Filomat 34:5 (2020), 1701–1712 https://doi.org/10.2298/FIL2005701P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Bounded Pseudo-Amenability and Contractibility of Certain Banach Algebras

Hasan Pourmahmood-Aghababa^a, Mohammad Hossein Sattari^b, Hamid Shafie-Asl^b

^aDepartment of Mathematics, University of Tabriz, Tabriz, Iran ^bFaculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract. The notion of bounded pseudo-amenability was introduced by Y. Choi and et al. [CGZ]. In this paper, similarly, we define bounded pseudo-contractibility and then investigate bounded pseudo-amenability and contractibility of various classes of Banach algebras including ones related to locally compact groups and discrete semigroups. We also introduce a multiplier bounded version of approximate biprojectivity for Banach algebras and determine its relation to bounded pseudo-amenability and contractibility.

1. Introduction

Let *A* be a Banach algebra and *X* a Banach *A*-bimodule. A bounded linear map $D : A \rightarrow X$ is called a *derivation* if

$$D(ab) = a \cdot D(b) + D(a) \cdot b \qquad (a, b \in A),$$

and it is termed *inner* if there is $x \in X$ such that

 $D(a) = a \cdot x - x \cdot a \qquad (a \in A).$

The notion of amenability of Banach algebras was established by B. E. Johnson in 1972 ([Joh2]). If every bounded derivation from *A* into the dual Banach *A*-bimodule X^* is inner for all Banach *A*-bimodules *X*, then *A* is said to be *amenable*. A Banach algebra *A* is called *contractible*, if every bounded derivation from *A* into any Banach *A*-bimodule is inner. In 2004, Ghahramani and Loy developed these concepts and introduced new notions of amenability and contractibility ([GhL]). The basic definition of their notions is referred to be approximately inner derivation. For an *A*-bimodule *X*, a derivation $D : A \to X$ is called *approximately inner* if there is a net of inner derivations $\{D_{\alpha} : A \to X\}_{\alpha}$ such that $D(a) = \lim_{\alpha} D_{\alpha}(a)$ for any $a \in A$. The Banach algebra *A* is said to be *(boundedly) approximately amenable* if for any *A*-bimodule *X*, every derivation $D : A \to X^*$ is the pointwise limit of a (bounded) net of inner derivations from *A* into *X*^{*}. In a similar manner (boundedly) approximate contractibility was defined. All notions of amenability are characterized in terms of approximate diagonals. We recall definitions needed in this article.

²⁰¹⁰ Mathematics Subject Classification. Primary 46H25; Secondary 43A20, 43A07, 46H20

Keywords. Amenability, Pseudo-amenability, Locally compact group, Group algebra, Fourier algebra, Biprojectivity Received: 16 November 2018; Accepted: 13 February 2020

Communicated by Dragan S. Djordjević

Email addresses: h_p_aghababa@tabrizu.ac.ir, pourmahmood@gmail.com (Hasan Pourmahmood-Aghababa),

 $[\]verb|sattari@azaruniv.ac.ir(Mohammad Hossein Sattari), \verb|hamidmath2013@outlook.com(Hamid Shafie-Asl)|| \\$

Definition 1.1. *Let A be a Banach algbera. A net* $\{m_i\} \subset A \otimes A$ *satisfying*

 $am_i - m_i a \to 0, \qquad a\pi(m_i) \to a,$

is called an approximate diagonal, where $\pi : A \otimes A \to A$ is the diagonal map determined by $\pi(a \otimes b) = ab$. According to [CGZ], we say that the diagonal $\{m_i\}$ is multiplier-bounded if there exists a constant K > 0 such that for all $a \in A$ and all i,

 $||am_i - m_ia|| \le K||a||, ||a\pi(m_i) - a|| \le K||a||, ||\pi(m_i)a - a|| \le K||a||.$

Johnson proved in [Joh1] that a Banach algebra *A* is amenable if and only if there exists a bounded approximate diagonal, i.e. an approximate diagonal $\{m_i\}$ satisfying $\sup_{\alpha} ||m_i|| < \infty$.

According to [GhZh] a Banach algebra *A* is called *pseudo-amenable* if it has an approximate diagonal, and it is pseudo-contractible if it possesses a central approximate diagonal $\{m_i\}$, i.e. $am_i = m_i a$ for all $a \in A$ and all *i*.

Definition 1.2. A Banach algebra A is called boundedly pseudo-amenable if it has a multiplier-bounded approximate diagonal. The term "K-pseudo-amenable" refers to bounded pseudo-amenability with multiplier bound K > 0.

Like Definition 1.2 we introduce the concept of bounded pseudo-contractibility.

Definition 1.3. A Banach algebra A is called boundedly pseudo-contractible if it has a central multiplier-bounded approximate diagonal, that is to say there are a central approximate diagonal $\{m_i\}$ and a constant K > 0 such that

 $||a\pi(m_i) - a|| \le K ||a|| \qquad (a \in A).$

Similarly, the term "K-pseudo-contractible" refers to bounded pseudo-contractibility with multiplier bound K > 0.

It is needless to say that every boundedly pseudo-contractible Banach algebra is boundedly pseudoamenable.

Motivated by the earlier investigations, in this paper, we verify bounded pseudo-amenability and contractibility of some important Banach algebras in harmonic analysis such as group and measure algebras of a locally compact group, Fourier algebra of a discrete group and some algebras constructed on discrete semigroups. We also introduce a multiplier-bounded approximate biprojectivity for Banach algebras and verify its relation with bounded pseudo-amenability and contractibility.

2. Bounded pseudo-amenability and contractibility

In this section we give some general properties of bounded pseudo-amenable and contractible Banach algebras including hereditary properties.

Let *A* be a Banach algebra. We say that a net (e_{α}) is an *approximate identity* for *A*, if $||ae_{\alpha} - a|| \rightarrow 0$ and $||e_{\alpha}a - a|| \rightarrow 0$ for all $a \in A$. It is called *central* if $ae_{\alpha} = e_{\alpha}a$ for each $a \in A$. We call (e_{α}) a *bounded approximate identity* for *A*, if it is also bounded. The net (e_{α}) is termed a *multiplier-bounded approximate identity* for *A* if there exists a constant k > 0 such that $||ae_{\alpha}|| \le k||a||$ and $||e_{\alpha}a|| \le k||a||$ for all $a \in A$ and all α . It is clear that boundedly pseudo-amenable Banach algebras possess a multiplier-bounded approximate identity and pseudo-contractible Banach algebras have a multiplier-bounded central approximate identity.

