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Abstract. In this paper we introduce and analyze an important class of (asymptotically) Stepanov almost
periodic functions in the Lebesgue spaces with variable exponents, which generalizes in a natural fashion
all the (asymptotically) almost periodic functions. We then make extensive use of these new functions to
study some abstract Volterra integro-differential equations in Banach spaces including multi-valued ones.

1. Introduction

The notion of almost periodicity was introduced by Danish mathematician H. Bohr around 1924-1926
and later generalized by many other authors, see, e,g., [4], [12], [19] and references therein. Let I be either
R or R+ and let f : I → X be a given continuous function. Given ε > 0, we call τ > 0 an ε-period for f (·) iff
‖ f (t + τ) − f (t)‖ ≤ ε, t ∈ I. The set consisting of all ε-periods for f (·) is denoted by ϑ( f , ε). The function f is
said to be almost periodic, if and only if for each ε > 0 the set ϑ( f , ε) is relatively dense in I, which means
that there exists ` > 0 such that any subinterval of the interval I of length ` intersects ϑ( f , ε). The collection
of all almost periodic functions will be denoted by AP(I : X). Let us mention that a continuous periodic
function is almost with the converse being false.

Similarly, a function f ∈ Cb(R+ : X) (Cb(R+ : X) being the collection of all bounded continuous functions
which go from R+ to X) is said to be asymptotically almost periodic if and only if, for every ε > 0 we can
find numbers ` > 0 and M > 0 such that every subinterval of R+ of length ` contains at least one number τ
such that ‖ f (t + τ) − f (t)‖ ≤ ε for all t ≥M. It is well known that a function f ∈ Cb(R+ : X) is asymptotically
almost periodic if and only if there exist functions 1 ∈ AP(R+ : X) and φ ∈ C0(R+ : X) (C0(R+ : X) being
the collection of all continuous functions f which go from R+ to X such f (t)→ 0 as t→ ∞, in X) such that
f = 1 + φ. The collection of all asymptotically almost periodic functions will be denoted by AAP(R+ : X).

The concept of almost periodicity (respectively, almost automorphy, pseudo-almost periodicity, and
pseudo-almost automorphy) in the Lebesgue space with variable exponent Lp(x)(I,X) was first introduced
and studied by Diagana and Zitane [6, 7]. However, the translation-invariance of these newly introduced
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spaces depends heavily upon the function p ∈ C(R+). To remove such a restriction, we introduce some new
concepts so that the obtained almost periodic (respectively, asymptotically almost periodic) in Lp(x)(I,X)
are automatically translation-invariant. Among other things, it will be shown that these new functions
generalize in a natural fashion the classical notion of almost periodicity (respectively, asymptotic almost
periodicity). Many properties of the new functions are analyzed including their compositions. Further,
we will make extensive use of these new functions to study some abstract Volterra integro-differential
equations in Banach spaces including multi-valued ones.

2. Preliminaries

Unless specified otherwise, we assume that (X, ‖ · ‖) is a complex Banach space. If (Y, ‖ · ‖Y) is another
Banach space, then we denote by L(X,Y) the Banach algebra of all bounded linear operators from X into
Y with L(X,X) being denoted L(X). If A : D(A) ⊂ X 7→ X is a closed linear operator, then its nullspace (or
kernel) and range will be denoted respectively by N(A) and R(A). Further, we will identify A with its graph
defined by {(a,Ax) : x ∈ X}. By [D(A)] we denote the Banach space (D(A), ‖ · ‖[D(A)]) where ‖ · ‖[D(A)] is the
graph norm defined by, ‖x‖[D(A)] := ‖x‖ + ‖Ax‖ for all x ∈ D(A).

For given constants s ∈ R and θ ∈ (0, π], we set dse := inf{l ∈ Z : s ≤ l} and Σθ := {z ∈ C\{0} : | arg(z)| < θ}.
The symbol C(I : X), where I = R or I = R+, stands for the space of all X-valued continuous functions

on the interval I. By Cb(I : X) (respectively, BUC(I : X)) we denote the subspaces of C(I : X) consisting of
all bounded (respectively, all bounded uniformly continuous functions). Both Cb(I : X) and BUC(I : X) are
Banach spaces when they are equipped with the sup-norm.

The classical Gamma function is denoted by Γ(·). We also set 1ζ(t) := tζ−1/Γ(ζ), ζ > 0. The convolution
operator ∗ is defined by f ∗ 1(t) :=

∫ t

0 f (t − s)1(s) ds.

2.1. Fractional Calculus

One of the first conferences on fractional calculus was held in New Haven (1974). Since then, fractional
calculus has captured the attention of many mathematicians around the world. It has many applications in
various fields such as mathematical physics, engineering, biology, aerodynamics, chemistry, economics etc.
For more on fractional calculus and related issues, we refer to [1], [9], [16], [17] and the references therein.

The Mittag-Leffler function Eα,β(z), defined by

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
, z ∈ C,

plays a crucial role in the analysis of fractional differential equations. Set, Eα(z) := Eα,1(z), z ∈ C.
Assuming that γ ∈ (0, 1), then we define the Wright function Φγ(·) by

Φγ(t) := L−1
(
Eγ(−λ)

)
(t), t ≥ 0,

where L−1 denotes the inverse Laplace transform.
The Wright function Φγ(·) is an entire function which can be equivalently introduced by the formula

Φγ(z) =

∞∑
n=0

(−z)n

n!Γ(1 − γ − γn)
, z ∈ C.

Let γ ∈ (0, 1). If u : [0,∞) → X satisfies, for every T > 0, u ∈ C((0,T] : X), u(·) − u(0) ∈ L1((0,T) : X) and
11−γ ∗ (u(·) − u(0)) ∈W1,1((0,T) : X), then we define its Caputo fractional derivative by,

Dγ
t u(t) =

d
dt

[
11−γ ∗

(
u(·) − u(0)

)]
(t), t ∈ (0,T].
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The Weyl-Liouville fractional derivative Dγ
t,+u(t) of order γ is defined for those continuous functions

u : R→ X such that t 7→
∫ t

−∞
11−γ(t − s)u(s) ds, t ∈ R is a well-defined continuously differentiable mapping,

by

Dγ
t,+u(t) :=

d
dt

∫ t

−∞

11−γ(t − s)u(s) ds, t ∈ R.

Set D1
t u(t) := (d/dt)u(t) and D1

t,+u(t) := −(d/dt)u(t).

