudo-amenability.

Definition 5.1. ([Pou1]) A Banach algebra A is said to be approximately biprojective if there is a net $\left\{\rho_{\alpha}\right\} \subset$ $\mathcal{B}(A \hat{\otimes} A, A)$ such that for each $a, b \in A$:

$$
\pi \circ \rho_{\alpha}(a) \rightarrow a, \quad \rho_{\alpha}(a b)-a \rho_{\alpha}(b) \rightarrow 0, \quad \rho_{\alpha}(a b)-\rho_{\alpha}(a) b \rightarrow 0
$$

We say that, A is called boundedly approximately biprojective when $\sup _{\alpha}\left\|\rho_{\alpha}\right\|<\infty$.
Definition 5.2. An approximately biprojective Banach algebra A is termed multiplier-boundedly approximately biprojective if there is a $K>0$ such that for each $a, b \in A$:

$$
\left\|\pi \circ \rho_{\alpha}(a)-a\right\| \leq K\|a\|, \quad\left\|\rho_{\alpha}(a b)-a \rho_{\alpha}(b)\right\| \leq K\|a\|\|b\|, \quad\left\|\rho_{\alpha}(a b)-\rho_{\alpha}(a) b\right\| \leq K\|a\|\|b\|,
$$

where $\left\{\rho_{\alpha}\right\}$ satisfies condition of Definition 5.1.
Obviously, every boundedly approximately biprojective Banach algebra is multiplier-boundedly approximately biprojective.

Corollary 5.3. Let A be a boundedly pseudo-amenable Banach algebra. Then A is multiplier-boundedly approximately biprojective.

Proof. Let $\left\{m_{\alpha}\right\}$ be an approximate diagonal of A with multiplier bound $K>0$. Define $\rho_{\alpha}: A \rightarrow A \hat{\otimes} A$ by $\rho_{\alpha}(a)=a \cdot m_{\alpha}$. By [Pou1, Proposition 3.4], we have

$$
\pi \circ \rho_{\alpha}(a) \rightarrow a, \quad \rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b) \rightarrow 0, \quad \rho_{\alpha}(a b)-\rho_{\alpha}(a) \cdot b \rightarrow 0, \quad(a, b \in A) .
$$

Moreover, for each $a \in A$ and for each α we have

$$
\left\|\pi \circ \rho_{\alpha}(a)-a\right\|=\left\|\pi\left(a \cdot m_{\alpha}\right)-a\right\|=\left\|a \pi\left(m_{\alpha}\right)-a\right\| \leq K\|a\|
$$

On the other hand, for all α and every $a, b \in A, \rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b)=0$ and

$$
\left\|\rho_{\alpha}(a b)-\rho_{\alpha}(a) \cdot b\right\|=\left\|a b \cdot m_{\alpha}-\left(a \cdot m_{\alpha}\right) \cdot b\right\| \leq\|a\|\left\|b \cdot m_{\alpha}-m_{\alpha} \cdot b\right\| \leq K\|a\|\|b\|
$$

Therefore A is multiplier-boundedly approximately biprojective.
Proposition 5.4. Let A be a multiplier-boundedly approximately biprojective Banach algebra with a central bounded approximate identity $\left\{e_{\beta}\right\}$. Then A is boundedly pseudo-amenable.

Proof. Let $\left\{\rho_{\alpha}\right\}$ be a net satisfying Definition 5.2. As in Proposition 3.5 of [Pou1], there are subnets $\left\{e_{\beta_{i}}\right\}$ of $\left\{e_{\beta}\right\}$ and $\left\{\rho_{\alpha_{i}}\right\}$ of $\left\{\rho_{\alpha}\right\}$ such that $m_{i}:=\rho_{\alpha_{i}}\left(e_{\beta_{i}}\right)$ is an approximate diagonal for A. We show that $\left\{m_{i}\right\}$ is a multiplier-bounded approximate diagonal. Let $\left\{e_{\beta}\right\}$ be bounded by K_{0}. Then for each $a \in A$ we have