The unitization of a Banach algebra A is denoted by $A^{\#}$ which is $\mathcal{A} \oplus \mathbb{C}$ with the following product:

$$(a, \lambda) \cdot (b, \mu) = (ab + \mu a + \lambda b, \lambda \mu)$$
 $(a, b \in A, \lambda, \mu \in \mathbb{C}).$

It is obvious that with l^1 -norm $A^{\#}$ is a Banach algebra as well.

Proposition 2.1. ([CGZ, Proposition 2.2]) A Banach algebra A is boundedly approximately contractible if and only *if its unitization A*[#] *is boundedly pseudo-amenable.*

1703

The next proposition provide an example of a pseudo-amenable Banach algebra which is not boundedly pseudo-amenable.

Proposition 2.2. There is a unital Banach algebra which is pseudo-amenable but not boundedly pseudo-amenable.

Proof. Consider the Banach algebra *A* constructed in [GhR] which is boundedly approximately amenable but not boundedly approximately contractible. Then it follows from [CGZ, Proposition 2.4] that $A^{\#}$ is boundedly approximately amenable and so $A^{\#}$ is pseudo-amenable by [Pou1, Corollary 3.7]. Using Proposition 2.1 and the fact that *A* is not boundedly approximately contractible we conclude that $A^{\#}$ is not boundedly pseudo-amenable. \Box

Theorem 2.3. Let A be a K-pseudo-amenable (-contractible) Banach algebra, B a Banach algebra and $\theta : A \to B$ a continuous epimorphism. Then B is boundedly pseudo-amenable (-contractible) with bound $K' = \max\{K ||\theta||^2, K ||\theta||\}$.

Proof. By the assumption there is a net $\{m_i\}$ in $A \otimes A$ such that

 $am_i - m_i a \to 0,$ $a\pi(m_i) \to a,$ $||am_i - m_i a|| \le K ||a||,$ $||a\pi(m_i) - a|| \le K ||a||,$ $||\pi(m_i)a - a|| \le K ||a||.$

For each $i \in \mathbb{N}$ let $\{a_n^i\}_{n=1}^{\infty}, \{b_n^i\}_{n=1}^{\infty} \subset A$ be sequences such that $m_i = \sum_{n=1}^{\infty} a_n^i \otimes b_n^i$ and $\sum_{n=1}^{\infty} ||a_n^i|| ||b_n^i|| < \infty$. Set $C = ||\theta||$ and define

$$M_i = (\theta \otimes \theta)(m_i) = \sum_{n=1}^{\infty} \theta(a_n^i) \otimes \theta(b_n^i)$$

Then $||M_i|| \le C^2 ||m_i||$ and for each $a \in A$,

$$\begin{aligned} \|\theta(a)M_i - M_i\theta(a)\| &= \|(\theta \otimes \theta)(am_i - m_ia)\| \le C^2 \|am_i - m_ia\| \le C^2 K \|a\|, \\ \|\theta(a)\pi(M_i) - \theta(a)\| &= \|\theta(a)\pi(\theta \otimes \theta(m_i)) - \theta(a)\| = \|\theta(a)\theta(\pi(m_i)) - \theta(a)\| \\ &= \|\theta(a\pi(m_i) - a)\| \le C \|a\pi(m_i) - a\| \le C K \|a\|, \end{aligned}$$

and similarly

 $\|\pi(M_i)\theta(a) - \theta(a)\| \leq CK\|a\|.$

Therefore, {*M_i*} is a multiplier-bounded approximate diagonal for *B*, with bound $K' = \max\{KC^2, KC\}$.

Corollary 2.4. Let A be a K-pseudo-amenable (contractible) Banach algebra and I be a closed two-sided ideal of A. Then A/I is K-pseudo-amenable (contractible).

Corollary 2.5. Let *A* and *B* be two Banach algebras such that $A \otimes B$ is boundedly pseudo-amenable (contractible) and *B* has a non-zero character. Then *A* is boundedly pseudo-amenable (contractible).

Proof. Suppose that $A \otimes B$ is *K*-pseudo amenable, φ is a non-zero character of *B* and consider the epimorphism $\theta(A \otimes B) \rightarrow A$ by $\theta(a \otimes b) = \varphi(b)a$. Now Theorem 2.3 implies that *A* is *K*-pseudo-amenable. \Box

Theorem 2.6. Suppose that A is a boundedly pseudo-amenable Banach algebra and J is a two-sided closed ideal of A. Suppose also $\{e_{\alpha}\} \subseteq A$ is a central approximate identity for J that is multiplier-bounded in A. Then J is also boundedly pseudo-amenable.

Proof. By the assumption there is a constant $M \ge 1$ such that for all α and $a \in A$,

 $||ae_{\alpha}|| \le M||a||, ||e_{\alpha}a|| \le M||a||.$

So for each α and $m \in A \otimes A$ we infer that

 $||me_{\alpha}|| \le M||m||, ||e_{\alpha}m|| \le M||m||.$

Let $\{m_i\} \subset A \otimes A$ be a net satisfying conditions of Definition 1.2 with bound K > 0. For any $\varepsilon > 0$ and finite set $F \subset J$, there are *i* and α such that

 $||am_i - m_ia||M^2 \le \varepsilon/2, \quad ||\pi(m_i)a - a||M \le \varepsilon/2 \quad (a \in F),$

and

 $||e_{\alpha}a - a|| \leq \varepsilon/4, \quad ||\pi(m_i)(e_{\alpha}a - a)||M \leq \varepsilon/4 \quad (a \in F).$

Similar to the proof of [GhZh, Proposition 2.6], we obtain

 $\|ae_{\alpha}m_{i}e_{\alpha}-e_{\alpha}m_{i}e_{\alpha}a\|\leq\varepsilon,\qquad \|\pi(e_{\alpha}m_{i}e_{\alpha})a-a\|<\varepsilon\qquad (a\in F).$