2.2. Multivalued linear operators and degenerate resolvent operator families

Suppose that X and Y are two Banach spaces. A multivalued map (multimap)A : X → P(Y) is said to
be a multivalued linear operator, MLO for short, iff the following holds:

(i) D(A) := {x ∈ X : Ax , ∅} is a linear subspace of X;

(ii) Ax +Ay ⊆ A(x + y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

In the case that X = Y, then we say that A is an MLO in X. It is well known that for any x, y ∈ D(A) and
λ, η ∈ Cwith |λ| + |η| , 0, we have λAx + ηAy = A(λx + ηy). IfA is an MLO, thenA0 is a linear manifold
in Y and Ax = f +A0 for any x ∈ D(A) and f ∈ Ax. Define the kernel space N(A) of A and the range
R(A) of A by N(A) := {x ∈ D(A) : 0 ∈ Ax} and R(A) := {Ax : x ∈ D(A)}, respectively. We write A ⊆ B iff
D(A) ⊆ D(B) andAx ⊆ Bx for all x ∈ D(A).

Sums, mutual products, taking powers and products with complex scalars are standard operations for
multivalued linear operators (see e.g. [3], [11] and [18]). It is said that an MLO operator A : X → P(Y) is
closed iff for any sequences (xn) in D(A) and (yn) in Y such that yn ∈ Axn for all n ∈ N we have that the
suppositions limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax.

Concerning the C-resolvent sets of MLOs in Banach spaces, our standing hyportheses will be thatA is
an MLO in X, as well as that C ∈ L(X) is injective and CA ⊆ AC. The C-resolvent set ofA, ρC(A) for short,
is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ −A);

(ii) (λ −A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A)); the resolvent set of A is then
defined by ρ(A) := ρI(A), where I denotes the identity operator on X. Set R(λ : A) ≡ (λ −A)−1 (λ ∈ ρ(A)).
The basic properties of C-resolvent sets of single-valued linear operators continue to hold in our framework
(cf. [18] for more details). For instance, ρ(A) is always an open subset of C and ρ(A) , ∅ implies thatA is
closed.

In the sequel, we will employ the following important condition:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ :=
{
λ ∈ C : Reλ ≥ −c

(
|=λ| + 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

Then degenerate strongly continuous semigroup (T(t))t>0 ⊆ L(X) generated by A satisfies estimate
‖T(t)‖ ≤Me−cttβ−1, t > 0 for some finite constant M > 0. Furthermore, we know that (T(t))t>0 is given by the
formula

T(t)x =
1

2πi

∫
Γ

eλt
(
λ −A

)−1
x dλ, t > 0, x ∈ X,
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where Γ is the upwards oriented curve λ = −c(|η| + 1) + iη (η ∈ R). Assume that 0 < γ < 1 and ν > −β. Set

Tγ,ν(t)x := tγν
∫
∞

0
sνΦγ(s)T

(
stγ

)
x ds, t > 0, x ∈ X

and following E. Bazhlekova [1], R.-N. Wang, D.-H. Chen, T.-J. Xiao [24],

Sγ(t) := Tγ,0(t), Pγ(t) := γTγ,1(t)/tγ, t > 0.

Recall that (Sγ(t))t>0 is a subordinated (1γ, I)-regularized resolvent family generated by A, which is not
necessarily strongly continuous at zero. In [18], we have proved that there exists a finite constant M1 > 0
such that∥∥∥Sγ(t)

∥∥∥ +
∥∥∥Pγ(t)

∥∥∥ ≤M1tγ(β−1), t > 0. (1)

Furthermore, in [19], we have proved that there exists a finite constant M2 > 0 such that∥∥∥Sγ(t)
∥∥∥ ≤M2t−γ, t ≥ 1 and

∥∥∥Pγ(t)
∥∥∥ ≤M2t−2γ, t ≥ 1. (2)

Set Rγ(t) := tγ−1Pγ(t), t > 0.

2.3. Lebesgue spaces with variable exponents Lp(x)

Let ∅ , Ω ⊆ R be a nonempty subset and let M(Ω : X) stand for we the collection of all measurable
functions f : Ω → X; M(Ω) := M(Ω : R). Furthermore, P(Ω) denotes the vector space of all Lebesgue
measurable functions p : Ω→ [1,∞]. For any p ∈ P(Ω) and f ∈M(Ω : X), set

ϕp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) < ∞,

0, 0 ≤ t ≤ 1, p(x) = ∞,

∞, t > 1, p(x) = ∞

and

ρ( f ) :=
∫

Ω

ϕp(x)(‖ f (x)‖) dx.

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent as follows,

Lp(x)(Ω : X) :=
{

f ∈M(Ω : X) : lim
λ→0+

ρ(λ f ) = 0
}

equivalently

Lp(x)(Ω : X) =
{

f ∈M(Ω : X) : there exists λ > 0 such that ρ(λ f ) < ∞
}
;

see, e.g., [8, p. 73].
For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg norm of u(·) in the following manner:

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ( f/λ) ≤ 1

}
.

Equipped with the above norm, the space Lp(x)(Ω : X) becomes a Banach space (see e.g. [8, Theorem 3.2.7]
for scalar-valued case), coinciding with the usual Lebesgue space Lp(Ω : X) in the case that p(x) = p ≥ 1 is a
constant function. For any p ∈M(Ω), we set

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).
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Define
C+(Ω) :=

{
p ∈M(Ω) : 1 < p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω

}
and

D+(Ω) :=
{
p ∈M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω

}
.

For p ∈ D+([0, 1]), the space Lp(x)(Ω : X) behaves nicely, with almost all fundamental properties of the
Lesbesgue space with constant exponent Lp(Ω : X) being retained; in this case, we know that

Lp(x)(Ω : X) =
{

f ∈M(Ω : X) : for all λ > 0 we have ρ(λ f ) < ∞
}
.

Furthermore, if p ∈ C+(Ω), then Lp(x)(Ω : X) is uniformly convex and thus reflexive ([10]).
We will use the following lemma (see, e.g., [8, Lemma 3.2.20, (3.2.22); Corollary 3.3.4; p. 77] for

scalar-valued case):

Lemma 2.1. (i) Let p, q, r ∈ P(Ω) such that

1
q(x)

=
1

p(x)
+

1
r(x)

, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e. on Ω. Then Lp(x)(Ω : X) is
continuously embedded in Lq(x)(Ω : X).