$$
\begin{aligned}
\left\|a \cdot m_{i}-m_{i} \cdot a\right\| & =\left\|a \cdot \rho_{\alpha_{i}}\left(e_{\beta_{i}}\right)-\rho_{\alpha_{i}}\left(e_{\beta_{i}}\right) \cdot a\right\| \\
& =\left\|a \cdot \rho_{\alpha_{i}}\left(e_{\beta_{i}}\right)-\rho_{\alpha_{i}}\left(a e_{\beta_{i}}\right)+\rho_{\alpha_{i}}\left(e_{\beta_{1}} a\right)-\rho_{\alpha_{i}}\left(e_{\beta_{i}}\right) \cdot a\right\| \\
& \leq\left\|a \cdot \rho_{\alpha_{i}}\left(e_{\beta_{i}}\right)-\rho_{\alpha_{i}}\left(a e_{\beta_{i}}\right)\right\|+\left\|\rho_{\alpha_{i}}\left(e_{\beta_{i}} a\right)-\rho_{\alpha_{i}}\left(e_{\beta_{i}}\right) \cdot a\right\| \\
& \leq K\|a\|\left\|e_{\beta_{i}}\right\|+K\left\|e_{\beta_{i}}\right\|\|a\| \\
& \leq 2 K K K_{0}\|a\|,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\pi\left(m_{i}\right) a-a\right\| & =\left\|\pi \circ \rho_{\alpha_{i}}\left(e_{\beta_{i}}\right) a-a\right\| \leq\left\|\pi \circ \rho_{\alpha_{i}}\left(e_{\beta_{i}}\right) a-e_{i} a\right\|+\left\|e_{\beta_{i}} a-a\right\| \\
& \leq K\|a\|\left\|e_{\beta_{i}}\right\|+\|a\|\left\|e_{\beta_{i}}\right\|+\|a\|=\left(K K_{0}+K_{0}+1\right)\|a\| ;
\end{aligned}
$$

Hence A is boundedly pseudo-amenable.
The following example gives an approximately biprojective Banach algebra that is not multiplier-boundedly approximately biprojective.
Example 5.5. Suppose that A is the algebra introduced in Proposition 2.2. Approximate amenability of $A^{\#}$ implies its approximate biprojectivity [Pou1, Proposition 3.4]. On the other hand, $A^{\#}$ is not boundedly pseudo-amenable and so by Proposition 5.4 is not multiplier-boundedly approximately biprojective.

Here we give an example of multiplier-boundedly approximately biprojective Banach algebra which is not boundedly approximately biprojective.

Example 5.6. Suppose that S is an infinite non-empty set and consider the Banach algebra $\ell^{2}(S)$ with pointwise multiplication. Let $\left\{e_{i}\right\}_{i \in S}$ be the canonical basis for $\ell^{2}(S)$ and let Λ be the set of finite subsets of S, which is an ordered set with respect to inclusion. For any $F \in \Lambda$ define $m_{F}=\sum_{i \in F} e_{i} \otimes e_{i}$. Then $\left\{m_{F}\right\}_{F \in \Lambda}$ is a central approximate diagonal for $\ell^{2}(S)$ satisfying conditions of Definition 1.2. Therefore it is boundedly pseudo contractible and consequently, by Proposition 5.3, multiplier-boundedly approximately biprojective. However, it is known that $\ell^{2}(S)$ is not boundedly approximately biprojective (see [Pou1, Example 4.1]).

Corollary 5.7. If G is an infinite Abelian compact group, then $L^{2}(G)$ is a multiplier-boundedly approximately biprojective Banach algebra.

Proof. Suppose Γ is the dual group of G. From Plancherel Theorem we have $L^{2}(G) \cong \ell^{2}(\Gamma)$ and so Example 5.6 gives the desired result.

The last example provides a boundedly pseudo-amenable Banach algebra which is not boundedly approximately biprojective.