Passing to a subnet we may suppose that $\{e_{\alpha}m_ie_{\alpha}\} \subset J\hat{\otimes}J$ constitutes an approximate diagonal for *J*. Since $\{e_{\alpha}\}$ is central, for each *i* and $a \in J$ we have

$$\begin{aligned} \|ae_{\alpha}m_{i}e_{\alpha} - e_{\alpha}m_{i}e_{\alpha}a\| &= \|e_{\alpha}am_{i}e_{\alpha} - e_{i}m_{i}ae_{\alpha}\| = \|e_{\alpha}(am_{i} - m_{i}a)e_{\alpha}\| \\ &\leq M^{2}\|am_{i} - m_{i}a\| \leq M^{2}K\|a\|, \end{aligned}$$

and

$$\begin{split} \|\pi(e_{\alpha}m_{i}e_{\alpha})a - a\| &= \|e_{\alpha}\pi(m_{i})e_{\alpha}a - a\| \\ &= \|e_{\alpha}\pi(m_{i})e_{\alpha}a - e_{\alpha}e_{\alpha}a + e_{\alpha}e_{\alpha}a - a\| \\ &\leq \|e_{\alpha}(\pi(m_{i})e_{\alpha}a - e_{\alpha}a)\| + \|e_{\alpha}e_{\alpha}a - a\| \\ &\leq M\|\pi(m_{i})e_{\alpha}a - e_{\alpha}a\| + \|e_{\alpha}e_{\alpha}a\| + \|a\| \\ &\leq MK\|e_{\alpha}a\| + M\|e_{\alpha}a\| + \|a\| \\ &\leq M^{2}K\|a\| + M^{2}\|a\| + \|a\| \\ &= (M^{2}K + M^{2} + 1)\|a\|. \end{split}$$

Likewise, $||a\pi(e_{\alpha}m_ie_{\alpha}) - a|| \le (M^2K + M^2 + 1)||a||$. These imply that *J* is $(M^2K + M^2 + 1)$ -pseudo-amenable. \Box

Corollary 2.7. Suppose that A is a boundedly pseudo-amenable Banach algebra, J a closed two-sided ideal of A with a bounded central approximate identity. Then J is boundedly pseudo-amenable.

The proof of the next proposition is the same as that of [GhZh, Proposition 3.3] and is omitted.

Proposition 2.8. Let A be a M-boundedly approximately contractible Banach algebra. If A has a bounded central approximate identity $\{e_{\alpha}\}$ with bound K, then A is $(2K^2 + M)$ -pseudo-amenable.

Corollary 2.9. Let A be a boundedly approximately contractible commutative Banach algebra. Then A is boundedly pseudo-amenable.

Proof. Every boundedly approximately contractible Banach algebra has a bounded approximate identity. \Box

Theorem 2.10. Suppose that A is a boundedly pseudo-amenable Banach algebra and X is a Banach A-bimodule for which each multiplier bounded left (right) approximate identity of A is a multiplier bounded left (right) approximate identity for X. Then

1. Every derivation $D: A \rightarrow X$ is boundedly approximately inner.

2. Every derivation $D: A \rightarrow X^*$ is boundedly weak^{*} approximately inner.

Proof. (1): Let $\Phi : A \otimes A \to X$ be defined by $\Phi(a \otimes b) = D(a) \cdot b$ and let $\{m_i\}$ be a net satisfying conditions of Definition 1.2 with corresponding bound K > 0. If we set $\psi_i = -\Phi(m_i)$, then as in [GhZh, Proposition 3.5] for each $a \in A$ we obtain

$$D(a) = \lim_{i} (a\psi_i - \psi_i a),$$

and also we get

$$\begin{aligned} \|a \cdot \psi_i - \psi_i \cdot a\| - \|D(a)\pi(m_i)\| &\leq \|a \cdot \psi_i - \psi_i \cdot a - D(a)\pi(m_i)\| = \|\Phi(a \cdot m_i - m_i \cdot a)\| \\ &\leq \|\Phi\|\|a \cdot m_i - m_i \cdot a\| \leq K\|\Phi\|\|a\| \leq K\|D\|\|a\|, \end{aligned}$$

and so

$$||a \cdot \psi_i - \psi_i \cdot a|| \le K ||D|| ||a|| + ||D(a)\pi(m_i)|| \le K ||D|| ||a|| + (K' + 1) ||D(a)|| \le K'' ||D(a)||.$$

Whence *D* is boundedly approximately inner.

(2) can be proven similarly. \Box

Obviously, every contractible Banach algebra is boundedly pseudo-contractible. We end this section by presenting an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently not contractible.

Example 2.11. For $1 \le p < \infty$ let ℓ^p be the usual Banach sequence algebra with pointwise multiplication. Since ℓ^p does not have a bounded approximate identity, it is not amenable. Now for each $i \in \mathbb{N}$ let δ_i be the characteristic

function of the singleton {i}. Then every $f \in \ell^p$ is of the form $\sum_{i=1}^{\infty} f(i)\delta_i$. For each $n \in \mathbb{N}$ put $u_n := \sum_{i=1}^{\infty} \delta_i \otimes \delta_i$. It is

seen that

$$f \cdot u_n = \sum_{i=1}^n f(i)\delta_i \otimes \delta_i = \sum_{i=1}^n \delta_i \otimes \delta_i f(i) = u_n \cdot f,$$

and

$$\|f\pi(u_n)-f\|_p = \left\|\sum_{i=1}^n f(i)\delta_i - \sum_{i=1}^\infty f(i)\delta_i\right\|_p \to 0, \qquad \|f\pi(u_n)\| \le \|f\|.$$

Hence, ℓ^p is 1-pseudo-contractible. We also remark that ℓ^p is not approximately amenable[DLZh]. Therefore (ℓ^p)[#] is not approximately amenable and thus (ℓ^p)[#] is not pseudo-amenable by [GhZh, Proposition 3.2]. Therefore, bounded pseudo-contractibility of a Banach algebra A does not imply not only bounded pseudo-contractibility but also bounded pseudo-amenability of A[#].