(iii) Let f ∈ Lp(x)(Ω : X), 1 ∈M(Ω : X) and 0 ≤ ‖1‖ ≤ ‖ f ‖ a.e. on Ω. Then 1 ∈ Lp(x)(Ω : X) and ‖1‖p(x) ≤ ‖ f ‖p(x).

For additional details upon Lebesgue spaces with variable exponents Lp(x), we refer the reader to the
following sources: [6], [7], [8], [10] and [23].

3. Stepanov generalizations of almost periodic and asymptotically almost periodic functions

Let 1 ≤ p < ∞, l > 0, and f , 1 ∈ Lp
loc(I : X), where I = R or I = [0,∞). We define the Stepanov ‘metric’ by

Dp
Sl

[
f (·), 1(·)

]
:= sup

x∈I

[
1
l

∫ x+l

x

∥∥∥ f (t) − 1(t)
∥∥∥p

dt
]1/p

.

Clearly, for every two numbers l1, l2 > 0, there exist two positive real constants k1, k2 > 0 independent of
f , 1, such that

k1Dp
Sl1

[
f (·), 1(·)

]
≤ Dp

Sl2

[
f (·), 1(·)

]
≤ k2Dp

Sl1

[
f (·), 1(·)

]
.

The Stepanov norm of f (·) is introduced by setting

‖ f ‖Sp
l

:= Dp
Sl

[ f (·), 0].

In the sequel, we assume that l1 = l2 = 1.

Definition 3.1. A function f ∈ Lp
loc(I : X) is said to be Stepanov p-bounded (or Sp-bounded), if

‖ f ‖Sp := sup
t∈I

(∫ t+1

t
‖ f (s)‖p ds

)1/p

= sup
t∈I

(∫ 1

0
‖ f (s + t)‖p ds

)1/p

< ∞.
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Endowed with the above norm, the space Lp
S(I : X) consisting of all Sp-bounded functions, becomes a

Banach space.

Definition 3.2. A function f ∈ Lp
S(I : X) is said to be Stepanov p-almost periodic or Sp-almost periodic shortly, if the

function f̂ : I→ Lp([0, 1] : X), defined by

f̂ (t)(s) := f (t + s), t ∈ I, s ∈ [0, 1]

is almost periodic.

Similarly,

Definition 3.3. A function f ∈ Lp
S([0,∞) : X) is said to be asymptotically Stepanov p-almost periodic or asymptoti-

cally Sp-almost periodic, if the function f̂ (·) is asymptotically almost periodic.

It is well known that the space of Stepanov almost periodic functions (respectively, asymptotically
Stepanov almost periodic functions) denoted by APSp(I : X) (respectively, AAPSp([0,∞) : X)) is a closed
linear subspace of Lp

S(I : X) (respectively, Lp
S([0,∞) : X)) and hence is a Banach space.

The symbol Sp
0([0,∞) : X) stands for the vector space consisting of all functions q ∈ Lp

loc([0,∞) : X) such
that q̂ ∈ C0([0,∞) : Lp([0, 1] : X)).

If 1 ≤ p < q < ∞ and f (·) is (asymptotically) Stepanov q-almost periodic, then f (·) is (asymptotically)
Stepanov p-almost periodic. Therefore, the (asymptotic) Stepanov p-almost periodicity of f (·) for some
p ∈ [1,∞) implies the (asymptotical) Stepanov p-almost periodicity of f (·). It is a well-known fact that if
f (·) is an almost periodic (respectively, asymptotically almost periodic) function then f (·) is also Sp-almost
periodic (respectively, asymptotically Sp-almost periodic) for 1 ≤ p < ∞. And in general, the converse
statement is false.

4. Generalized almost periodic and generalized asymptotically almost periodic functions in Lebesgue
spaces with variable exponents Lp(x)

The following notion of Stepanov p(x)-boundedness differs from the one introduced by Diagana and
Zitane in [6, Definition 3.10] and [7, Definition 4.5], where the authors have used the condition p ∈ C+(R) :

Definition 4.1. Let p ∈ P([0, 1]) and let I = R or I = [0,∞). A function f ∈ M(I : X) is said to be Stepanov
p(x)-bounded (or Sp(x)-bounded), if f (· + t) ∈ Lp(x)([0, 1] : X) for all t ∈ I, and supt∈I ‖ f (· + t)‖p(x) < ∞, that is,

‖ f ‖Sp(x) := sup
t∈I

inf
{
λ > 0 :

∫ 1

0
ϕp(x)

(
‖ f (x + t)‖

λ

)
dx ≤ 1

}
< ∞.

The collection of such functions will be denoted by Lp(x)
S (I : X).

From Definition 4.1 it follows that the space Lp(x)
S (I : X) is translation invariant in the sense that, for every

f ∈ Lp(x)
S (I : X) and τ ∈ I, we have f (· + τ) ∈ Lp(x)

S (I : X). This is not the case with the notion introduced

by Diagana and Zitane [6]-[7], since there the space Lp(x)
S (I : X) may or may not be translation invariant

depending on p(x). Furthermore, let us note that the notion introduced in these papers is meaningful even
in the case that p ∈ P(R).

We introduce the concept of (asymptotic) Sp(x)-almost periodicity as follows:

Definition 4.2. (i) Let p ∈ P([0, 1]) and let I = R or I = [0,∞). A function f ∈ Lp(x)
S (I : X) is said to be Stepanov

p(x)-almost periodic (or Stepanov p(x)-a.p.), if the function f̂ : I → Lp(x)([0, 1] : X) is almost periodic. The
collection of such functions will be denoted by APSp(x)(I : X).
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(ii) Let p ∈ P([0, 1]) and let I = [0,∞).A function f ∈ Lp(x)
S (I : X) is said to be asymptotically Stepanov p(x)-almost

periodic (or asymptotically Stepanov p(x)-a.p.), if the function f̂ : I→ Lp(x)([0, 1] : X) is asymptotically almost
periodic. The collection of such functions will be denoted by AAPSp(x)(I : X). The abbreviation Sp(x)

0 ([0,∞) : X)
will be used to denote the set of all functions q ∈ Lp(x)

S ([0,∞) : X) such that q̂ ∈ C0([0,∞) : Lp(x)([0, 1] : X)).

As in the case of Stepanov p(x)-boundedness, the space APSp(x)(I : X) is translation invariant in the sense
that, for every f ∈ APSp(x)(I : X) and τ ∈ I, we have f (· + τ) ∈ APSp(x)(I : X). A similar statement holds for
the space AAPSp(x)([0,∞) : X).