Example 5.8. Consider the inverse semigroup $S=(\mathbb{N}, *)$ whith $s * t=\min \{s, t\}$ for all $s, t \in N$. By [GLZ, Example 4.6], the convolution semigroup algebra $\ell^{1}(S)$ is sequentially approximately contractible. So the uniform boundedness principle implies that $\ell^{1}(S)$ is boundedly approximately contractible. Hence by Proposition 2.1, $\left(\ell^{1}(S)\right)^{\#}$ is boundedly pseudo amenable. Nevertheless, since S is a locally finite, non-uniformly locally finite inverse semigroup, by [Ram, Theorem 3.7], $\ell^{1}(S)$ is not biflat and consequently its unitization $\left(\ell^{1}(S)\right)^{\#}$ is not biflat. It now follows from [Ari, Theorem 3.6(A)] that $\left(\ell^{1}(S)\right)^{\#}$ is not boundedly approximately biprojective.

References

[Ari] O. Yu. Aristov, On approximation of flat Banach modules by free modules, Sbornik, Mathematics (2005), 1553-1583.
[CGZ] Y. Choi, F. Ghahramani and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256 (2009), 3158-3191.
[Dal] H. G. Dales, Banach algebras and Automatic continuity, Oxford university Press, 2001.
[DL] H. G. Dales and R. J. Loy, Approximate amenability of semigroup algebras and Segal algebras, Diss. Math., 474 (2010), 1-58.
[DLZh] H. G. Dales, R. J. Loy and Y. Zhang, Approximate amenability for Banach sequence algebras, Studia Math., 177 (2006), 81-96.
[GhL] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 79 (2004), 229-260.
[GLZ] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability. II, J. Funct. Anal., 254 (2008), 1776-1810.
[GhR] F. Ghahramani and C. J. Read, Approximate identities in approximate amenability, J. Funct. Anal., 262 (2012), 3929-3945.
[GhS] F. Ghahramani and R. Stoккe, Approximate and pseudo-amenability of the Fourier algebra, Indiana Univ. Math. J., 56 (2007), 909-930.
[GhZh] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Comb. Phil. Soc., 142 (2007), 111-123.
[GhHS] M. Ghandhari, H. Hatami and N. Spronk, Amenability constants for semilattice algebras, Semigroup Forum, 79 (2009), 279-297
[Haa] U. HaAgerup, An example of a nonnuclear C*-algebra, which has the metric approximatoin property, Invent. Math., 50 (1978/79), 279-293.
[Joh1] B. E. Jahnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math., 94 (1972), 685-698.
[Joh2] B. E. Jahnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
[MP] A. R. Medghalchi and H. Pourmahmood-Aghababa, Figa-Talamanca-Herz algebras for restricted inverse semigroups and Clifford semigroups, J. Math. Anal. Appl., 395 (2012), 473-485.
[Pou1] H. Pourmahmood-Аghababa, Approximately biprojective Banach algebras and nilpotent ideals, Bull. Austral. Math. Soc., 87 (2013), 158-173.
[Pou2] H. Pourmahmood-Aghababa, Pseudomeasures and pseudofunctions on inverse semigroups, Semigroup Forum, 90 (2015), 632647.
[Ram] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79 (2009), 515-530.

[^0]: 2010 Mathematics Subject Classification. Primary 46H25; Secondary 43A20, 43A07, 46H20
 Keywords. Amenability, Pseudo-amenability, Locally compact group, Group algebra, Fourier algebra, Biprojectivity
 Received: 16 November 2018; Accepted: 13 February 2020
 Communicated by Dragan S. Djordjević
 Email addresses: h_p_aghababa@tabrizu.ac.ir, pourmahmood@gmail.com (Hasan Pourmahmood-Aghababa), sattari@azaruniv.ac.ir (Mohammad Hossein Sattari), hamidmath2013@outlook.com (Hamid Shafie-Asl)