3. Banach algebras on locally compact groups

In this section we will verify Bounded pseudo-amenability and contractibility of some important Banach algebras on locally compact groups. We commence with the convolution group and measure algebras $L^1(G)$ and M(G) and their second duals.

Proposition 3.1. For a locally compact group G, $L^1(G)$ is boundedly pseudo-amenable if and only if G is amenable.

Proof. If G is amenable then $L^1(G)$ is amenable and so it is boundedly pseudo-amenable. If $L^1(G)$ is boundedly pseudo-amenable, then it is pseudo-amenable. Thus G is amenable by [GhZh, Proposition 4.1]. \Box

The next proposition is a consequence of [GhZh, Proposition 4.2].

Proposition 3.2. Let G be a locally compact group. Then

- 1. the convolution measure algebra M(G) is boundedly pseudo-amenable if and only if G is discrete and amenable.
- 2. $L^1(G)^{**}$ is boundedly pseudo-amenable if and only if G is finite.

The following proposition determines the bounded pseudo-amenability and contractibility of the Fourier algebra A(G) of a discrete group G which provides an example of a non-amenable, boundedly pseudo-contractible Banach algebra.

Proposition 3.3. Let G be a discrete group and A(G) be its Fourier algebra. Then the following are equivalent.

- 1. A(G) has a multiplier-bounded approximate identity.
- 2. A(G) is boundedly pseudo-contractible.
- 3. A(G) is boundedly pseudo-amenable.

Proof. (1) \implies (2): Let $\{e_{\alpha}\}$ be a multiplier-bounded approximate identity of A(G) with bound M. As it is mentioned in Remark 3.4 of [GhS], we may suppose that every e_{α} has finite support, say S_{α} . Now let

$$m_{\alpha} = \sum_{x \in S_{\alpha}} e_{\alpha}(x) \delta_x \otimes \delta_x,$$

where δ_x is the evaluational function at *x*. For each $f \in A(G)$ and $x \in G$ we have

$$f \cdot (\delta_x \otimes \delta_x) - (\delta_x \otimes \delta_x) \cdot f = (f\delta_x) \otimes \delta_x - \delta_x \otimes (\delta_x f)$$
$$= (f(x)\delta_x) \otimes \delta_x - \delta_x \otimes (\delta_x f(x))$$
$$= f(x)(\delta_x \otimes \delta_x - \delta_x \otimes \delta_x) = 0.$$

Therefore, $f \cdot m_{\alpha} = m_{\alpha} \cdot f$. Since $\pi(m_{\alpha}) = e_{\alpha}$, for all $f \in A(G)$ we have $\pi(m_{\alpha})f - f \to 0$. Hence $\{m_{\alpha}\}$ is central approximate diagonal for A(G). Furthermore, for any $f \in A(G)$ we have

$$||f\pi(m_{\alpha}) - f|| = ||fe_{\alpha} - f|| \le (M+1)||f||.$$

Hence, A(G) is (M + 1)-pseudo-contractible.

 $(2) \Longrightarrow (3)$ is clear.

(3) \implies (1): This is immediate inasmuch as every boundedly pseudo-amenable Banach algebras has a multiplier-bounded approximate identity. \Box

The following example shows that bounded pseudo-contractibility does not imply amenability.

Example 3.4. Let G be a free group. It is shown in [Haa, Theorem 2.1] that A(G) has a multiplier-bounded approximate identity consisting of functions with finite support. Thus the Fourier algebra of a free group is boundedly pseudo-contractible. Nonetheless, free groups with at least 2 generators are not amenable and so, by Leptin's theorem, their Fourier algebras lack a bounded approximate identity; consequently they are not amenable.

For a locally compact group *G*, let $PF_p(G)$ denote the Banach algebra of *p*-pseudofunctions on *G* which is the norm closure of the image of $L^1(G)$ in $B(L^p(G))$, the space of bounded operators on $L^p(G)$, under the left regular representation. It is shown in [CGZ, Theorem 7.1] that for a discrete group *G*, amenability and pseudo amenability of $PF_p(G)$ is equivalent to the amenability of *G*. We therefore have the following proposition.

Proposition 3.5. Let G be a discrete group and $p \in (1, \infty)$. Then $PF_p(G)$ is boundedly pseudo-amenable if and only *if* G *is amenable*.

4. Banach algebras on discrete semigroups

This section is devoted to the Bounded pseudo-amenability and contractibility of many significant Banach algebras constructed on semigroups.

Like Example 3.4, the following is an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently is not contractible.

Example 4.1. Let Λ be non-empty, totally ordered set which is a semigroup if the product of two elements is defined to be their maximum. In fact it is a semilattice and is denoted by Λ_{\vee} . Proposition 6.2 of [CGZ] shows that the semigroup algebra $\ell^1(\Lambda_{\vee})$ is boundedly pseudo-amenable.

Let $\{A_i\}_{i \in I}$ be a family of Banach algebras and $1 \le q < \infty$. Then their ℓ^q -direct sum

$$A = \ell^{q} - \bigoplus_{i \in I} A_{i} = \left\{ a = (a_{i})_{i \in I} \middle| a_{i} \in A_{i}, ||a||_{A} = \left(\sum_{i \in I} ||a_{i}||_{A_{i}}^{q} \right)^{1/q} < \infty \right\},$$

is a Banach algebra under componentwise product.

Theorem 4.2. Let $\{A_i\}_{i \in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras, $1 \le q < \infty$ and $A = \ell^q - \bigoplus_{i \in I} A_i$. Then A is (K + 1)-pseudo-amenable (contractible).