It can be easily checked that the notions of (asymptotic) Stepanov p(x)-boundedness and (asymptotic)
Stepanov p(x)-almost periodicity are equivalent with those introduced in the previous section, provided
that p(x) ≡ p ≥ 1 is a constant function.

Equipped with the norm ‖ · ‖Sp(x) , the space Lp(x)
S (I : X) consisting of all Sp-bounded functions is a Banach

space, which is continuously embedded in L1
S(I : X), for any p ∈ P([0, 1]). Furthermore, it can be easily

shown that APSp(x)(I : X) (AAPSp(x)(I : X) with I = [0,∞)) is a closed subspace of Lp(x)
S (I : X) and therefore is

Banach space itself, for any p ∈ P([0, 1]).
If p ∈ P([0, 1]), then Lemma 2.1(ii) yields Lp(x)([0, 1] : X) ↪→ L1([0, 1] : X),where the symbol ↪→ stands for

a “continuous embedding”, so that Lp(x)
S (I : X) ↪→ L1

S(I : X), as well.
We have

Proposition 4.3. Suppose p ∈ P([0, 1]). Then the following continuous embedding hold,

(i) Lp(x)
S (I : X) ↪→ L1

S(I : X); and

(ii) APSp(x)(I : X) ↪→ APS1(I : X) and AAPSp(x)([0,∞) : X) ↪→ AAPS1([0,∞) : X).

Similarly,

Proposition 4.4. Suppose p ∈ D+([0, 1]) and 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ [0, 1]. Then the following
continuous embedding hold,

(i) Lp+

S (I : X) ↪→ Lp(x)
S (I : X) ↪→ Lp−

S (I : X); and

(ii) APSp+
(I : X) ↪→ APSp(x)(I : X) ↪→ APSp− (I : X) and AAPSp+

([0,∞) : X) ↪→ AAPSp(x)([0,∞) : X) ↪→
AAPSp− ([0,∞) : X).

Now we will prove that any almost periodic function is Sp(x)-almost periodic, for any p ∈ P([0, 1]).

Proposition 4.5. Let p ∈ P([0, 1]), and let f : I→ X be almost periodic. Then f (·) is Sp(x)-almost periodic.

Proof. To prove that f (·) is Sp(x)-bounded and ‖ f ‖Lp(x)
S
≤ ‖ f ‖∞, it suffices to show that, for every t ∈ R, we

have: [
‖ f ‖∞,∞

)
⊆

{
λ > 0 :

∫ 1

0
ϕp(x)

(
‖ f (x + t)‖

λ

)
dx ≤ 1

}
. (3)

For λ ≥ ‖ f ‖∞, we have ‖ f (x + t)‖/λ ≤ 1, t ∈ I. It can be simply perceived that, in this case,

ϕp(x)

(
‖ f (x + t)‖

λ

)
≤ 1, t ∈ I,

so that the integrand does not exceed 1; as a matter of fact, by definition of ϕp(x)(·), we only need to observe
that, for every x ∈ [0, 1] with p(x) < ∞,we have (‖ f (t + x)‖/λ)p(x)

≤ 1p(x) = 1, t ∈ I.Hence, (3) holds. Using the
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uniform continuity of f (·) and a similar argumentation, we can show that the function f̂ : I→ Lp(x)([0, 1] : X)
is uniform continuous. For direct proof of almost periodicity of function f̂ : I → Lp(x)([0, 1] : X), we can
argue as follows. For ε > 0 given as above, there is a finite number l > 0 such that any subinterval I′ of I
of length l contains a number τ ∈ I′ such that ‖ f (t + τ) − f (t)‖ ≤ ε, t ∈ I. It suffices to observe that, for this
ε > 0, we can choose the same length l > 0 and the same ε-almost period τ from I′ ensuring the validity of
inequality ‖ f̂ (t + τ + ·) − f̂ (t + ·)‖Lp(x)([0,1]:X) ≤ ε, t ∈ I : in order to see that the last inequality holds true, we
only need to prove that, for every t ∈ I, we have

[ε,∞) ⊆
{
λ > 0 :

∫ 1

0
ϕp(x)

(
‖ f (t + τ + x) − f (t + x)‖

λ

)
dx ≤ 1

}
.

Indeed, if λ ≥ ε, then ‖ f (t + τ + x) − f (t + x)‖/λ ≤ 1, t ∈ I and the integrand cannot exceed 1 : this
simply follows from definition of ϕp(x)(·) and observation that, for every x ∈ [0, 1] with p(x) < ∞, we have
(‖ f (t + τ + x) − f (t + x)‖/λ)p(x)

≤ 1p(x) = 1, t ∈ I. The proof of the proposition is thereby complete.

We can similarly prove the following proposition:

Proposition 4.6. Let p ∈ P([0, 1]), and let f : [0,∞) → X be asymptotically almost periodic. Then f (·) is
asymptotically Sp(x)-almost periodic.

Taking into account Proposition 4.3(ii) and the method employed in the proof of Proposition 4.5, we can
state the following:

Proposition 4.7. Assume that p ∈ P([0, 1]) and f ∈ Lp(x)
S (I : X). Then the following holds:

(i) L∞(I : X) ↪→ Lp(x)
S (I : X) ↪→ L1

S(I : X).

(ii) AP(I : X) ↪→ APSp(x)(I : X) ↪→ APS1(I : X) and AAP([0,∞) : X) ↪→ AAPSp(x)([0,∞) : X) ↪→
AAPS1([0,∞) : X).

(iii) The continuity (uniform continuity) of f (·) implies continuity (uniform continuity) of f̂ (·).

In general case, we have the following:

Proposition 4.8. Assume that p, q ∈ P([0, 1]) and p ≤ q a.e. on [0, 1]. Then we have:

(i) Lq(x)
S (I : X) ↪→ Lp(x)

S (I : X).

(ii) APSq(x)(I : X) ↪→ APSp(x)(I : X) and AAPSq(x)([0,∞) : X) ↪→ AAPSp(x)([0,∞) : X).

(iii) If p ∈ D+([0, 1]), then

L∞(I : X) ∩ APSp(x)(I : X) = L∞(I : X) ∩ APS1(I : X)

and

L∞([0,∞) : X) ∩ AAPSp(x)([0,∞) : X) = L∞([0,∞) : X) ∩ AAPS1([0,∞) : X).