Proof. We follow the proof of Proposition 2.1 of [GhZh]. For arbitrary $\varepsilon > 0$ and a finite set $F \subset A$, there is a finite set $J \subset I$ such that $||P_J(a) - a||_A < \frac{\varepsilon}{2}$ for $a \in A$, where $P_J : A \to \ell^q - \bigoplus_{i \in J} A_i$ is the natural projection and P_i is defined to be $P_{\{i\}}$. Since A_i is *K*-pseudo-amenable, there are $i \in J$ and $u_i \in A_i \otimes A_i$ such that

$$||P_{i}(a)u_{i} - u_{i}P_{i}(a)|| < \frac{\varepsilon}{|J|^{\frac{1}{q}}}, \quad ||\pi_{i}(u_{i})P_{i}(a) - P_{i}(a)|| < \frac{\varepsilon}{2|J|^{\frac{1}{q}}} \qquad (a \in F)$$

and for all $b \in A$,

$$||P_i(b)u_i - u_iP_i(b)|| < K||P_i(b)||, \quad ||\pi_i(u_i)P_i(b) - P_i(b)|| < K||P_i(b)||, \quad ||P_i(b)\pi_i(u_i) - P_i(b)|| < K||P_i(b)||,$$

where $\pi_i : A_i \otimes A_i \to A_i$ is also the diagonal map. Setting $u = \{x_i\}_{i \in I}$ where $x_i = u_i$ for $i \in J$ and $x_i = 0$ for $i \in I \setminus J$ implies that $ua = uP_I(a)$ and $au = P_I(a)u$. Hence for each $a \in F$,

$$||au - ua||_{A} = ||P_{J}(a)u - uP_{J}(a)||_{A} = (\sum_{i \in J} ||P_{i}(a)u_{i} - u_{i}P_{i}(a)||^{q})^{\frac{1}{q}} < \varepsilon;$$

and

$$\begin{split} \|a\pi(u) - a\|_{A} &= \|P_{J}(a)\pi(u) - P_{J}(a) + P_{J}(a) - a\|_{A} \\ &\leq \|P_{J}(a)\pi(u) - P_{J}(a)\|_{A} + \|P_{J}(a) - a\|_{A} \\ &= \sum_{i \in J} (\|P_{i}(a)\pi_{i}(u) - P_{i}(a)\|^{q})^{\frac{1}{q}} + \|P_{J}(a) - a\|_{A} \leq \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{split}$$

Also for each $b \in A$ we have

$$||bu - ub||_{A} = ||P_{J}(b)u - uP_{J}(b)||_{A} = (\sum_{i \in J} ||P_{i}(b)u - uP_{i}(b)||_{A_{i}}^{q})^{\frac{1}{q}}$$

$$\leq (\sum_{i \in J} K^{q} ||P_{i}(b)||_{A_{i}}^{q})^{\frac{1}{q}} = K ||P_{J}(b)||_{A} \leq K ||b||_{A},$$
(1)

and

$$\begin{split} \|b\pi(u) - b\|_{A} &\leq \|P_{J}(b)\pi(u) - P_{J}(b)\|_{A} + \|P_{J}(b) - b\|_{A} \\ &\leq (\sum_{i \in J} \|P_{i}(b)\pi_{i}(u) - P_{i}(b)\|_{A_{i}}^{q})^{\frac{1}{q}} + \|b\|_{A} \\ &\leq (\sum_{i \in J} K^{q}\|P_{i}(b)\|_{A_{i}}^{q})^{\frac{1}{q}} + \|b\|_{A} = K\|P_{J}(b)\|_{A} + \|b\|_{A} \\ &\leq (k+1)\|b\|_{A}, \end{split}$$

$$(2)$$

and similarly

$$\|\pi(u)b - b\|_A \le (K+1)\|b\|_A, \qquad (b \in A).$$
(3)

So Theorem 4.2 shows that there are a large class of bounded pseudo-amenable(contractible) Banach algebras that are not amenable. We remark that $A = \ell^q - \bigoplus_{i \in I} A_i$ is amenable if and only if $|I| < \infty$ and each A_i is amenable.

Example 4.3. Since $\ell^p = \ell^p - \bigoplus_1^{\infty} \mathbb{C}$, it is 2-pseudo-amenable invoking Theorem 4.2. Notice that, it is in fact ℓ^p is 1-pseudo-contractible by Example 2.11.

Proposition 4.4. Let A be a Banach algebra and $\mathbb{M}_n(A)$ be its ℓ^1 -Munn algebra $(n \in \mathbb{N})$. Then $\mathbb{M}_n(A)$ is K-pseudoamenable if and only if A is K-pseudo-amenable.

Proof. Suppose that $\{\Psi_{\alpha}\}$ is an approximate diagonal of $M_n(A)$ with bound K. Keeping $\mathbb{M}_n(A) \hat{\otimes} \mathbb{M}_n(A) \cong \mathbb{M}_{n^2}(A \hat{\otimes} A)$ in mind, we may assume that

$$\Psi_{\alpha} = \begin{bmatrix} m_{11}^{\alpha} & m_{12}^{\alpha} & \dots & m_{1n^2}^{\alpha} \\ m_{21}^{\alpha} & m_{22}^{\alpha} & \dots & m_{2n^2}^{\alpha} \\ \vdots & \vdots & \vdots & \vdots \\ m_{n^{2}1}^{\alpha} & m_{n^{2}2}^{\alpha} & \dots & m_{n^{2}n^2}^{\alpha} \end{bmatrix},$$

where $m_{ii}^{\alpha} \in A \otimes A$. For each $a \in A$ we have

$$\begin{bmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a \end{bmatrix} \Psi_{\alpha} - \Psi_{\alpha} \begin{bmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a \end{bmatrix} = \begin{bmatrix} am_{11}^{\alpha} & am_{12}^{\alpha} & \dots & am_{1n^{2}}^{\alpha} \\ am_{21}^{\alpha} & am_{22}^{\alpha} & \dots & am_{2n^{2}}^{\alpha} \\ \vdots & \vdots & \vdots & \vdots \\ am_{n^{2}1}^{\alpha} & am_{n^{2}2}^{\alpha} & \dots & am_{n^{2}n^{2}}^{\alpha} \end{bmatrix} - \begin{bmatrix} m_{11}^{\alpha} & m_{12}^{\alpha} & \dots & m_{1n^{2}a}^{\alpha} \\ m_{21}^{\alpha} & m_{22}^{\alpha} & \dots & m_{2n^{2}a}^{\alpha} \\ \vdots & \vdots & \vdots & \vdots \\ am_{n^{2}1}^{\alpha} & am_{n^{2}2}^{\alpha} & \dots & am_{n^{2}n^{2}}^{\alpha} \end{bmatrix} - \begin{bmatrix} m_{11}^{\alpha} & m_{12}^{\alpha} & \dots & m_{1n^{2}a}^{\alpha} \\ m_{21}^{\alpha} & m_{22}^{\alpha} & \dots & m_{2n^{2}a}^{\alpha} \\ \vdots & \vdots & \vdots & \vdots \\ m_{n^{2}1}^{\alpha} & m_{n^{2}2}^{\alpha} & \dots & m_{n^{2}n^{2}a}^{\alpha} \end{bmatrix}$$

Hence $am_{11}^{\alpha} - m_{11}^{\alpha}a \rightarrow 0$ and $||am_{11}^{\alpha} - m_{11}^{\alpha}a|| \leq K||a||$. With a similar fashion we can get $a\pi(m_{11}^{\alpha}) \rightarrow a, \pi(m_{11}^{\alpha})a \rightarrow a, ||a\pi(m_{11}^{\alpha}) - a|| \leq K||a||$ and $||\pi(m_{11}^{\alpha})a - a|| \leq K||a||$.

Conversely, suppose that A is K-pseudo-amenable and $\{m_{\alpha}\}$ is an approximate diagonal for it, and set

$$\Psi_{\alpha} = \begin{bmatrix} m_{\alpha} & 0 & \dots & 0 \\ 0 & m_{\alpha} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & m_{\alpha} \end{bmatrix}.$$

1708

Obviously $\{\Psi_{\alpha}\}$ is an approximate diagonal for $\mathbb{M}_n(A)$ and for any $M \in \mathbb{M}_n(A)$ we have

 $\|\Psi_{\alpha}M - M\Psi_{\alpha}\| \le K \|M\|, \quad \|\bar{\pi}(\Psi_{\alpha})M - M\| \le K \|M\|, \quad \|M\bar{\pi}(\Psi_{\alpha}) - M\| \le K \|M\|,$

where $\bar{\pi} : \mathbb{M}_n(A) \hat{\otimes} \mathbb{M}_n(A) \to \mathbb{M}_n(A)$ is the diagonal map. \Box

Definition 4.5. A (discrete) semigroup S is called an inverse semigroup if for any $s \in S$ there exists a unique $s^* \in S$ such that $s^*ss^* = s^*$ and $ss^*s = s$. The set of idempotent elements of S is denoted by E(S), that is $E(S) = \{ss^* : s \in S\}$.

Let *S* be a inverse semigroup. For $e \in E(S)$, $G_e = \{s \in S : ss^* = s^*s = e\}$ constitutes a group called *maximal* subgroup of *G* at *e*.

For all $s, t \in S$ the relation \mathcal{D} defined on an inverse semigroup S by $s\mathcal{D}t$ if and only if there exists $x \in S$ with

 $Ss \cup \{s\} = Sx \cup \{x\}, \quad tS \cup \{t\} = xS \cup \{x\},$

is an equivalence relation. There is also a natural partial order on *S* given by $s \le t \Leftrightarrow s = ss^*t$. For $p \in S$ we set $(p] = \{q \in S : q \le p\}$.

Definition 4.6. An inverse semigroup *S* is called locally finite whenever $|(p]| < \infty$ for all $p \in S$, and it is called uniformly locally finite (ULF) if $\sup_{p \in S} |(p]| < \infty$.

We recall that a Banach algebra *A* is called *biflat* if there exists a Banach *A*-bimodule morphim ρ : $(A \otimes A)^* \to A^*$ such that $\rho \circ \pi^*(\gamma) = \gamma$ for all $\gamma \in A^*$, where $\pi^* : A^* \to (A \otimes A)^*$ is adjoint of the diagonal map π .

Proposition 4.7. Let *S* be a ULF inverse semigroup and $\{D_{\lambda} : \lambda \in \Lambda\}$ be the family of its \mathcal{D} -classes such that for all $\lambda \in \Lambda$, $|E(D_{\lambda})| < \infty$. For each $\lambda \in \Lambda$ let $p_{\lambda} \in E(D_{\lambda})$. Then the following statements are equivalent.

- 1. For each $\lambda \in \Lambda$ the maximal subgroup $G_{p_{\lambda}}$ is amenable.
- 2. $\ell^1(S)$ is pseudo-amenable.
- 3. $\ell^1(S)$ is boundedly pseudo-amenable.

Moreover, in this case $\ell^1(S)$ *is biflat.*

Proof. From [Ram, Theorem 2.18] we have the following isometric isomorphism

$$\ell^1(S) \cong \ell^1 - \bigoplus \{\mathbb{M}_{E(D_{\lambda})}(\ell^1(G_{p_{\lambda}})) : \lambda \in \Lambda\}.$$

The proposition now follows from Propositions 3.1, 4.4, Theorem 4.2, and [Ram, Therem 3.7].

Definition 4.8. An inverse semigroup *S* is called a Clifford semigroup if for all $s \in S$, $ss^* = s^*s$.

Theorem 4.9. *Let S be a Clifford semigroup and A(S) be its Fourier algebra introduced in [MP]. Then the following statements are equivalent.*

- 1. *A*(*S*) has a multiplier-bounded approximate identity.
- 2. *A*(*S*) *is boundedly pseudo-contractible.*
- 3. A(S) is boundedly pseudo-amenable.

Proof. (1) \implies (2): Suppose that A(S) has a multiplier-bounded approximate identity with bound M. By [MP] we have the following useful decomposition

$$A(S) = \ell^1 - \bigoplus_{e \in E(S)} A(G_e).$$

Thus it can be readily seen that for each $e \in E(S)$, $A(G_e)$ has a mutiplier-bounded approximate identity with bound M. From Proposition 3.3 we conclude that $A(G_e)$ is (M + 1)-pseudo-contractible for all $e \in E(S)$. Now Theorem 4.2 implies that A(S) is (M + 2)-pseudo-contractible. The other parts of proof are obvious. \Box

Applying the above decomposition, as it is done in [MP], for a Clifford semigroup *S* with abelian maximal subgroups G_e , we obtain $A(S) \cong \ell^1 - \bigoplus_{e \in E(S)} L^1(\hat{G}_e)$, where \hat{G}_e is the Pontrjagin dual of G_e . Since \hat{G}_e is compact, it is amenable and so $L^1(\hat{G}_e)$ is 1-amenable. Hence $L^1(\hat{G}_e)$ is 1-pseudo-amenable for all $e \in E(S)$. From Theorem 4.2 it can be inferred that A(S) is 2-pseudo-amenable.