Proof. We will prove only (iii) for almost periodicity. Keeping in mind Proposition 4.4(ii), it suffices to
assume that p(x) ≡ p > 1. Then, clearly, L∞(I : X)∩APSp(I : X) ⊆ L∞(I : X)∩APS1(I : X) and it remains to be
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proved the opposite inclusion. So, let f ∈ L∞(I : X)∩APS1(I : X). The required conclusion is a consequence
of elementary definitions and following simple calculation, which is valid for any t, τ ∈ R :[∫ t+1

t

∥∥∥ f (τ + s) − f (s)
∥∥∥p

ds
]1/p

≤

[∫ t+1

t

(
2‖ f ‖∞

)p−1∥∥∥ f (τ + s) − f (s)
∥∥∥ ds

]1/p

=
(
2‖ f ‖∞

)(p−1)/p
[∫ t+1

t

∥∥∥ f (τ + s) − f (s)
∥∥∥ ds

]1/p

.

Remark 4.9. It is well known that APSp(x)(I : X) can be strictly contained in APS1(I : X), even in the case that
p(x) ≡ p > 1 is a constant function. For example, H. Bohr and E. Følner have proved that, for any given number
p > 1, we can construct a Stepanov almost periodic function defined on the whole real axis that is not Stepanov
p-almost periodic (see [2, Example, p. 70]). The same example shows that AAPSp([0,∞) : X) can be strictly contained
in AAPS1([0,∞) : X) for p > 1 (see e.g. [15, Lemma 1]).

Remark 4.10. Proposition 4.5 and Proposition 4.6 can be simply deduced by using Proposition 4.8(ii) and the
equalities AP(I : X) = APS∞(I : X) ∩ C(I : X), AAP([0,∞) : X) = AAPS∞([0,∞) : X) ∩ C([0,∞) : X), which can
be proved almost trivially.

Now we would like to present the following illustrative example:

Example 4.11. Define sign(0) := 0. Then, for every almost periodic function f : R→ R, we have that the function
F(·) :=sign( f (·)) is Stepanov 1-almost periodic ([21]). Since F ∈ L∞(R), Proposition 4.8(iii) yields that the function
F(·) is Stepanov p-almost periodic for any p ≥ 1, while Proposition 4.7(i) yields that the function F(·) is Stepanov
p(x)-bounded for any p ∈ P([0, 1]). Due to Proposition 4.4(ii), we have F ∈ APSp(x)(R : C) for any p ∈ D+([0, 1]).

Consider now the case that f (x) := sin x + sin
√

2x, x ∈ R and p(x) := 1 − ln x, x ∈ [0, 1]. We will prove that
F < APSp(x)(R : C). Speaking-matter-of-factly, it is sufficient to show that, for every λ ∈ (0, 2/e) and for every l > 0,
we can find an interval I ⊆ R of length l > 0 such that, for every τ ∈ I, there exists t ∈ R such that∫ 1

0

( 1
λ

)1−ln x∣∣∣∣sign
[
sin(x + t + τ) + sin

√

2(x + t + τ)
]

− sign
[
sin(x + t) + sin

√

2(x + t)
]∣∣∣∣1−ln x

dx = ∞. (4)

Let λ ∈ (0, 2/e) and l > 0 be given. Take arbitrarily any interval I ⊆ R \ {0} of length l and after that take arbitrarily
any number τ ∈ I. Since (1/λ)1−ln x

≥ 1/x, x ∈ [0, 1] and 1 − ln x ≥ 1, x ∈ [0, 1], a continuity argument shows that
it is enough to prove the existence of a number t ∈ R such that[

sin(t + τ) + sin
√

2(t + τ)
]
·

[
sin t + sin

√

2t
]
< 0. (5)

If sin τ + sin
√

2τ > 0 (sin τ + sin
√

2τ < 0), then we can take t ∼ 0− (t ∼ 0+). Hence, we assume henceforward
sin τ + sin

√
2τ = 0 and τ , 0. There exist two possibilities:

τ ∈
2Zπ

1 +
√

2
\ {0} or τ ∈

(2Z + 1)π
√

2 − 1
.

In the first case, take t0 = π
√

2−1
. Then an elementary argumentation shows that τ + t0 <

2Zπ
1+
√

2
∪

(2Z+1)π
√

2−1
so that

sin(t0 + τ) + sin
√

2(t0 + τ) , 0. If sin(t0 + τ) + sin
√

2(t0 + τ) > 0 (sin(t0 + τ) + sin
√

2(t0 + τ) < 0), then for t
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satisfying (5) we can take any number belonging to a small left/right interval around t0 for which sin t + sin
√

2t < 0
(sin t + sin

√
2t > 0). In the second case, there exists an integer m ∈ Z such that τ =

(2m+1)π
√

2−1
and we can take

t0 =
(−2m+1)π
√

2−1
. Then τ+ t0 = 2π

√
2−1

and sin(t0 + τ) + sin
√

2(t0 + τ) , 0, so that we can use a trick similar to that used
in the first case. Let us only mention in passing that, with the notion introduced in [5], the function F(·) cannot be
Sp(x)-almost automorphic, as well.

The situation is quite different if we consider the case that f (x) := sin x, x ∈ R. Then F(·) is Stepanov p(x)-almost
periodic for any p ∈ P([0, 1]). Speaking-matter-of-factly, it can be easily shown that the mapping F̂ : R→ Lp(x)[0, 1]
is continuous and ‖F(t + τ + ·) − F(t + ·)‖Lp(x)[0,1] = 0 for all t ∈ R and τ ∈ 2πZ. This, in turn, implies the claimed
statement.

Keeping in mind the proofs of Proposition 4.5, [5, Proposition 3.5] and [15, Lemma 1], we can clarify the
following result:

Proposition 4.12. Suppose that p ∈ P([0, 1]) and f : [0,∞)→ X is an asymptotically Sp(x)-almost periodic function.
Then there are uniquely determined Sp(x)-bounded functions 1 : R→ X and q : [0,∞)→ X satisfying the following
conditions:

(i) 1 is Sp(x)-almost periodic,

(ii) q̂ belongs to the class C0([0,∞) : Lp(x)([0, 1] : X)),

(iii) f (t) = 1(t) + q(t) for all t ≥ 0.

Moreover, there exists an increasing sequence (tn)n∈N of positive reals such that limn→∞ tn = ∞ and 1(t) =
limn→∞ f (t + tn) a.e. t ≥ 0.