Let $\{A_i\}_{i \in I}$ be a family of Banach algebras. Their c_0 -direct sum

$$A = c_0 - \bigoplus_{i \in I} A_i = \left\{ a = (a_i)_{i \in I} \middle| a_i \in A_i, ||a_i||_{A_i} \to 0, ||a||_A = \sup_{i \in I} ||a_i||_{A_i} \right\},$$

is a Banach algebra under componentwise product.

The next theorem gives the c_0 -analogue of Theorem 4.2. Since the proof is similar, we omit it.

Theorem 4.10. Let $\{A_i\}_{i \in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras and $A = c_0 - \bigoplus_{i \in I} A_i$. Then A is (K + 1)-pseudo-amenable (contractible).

Corollary 4.11. Let S be a Clifford semigroup and consider the Banach algebra $PF_P(S)$ of p-pseudofunctions on S introduced in [Pou2]. Then $PF_p(S)$ is boundedly pseudo-amenable if and only if every maximal subgroup G_e of S is amenable.

Proof. By [Pou2] we have the following decomposition

$$PF_p(S) \cong c_0 - \bigoplus_{e \in E(S)} PF_p(G_e)$$

Combining Theorem 4.10 and Proposition 3.5 the corollary follows. \Box

5. Multiplier-bounded approximate biprojectivity

In this section we introduce an approximate version of biprojectivity and then investigate its relation with (bounded) pseudo-amenability.

Definition 5.1. ([Pou1]) A Banach algebra A is said to be approximately biprojective if there is a net $\{\rho_{\alpha}\} \subset \mathcal{B}(A \otimes A, A)$ such that for each $a, b \in A$:

 $\pi \circ \rho_{\alpha}(a) \to a, \quad \rho_{\alpha}(ab) - a\rho_{\alpha}(b) \to 0, \quad \rho_{\alpha}(ab) - \rho_{\alpha}(a)b \to 0.$

We say that, A is called boundedly approximately biprojective when $\sup_{\alpha} ||\rho_{\alpha}|| < \infty$ *.*

Definition 5.2. An approximately biprojective Banach algebra A is termed multiplier-boundedly approximately biprojective if there is a K > 0 such that for each $a, b \in A$:

 $\|\pi \circ \rho_{\alpha}(a) - a\| \le K \|a\|, \quad \|\rho_{\alpha}(ab) - a\rho_{\alpha}(b)\| \le K \|a\| \|b\|, \quad \|\rho_{\alpha}(ab) - \rho_{\alpha}(a)b\| \le K \|a\| \|b\|,$

where $\{\rho_{\alpha}\}$ satisfies condition of Definition 5.1.

Obviously, every boundedly approximately biprojective Banach algebra is multiplier-boundedly approximately biprojective.

Corollary 5.3. Let A be a boundedly pseudo-amenable Banach algebra. Then A is multiplier-boundedly approximately biprojective.

Proof. Let $\{m_{\alpha}\}$ be an approximate diagonal of A with multiplier bound K > 0. Define $\rho_{\alpha} : A \to A \otimes A$ by $\rho_{\alpha}(a) = a \cdot m_{\alpha}$. By [Pou1, Proposition 3.4], we have

 $\pi \circ \rho_{\alpha}(a) \to a, \quad \rho_{\alpha}(ab) - a \cdot \rho_{\alpha}(b) \to 0, \quad \rho_{\alpha}(ab) - \rho_{\alpha}(a) \cdot b \to 0, \qquad (a, b \in A).$

Moreover, for each $a \in A$ *and for each* α *we have*

 $\|\pi \circ \rho_{\alpha}(a) - a\| = \|\pi(a \cdot m_{\alpha}) - a\| = \|a\pi(m_{\alpha}) - a\| \le K \|a\|$

On the other hand, for all α *and every* $a, b \in A$, $\rho_{\alpha}(ab) - a \cdot \rho_{\alpha}(b) = 0$ *and*

 $\|\rho_{\alpha}(ab) - \rho_{\alpha}(a) \cdot b\| = \|ab \cdot m_{\alpha} - (a \cdot m_{\alpha}) \cdot b\| \le \|a\| \|b \cdot m_{\alpha} - m_{\alpha} \cdot b\| \le K \|a\| \|b\|$

Therefore A is multiplier-boundedly approximately biprojective. \Box

Proposition 5.4. Let A be a multiplier-boundedly approximately biprojective Banach algebra with a central bounded approximate identity $\{e_{\beta}\}$. Then A is boundedly pseudo-amenable.

Proof. Let $\{\rho_{\alpha}\}$ be a net satisfying Definition 5.2. As in Proposition 3.5 of [Pou1], there are subnets $\{e_{\beta_i}\}$ of $\{e_{\beta_i}\}$ and $\{\rho_{\alpha_i}\}$ of $\{\rho_{\alpha}\}$ such that $m_i := \rho_{\alpha_i}(e_{\beta_i})$ is an approximate diagonal for A. We show that $\{m_i\}$ is a multiplier-bounded approximate diagonal. Let $\{e_{\beta}\}$ be bounded by K_0 . Then for each $a \in A$ we have

 $\begin{aligned} \|a \cdot m_i - m_i \cdot a\| &= \|a \cdot \rho_{\alpha_i}(e_{\beta_i}) - \rho_{\alpha_i}(e_{\beta_i}) \cdot a\| \\ &= \|a \cdot \rho_{\alpha_i}(e_{\beta_i}) - \rho_{\alpha_i}(ae_{\beta_i}) + \rho_{\alpha_i}(e_{\beta_i}a) - \rho_{\alpha_i}(e_{\beta_i}) \cdot a\| \\ &\leq \|a \cdot \rho_{\alpha_i}(e_{\beta_i}) - \rho_{\alpha_i}(ae_{\beta_i})\| + \|\rho_{\alpha_i}(e_{\beta_i}a) - \rho_{\alpha_i}(e_{\beta_i}) \cdot a\| \\ &\leq K \|a\| \|e_{\beta_i}\| + K \|e_{\beta_i}\| \|a\| \\ &\leq 2K K_0 \|a\|, \end{aligned}$

and

$$\begin{aligned} \|\pi(m_i)a - a\| &= \|\pi \circ \rho_{\alpha_i}(e_{\beta_i})a - a\| \le \|\pi \circ \rho_{\alpha_i}(e_{\beta_i})a - e_ia\| + \|e_{\beta_i}a - a\| \\ &\le K \|a\| \|e_{\beta_i}\| + \|a\| \|e_{\beta_i}\| + \|a\| = (KK_0 + K_0 + 1)\|a\|; \end{aligned}$$

Hence A is boundedly pseudo-amenable. \Box

The following example gives an approximately biprojective Banach algebra that is not multiplier-boundedly approximately biprojective.

Example 5.5. Suppose that A is the algebra introduced in Proposition 2.2. Approximate amenability of A[#] implies its approximate biprojectivity [Pou1, Proposition 3.4]. On the other hand, A[#] is not boundedly pseudo-amenable and so by Proposition 5.4 is not multiplier-boundedly approximately biprojective.

Here we give an example of multiplier-boundedly approximately biprojective Banach algebra which is not boundedly approximately biprojective.

Example 5.6. Suppose that *S* is an infinite non-empty set and consider the Banach algebra $\ell^2(S)$ with pointwise multiplication. Let $\{e_i\}_{i\in S}$ be the canonical basis for $\ell^2(S)$ and let Λ be the set of finite subsets of *S*, which is an ordered set with respect to inclusion. For any $F \in \Lambda$ define $m_F = \sum_{i\in F} e_i \otimes e_i$. Then $\{m_F\}_{F\in\Lambda}$ is a central approximate diagonal for $\ell^2(S)$ satisfying conditions of Definition 1.2. Therefore it is boundedly pseudo contractible and consequently, by Proposition 5.3, multiplier-boundedly approximately biprojective. However, it is known that $\ell^2(S)$ is not boundedly approximately biprojective (see [Pou1, Example 4.1]).

Corollary 5.7. If G is an infinite Abelian compact group, then $L^2(G)$ is a multiplier-boundedly approximately biprojective Banach algebra.

Proof. Suppose Γ is the dual group of G. From Plancherel Theorem we have $L^2(G) \cong \ell^2(\Gamma)$ and so Example 5.6 gives the desired result. \Box

The last example provides a boundedly pseudo-amenable Banach algebra which is not boundedly approximately biprojective.

Example 5.8. Consider the inverse semigroup $S = (\mathbb{N}, *)$ whith $s * t = \min\{s, t\}$ for all $s, t \in N$. By [GLZ, Example 4.6], the convolution semigroup algebra $\ell^1(S)$ is sequentially approximately contractible. So the uniform boundedness principle implies that $\ell^1(S)$ is boundedly approximately contractible. Hence by Proposition 2.1, $(\ell^1(S))^{\#}$ is boundedly pseudo amenable. Nevertheless, since S is a locally finite, non-uniformly locally finite inverse semigroup, by [Ram, Theorem 3.7], $\ell^1(S)$ is not biflat and consequently its unitization $(\ell^1(S))^{\#}$ is not biflat. It now follows from [Ari, Theorem 3.6(A)] that $(\ell^1(S))^{\#}$ is not boundedly approximately biprojective.

References

- [Ari] O. Yu. ARISTOV, On approximation of flat Banach modules by free modules, Sbornik, Mathematics (2005), 1553–1583.
- [CGZ] Y. CHOI, F. GHAHRAMANI and Y. ZHANG, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256 (2009), 3158-3191.
 - [Dal] H. G. DALES, Banach algebras and Automatic continuity, Oxford university Press, 2001.
- [DL] H. G. DALES and R. J. LOY, Approximate amenability of semigroup algebras and Segal algebras, Diss. Math., 474 (2010), 1-58.
- [DLZh] H. G. DALES, R. J. LOY and Y. ZHANG, Approximate amenability for Banach sequence algebras, Studia Math., 177 (2006), 81-96.
- [GhL] F. GHAHRAMANI and R. J. LOY, Generalized notions of amenability, J. Funct. Anal., 79 (2004), 229-260.
- [GLZ] F. GHAHRAMANI, R. J. LOY and Y. ZHANG, Generalized notions of amenability. II, J. Funct. Anal., 254 (2008), 1776-1810.
- [GhR] F. GHAHRAMANI and C. J. READ, Approximate identities in approximate amenability, J. Funct. Anal., 262 (2012), 3929-3945.
- [GhS] F. GHAHRAMANI and R. STOKKE, Approximate and pseudo-amenability of the Fourier algebra, Indiana Univ. Math. J., 56 (2007), 909-930.
- [GhZh] F. GHAHRAMANI and Y. ZHANG, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Comb. Phil. Soc., 142 (2007), 111-123.
- [GhHS] M. GHANDHARI, H. HATAMI and N. SPRONK, Amenability constants for semilattice algebras, Semigroup Forum, 79 (2009), 279-297
- [Haa] U. HAAGERUP, An example of a nonnuclear C*-algebra, which has the metric approximatoin property, Invent. Math., **50** (1978/79), 279-293.
- [Joh1] B. E. JAHNSON, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math., 94 (1972), 685-698.
- [Joh2] B. E. JAHNSON, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
 [MP] A. R. MEDGHALCHI and H. POURMAHMOOD-AGHABABA, Figa-Talamanca–Herz algebras for restricted inverse semigroups and Clifford semigroups, J. Math. Anal. Appl., 395 (2012), 473-485.
- [Pou1] H. POURMAHMOOD-AGHABABA, Approximately biprojective Banach algebras and nilpotent ideals, Bull. Austral. Math. Soc., 87 (2013), 158-173.
- [Pou2] H. POURMAHMOOD-AGHABABA, Pseudomeasures and pseudofunctions on inverse semigroups, Semigroup Forum, 90 (2015), 632-647.
- [Ram] P. RAMSDEN, Biflatness of semigroup algebras, Semigroup Forum, 79 (2009), 515-530.