Remark 4.13. The definition of an (equi-)Weyl p(x)-almost periodic function (see e.g. [19] for the case that p(x) ≡
p ∈ [1,∞)) can be introduced as follows: Suppose I = R or I = [0,∞). Let p ∈ P(I) and f (· + τ) ∈ Lp(x)(K : X) for
any τ ∈ I and any compact subset K of I.

(i) It is said that the function f (·) is equi-Weyl-p(x)-almost periodic, f ∈ e −Wp(x)
ap (I : X) for short, iff for each

ε > 0 we can find two real numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point
τ ∈ I′ such that

sup
t∈I

[
l(−1)/p(t)

∥∥∥ f (· + τ) − f (·)
∥∥∥

Lp(x)[t,t+l]

]
≤ ε.

(ii) It is said that the function f (·) is Weyl-p(x)-almost periodic, f ∈Wp(x)
ap (I : X) for short, iff for each ε > 0 we can

find a real number L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→∞

sup
t∈I

[
l(−1)/p(t)

∥∥∥ f (· + τ) − f (·)
∥∥∥

Lp(x)[t,t+l]

]
≤ ε.

The notion of (equi-)Weyl p(x)-almost periodicity as well as the corresponding notion for Besicovitch classes of almost
periodic functions will not attract our attention here. We will also skip all details concerning asymptotical p(x)-almost
periodicity for Weyl and Besicovitch classes.

5. Generalized two-parameter almost periodic type functions and composition principles

Assume that (Y, ‖ · ‖Y) is a complex Banach space, as well as that I = R or I = [0,∞). By C0([0,∞)×Y : X)
we denote the space consisting of all continuous functions h : [0,∞) × Y → X such that limt→∞ h(t, y) = 0
uniformly for y in any compact subset of Y. A continuous function f : I × Y → X is said to be uniformly
continuous on bounded sets, uniformly for t ∈ I iff for every ε > 0 and every bounded subset K of Y there
exists a number δε,K > 0 such that ‖ f (t, x)− f (t, y)‖ ≤ ε for all t ∈ I and all x, y ∈ K satisfying that ‖x−y‖ ≤ δε,K.
If f : I × Y→ X, set f̂ (t, y) := f (t + ·, y), t ≥ 0, y ∈ Y.

We need to recall the following well-known definition (see e.g. [19] for more details):
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Definition 5.1. Let 1 ≤ p < ∞.

(i) A function f : I×Y→ X is said to be almost periodic iff f (·, ·) is bounded, continuous as well as for every ε > 0
and every compact K ⊆ Y there exists l(ε,K) > 0 such that every subinterval J ⊆ I of length l(ε,K) contains a
number τ with the property that ‖ f (t + τ, y) − f (t, y)‖ ≤ ε for all t ∈ I, y ∈ K. The collection of such functions
will be denoted by AP(I × Y : X).

(ii) A function f : [0,∞) × Y → X is said to be asymptotically almost periodic iff it is bounded continuous and
admits a decomposition f = 1 + q, where 1 ∈ AP([0,∞) × Y : X) and q ∈ C0([0,∞) × Y : X). Denote by
AAP([0,∞) × Y : X) the vector space consisting of all such functions.

The notion of (asymptotical) Stepanov p(x)-almost periodicity for the functions depending on two
parameters is introduced as follows:

Definition 5.2. Let p ∈ P([0, 1]).

(i) A function f : I × Y → X is called Stepanov p(x)-almost periodic, Sp(x)-almost periodic for short, iff f̂ :
I × Y→ Lp(x)([0, 1] : X) is almost periodic. The vector space consisting of all such functions will be denoted by
APSp(x)(I × Y : X).

(ii) A function f : [0,∞) × Y → X is said to be asymptotically Sp(x)-almost periodic iff f̂ : [0,∞) × Y →
Lp(x)([0, 1] : X) is asymptotically almost periodic. The vector space consisting of all such functions will be
denoted by AAPSp(x)([0,∞) × Y : X).

The proof of following proposition is very similar to the proof of [19, Lemma 2.2.6] and therefore omitted.

Proposition 5.3. Let p ∈ P([0, 1]). Suppose that f : [0,∞) × Y → X is an asymptotically Sp(x)-almost periodic
function. Then there are two functions 1 : R × Y → X and q : [0,∞) × Y → X satisfying that for each y ∈ Y the
functions 1(·, y) and q(·, y) are Stepanov p(x)-bounded, as well as that the following holds:

(i) 1̂ : R × Y→ Lp(x)([0, 1] : X) is almost periodic,

(ii) q̂ ∈ C0([0,∞) × Y : Lp(x)([0, 1] : X)),

(iii) f (t, y) = 1(t, y) + q(t, y) for all t ≥ 0 and y ∈ Y.

Moreover, for every compact set K ⊆ Y, there exists an increasing sequence (tn)n∈N of positive reals such that
limn→∞ tn = ∞ and 1(t, y) = limn→∞ f (t + tn, y) for all y ∈ Y and a.e. t ≥ 0.

In [19, Theorem 2.7.1, Theorem 2.7.2], we have slightly improved the important composition principle
atributed to W. Long, S.-H. Ding [22, Theorem 2.2]. Further refinements for Sp(x)-almost periodicity can be
deduced similarly, with appealing to Lemma 2.1(i)-(iii) and the arguments employed in the proof of [22,
Theorem 2.2]:

Theorem 5.4. Let I = R or I = [0,∞), and let p ∈ P([0, 1]). Suppose that the following conditions hold:

(i) f ∈ APSp(x)(I × Y : X) and there exist a function r ∈ P([0, 1]) such that r(·) ≥ max(p(·), p(·)/p(·) − 1) and a
function L f ∈ Lr(x)

S (I) such that:

‖ f (t, x) − f (t, y)‖ ≤ L f (t)‖x − y‖Y, t ∈ I, x, y ∈ Y; (6)

(ii) u ∈ APSp(x)(I : Y), and there exists a set E ⊆ I with m(E) = 0 such that K := {u(t) : t ∈ I \ E} is relatively
compact in Y; here, m(·) denotes the Lebesgue measure.

Define q ∈ P([0, 1]) by q(x) := p(x)r(x)/p(x)+ r(x), if x ∈ [0, 1] and r(x) < ∞, q(x) := p(x), if x ∈ [0, 1] and r(x) = ∞.
Then q(x) ∈ [1, p(x)) for x ∈ [0, 1], r(x) < ∞ and f (·,u(·)) ∈ APSq(x)(I : X).
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Concerning asymptotical two-parameter Stepanov p(x)-almost periodicity, we can deduce the following
composition principles with X = Y; the proof is very similar to those of [19, Proposition 2.7.3, Proposition
2.7.4] established in the case of constant functions p, q, r :

Proposition 5.5. Let I = [0,∞), and let p ∈ P([0, 1]). Suppose that the following conditions hold:

(i) 1 ∈ APSp(x)(I × X : X), there exist a function r ∈ P([0, 1]) such that r(·) ≥ max(p(·), p(·)/p(·) − 1) and a
function L1 ∈ Lr(x)

S (I) such that (6) holds with the function f (·, ·) replaced by the function 1(·, ·) therein.

(ii) v ∈ APSp(x)(I : X), and there exists a set E ⊆ I with m(E) = 0 such that K = {v(t) : t ∈ I \ E} is relatively
compact in X.

(iii) f (t, x) = 1(t, x) + q(t, x) for all t ≥ 0 and x ∈ X, where q̂ ∈ C0([0,∞) ×X : Lq(x)([0, 1] : X)) with q(·) defined as
above;

(iv) u(t) = v(t) + ω(t) for all t ≥ 0, where ω̂ ∈ C0([0,∞) : Lp(x)([0, 1] : X)).

(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {u(t) : t ∈ I \ E′} is relatively compact in X.

Then f (·,u(·)) ∈ AAPSq(x)(I : X).

6. Generalized (asymptotical) almost periodicity in Lebesgue spaces with variable exponents Lp(x) :
action of convolution products

Throughout this section, we assume that p ∈ P([0, 1]) and a multivalued linear operator A fulfills the
condition (P). We will first investigate infinite convolution products. The results obtained can be simply
incorporated in the study of existence and uniqueness of almost periodic solutions of the following abstract
Cauchy differential inclusion of first order

u′(t) ∈ Au(t) + 1(t), t ∈ R

and the following abstract Cauchy relaxation differential inclusion

Dγ
t,+u(t) ∈ −Au(t) + 1(t), t ∈ R, (7)

where Dγ
t,+ denotes the Weyl-Liouville fractional derivative of order γ ∈ (0, 1) and 1 : R × X → X satis-

fies certain assumptions; see [19] for further information in this direction. Keeping in mind composition
principles clarified in the previous section, it is almost straightforward to reformulate some known results
concerning semilinear analogues of the above inclusions (see e.g. [19, Theorem 2.7.6-Theorem 2.7.9; The-
orem 2.9.10-Theorem 2.9.11; Theorem 2.9.17-Theorem 2.9.18]); because of that, this question will not be
examined here for the sake of brevity.

We start by stating the following generalization of [20, Proposition 2.11] (the reflexion at zero keeps the
spaces of Stepanov p-almost periodic functions unchanged, which may or may not be the case with the
spaces of Stepanov p(x)-almost periodic functions):

Proposition 6.1. Suppose that q ∈ P([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous
operator family satisfying that M :=

∑
∞

k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞. If 1̌ : R → X is Sp(x)-almost periodic, then the
function G : R→ Y, given by

G(t) :=
∫ t

−∞

R(t − s)1(s) ds, t ∈ R, (8)

is well-defined and almost periodic.
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Proof. Without loss of generality, we may assume that X = Y. It is clear that, for every t ∈ R, we have
that G(t) =

∫
∞

0 R(s)1(t − s) ds and that the last integral is absolutely convergent due to Lemma 2.1(i) and
Sp(x)-boundedness of function 1̌(·) :∫

∞

0
‖R(s)‖‖1(t − s)‖ ds =

∞∑
k=0

∫ k+1

k
‖R(s)‖‖1(t − s)‖ ds

=

∞∑
k=0

∫ 1

0
‖R(s + k)‖‖1(t − s − k)‖ ds

≤ 2
∞∑

k=0

‖R(· + k)‖Lq(x)([0,1]:X)‖1(t − k − ·)‖Lp(x)([0,1]:X)

≤ 2M sup
t∈R
‖1̌(· − t)‖Lp(x)([0,1]:X),

for any t ∈ R. Let a number ε > 0 be fixed. Then there is a finite number l > 0 such that any subinterval I of
R of length l contains a number τ ∈ I such that ‖1̌(t − τ + ·) − 1̌(t + ·)‖Lp(x)([0,1]:X) ≤ ε, t ∈ R. Invoking Lemma
2.1(i) and this fact, we get

‖G(t + τ) − G(t)‖

≤

∫
∞

0
‖R(r)‖ · ‖1(t + τ − r) − 1(t − r)‖ dr

=

∞∑
k=0

∫ k+1

k
‖R(r)‖ · ‖1(t + τ − r) − 1(t − r)‖ dr

=

∞∑
k=0

∫ 1

0
‖R(r + k)‖ · ‖1(t + τ − r − k) − 1(t − r − k)‖ dr

≤ 2
∞∑

k=0

‖R(· + k)‖Lq(x)[0,1]‖1(t + τ − · − k) − 1(t − · − k)‖Lp(x)[0,1]

= 2
∞∑

k=0

‖R(· + k)‖Lq(x)[0,1]‖1̌(· − t − τ + k) − 1̌(· − t + k)‖Lp(x)[0,1]

≤ 2ε
∞∑

k=0

‖R(· + k)‖Lq(x)[0,1] = 2Mε, t ∈ R,

which clearly implies that the set of all ε-periods of G(·) is relatively dense inR. It remains to be proved the
uniform continuity of G(·). Since ˆ̌1(·) is uniformly continuous, we have the existence of a number δ ∈ (0, 1)
such that

‖1̌(· − t′) − 1̌(· − t)‖Lp(x)[0,1] < ε, provided t, t′ ∈ R and |t − t′| < δ. (9)

For any δ′ ∈ (0, δ), the above computation with τ = δ′ = t′ − t and (9) together imply that, for every t ∈ R,∥∥∥G(t + δ′) − G(t)
∥∥∥

≤ 2
∞∑

k=0

‖R(· + k)‖Lq(x)[0,1]‖1̌(· − t′ + k) − 1̌(· − t + k)‖Lp(x)[0,1]

≤ 2ε
∞∑

k=0

‖R(· + k)‖Lq(x)[0,1] = 2Mε.

This completes the proof of proposition.
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Example 6.2. (i) Suppose that β ∈ (0, 1) and (R(t))t>0 = (T(t))t>0 is a degenerate semigroup generated byA. Let
us recall that there exists a finite constant M > 0 such that ‖T(t)‖ ≤ Mtβ−1, t ∈ (0, 1] and ‖T(t)‖ ≤ Me−ct,
t ≥ 1. Let p0 > 1 be such that

p0

p0 − 1
(β − 1) ≤ −1,

let p ∈ P([0, 1]), and let ‖T(·)‖Lq(x)[0,1] < ∞. Assume that we have constructed a function 1̌ ∈ APSp(x)(R : X)
such that 1̌ < APSp(R : X) for all p ≥ p0 (Question: Could we manipulate here somehow with the construction
established in [2, Example, p. 70]?) Then, in our concrete situation, [20, Proposition 2.11] cannot be applied
since

p
p − 1

(β − 1) ≤ −1, p ∈ [1, p0).

Now we will briefly explain that
∑
∞

k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞, showing that Proposition 6.1 is applicable.
Strictly speaking, for k = 0, ‖T(·)‖Lq(x)[0,1] < ∞ by our assumption, while, for k ≥ 1, it can be simply shown that
‖R(· + k)‖Lq(x)[0,1] ≤Me−ck so that

∑
∞

k=0 ‖R(· + k)‖Lq(x)[0,1] < ∞, as claimed.

(ii) By a mild solution of (7), we mean the function t 7→
∫ t

−∞
Rγ(t − s)1(s) ds, t ∈ R. Let p ∈ P([0, 1]), and let

‖Rγ(·)‖Lq(x)[0,1] < ∞. Then, for k ≥ 1,we have ‖Rγ(·+k)‖Lq(x)[0,1] ≤M2k−1−γ.Hence,
∑
∞

k=0 ‖Rγ(·+k)‖Lq(x)[0,1] < ∞
and we can apply Proposition 6.1.

In the following proposition, whose proof is very similar to that of [5, Proposition 3.12], we state some
invariance properties of generalized asymptotical almost periodicity in Lebesgue spaces with variable
exponents Lp(x) under the action of finite convolution products (see also [19, Proposition 2.7.5, Lemma 2.9.3]
for similar results). This proposition generalizes [20, Proposition 2.13] provided that p > 1 in its formulation.

Proposition 6.3. Suppose that p ∈ P([0, 1]), q ∈ D+([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆ L(X) is a strongly
continuous operator family satisfying that, for every t ≥ 0, we have that mt :=

∑
∞

k=0 ‖R(· + t + k)‖Lq(x)[0,1] < ∞.

Suppose, further, that 1̌ : R → X is Sp(x)-almost periodic, q ∈ Lp(x)
S ([0,∞) : X) and f (t) = 1(t) + q(t), t ≥ 0. Let

r1, r2 ∈ P([0, 1]) and the following holds:

(i) For every t ≥ 0, the mapping x 7→
∫ t+x

0 R(t + x − s)q(s) ds, x ∈ [0, 1] belongs to the space Lr1(x)([0, 1] : X) and
we have

lim
t→+∞

∥∥∥∥∥∥
∫ t+x

0
R(t + x − s)q(s) ds

∥∥∥∥∥∥
Lr1(x)[0,1]

= 0.

(ii) For every t ≥ 0, the mapping x 7→ mt+x, x ∈ [0, 1] belongs to the space Lr2(x)[0, 1] and we have

lim
t→+∞

∥∥∥mt+x

∥∥∥
Lr2(x)[0,1]

= 0.

Then the function H(·), given by

H(t) :=
∫ t

0
R(t − s) f (s) ds, t ≥ 0,

is well-defined, bounded and belongs to the class APSp(x)(R : X) + Sr1(x)
0 ([0,∞) : X) + Sr2(x)

0 ([0,∞) : X), with the
meaning clear.

Remark 6.4. In [20, Remark 2.14], we have examined the conditions under which the function H(·) defined above is
asymptotically almost periodic, provided that the function 1(·) is Sp-almost periodic for some p ∈ [1,∞). The interested
reader may try to analyze similar problems with function 1̌(·) being Sp(x)-almost periodic for some p ∈ P([0, 1]).
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7. Applications

Let Ω ⊆ Rn be an open bounded subset with smooth boundary ∂Ω and let 1 < p < ∞. Among other
things, one can make use of Proposition 6.3 to establish the existence and uniqueness of asymptotically
Sp(x)-almost automorphic solutions to the damped Poisson-wave type equation, in the spaces X := H−1(Ω)
or X := Lp(Ω), given by

∂
∂t

(
m(x)

∂u
∂t

)
+

(
2ωm(x) − ∆

)∂u
∂t

+
(
A(x; D) − ω∆ + ω2m(x)

)
u(x, t) = f (x, t),

t ≥ 0, x ∈ Ω ;

u =
∂u
∂t

= 0, (x, t) ∈ ∂Ω × [0,∞),

u(0, x) = u0(x), m(x)
[
(
∂u
∂t

)(x, 0) + ωu0

]
= m(x)u1(x), x ∈ Ω,

where m(x) ∈ L∞(Ω),m(x) ≥ 0 a.e. x ∈ Ω,∆ is the Dirichlet Laplacian in L2(Ω), acting on its maximal domain,
H1

0(Ω) ∩H2(Ω), and A(x; D) is a second-order linear differential operator on Ω with continuous coefficients
on Ω, see, e.g., [11, Example 6.1] and [19] for further details.

Notice that we can also consider the existence and uniqueness of asymptotically Sp(x)-almost periodic
solutions to the following fractional damped Poisson-wave type equation, in the spaces X := H−1(Ω) or
X := Lp(Ω), given by

Dγ
t

(
m(x)Dγ

t u
)

+
(
2ωm(x) − ∆

)
Dγ

t u +
(
A(x; D) − ω∆ + ω2m(x)

)
u(x, t) = f (x, t),

t ≥ 0, x ∈ Ω ;

u = Dγ
t u = 0, (x, t) ∈ ∂Ω × [0,∞),

u(0, x) = u0(x), m(x)
[
Dγ

t u(x, 0) + ωu0

]
= m(x)u1(x), x ∈ Ω.

Additionally, it is also clear that Proposition 6.1 can be used to study the existence and uniqueness of
almost periodic solutions of the following abstract integral inclusion

u(t) ∈ A
∫ t

−∞

a(t − s)u(s) ds + 1(t), t ∈ R (10)

where a ∈ L1
loc([0,∞)), a , 0, 1̌ : R→ X is Sp(x)-almost periodic andA is a closed multivalued linear operator

on X, see, e.g., [19].
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