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Abstract. In this article, we introduce some generalized contractive mappings over a metric space as
extensions of various contractive mappings given by Kannan, Ćirić, Proinov and Górnicki. Some fixed
point theorems have been proved for such new contractive type mappings via asymptotic regularity and
some weaker versions of continuity. Supporting examples have been given in strengthening the hypothesis
of our established theorems. As a by-product we explore some new answers to the open question posed by
Rhoades.

1. Introduction and Preliminaries

In 1968, R. Kannan [9] proved a fixed point theorem for a mapping which was neither contraction nor
contractive in nature. Also, a Kannan type contractive mapping may not always be continuous in the entire
domain of definition.

Definition 1.1. In a metric space (X, d), a mapping T : X→ X is said to be
(i) Kannan type mapping [9] if there exists A ∈

[
0, 1

2

)
such that for all x, y ∈ X

d(Tx,Ty) ≤ A
{
d(x,Tx) + d(y,Ty)

}
. (1)

(ii) Reich type mapping [17], [18] if there exist a, b, c ∈ [0, 1) with a + b + c < 1 such that for all x, y ∈ X

d(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + cd(y,Ty). (2)

(iii) Hardy-Rogers type mapping [8] if there exist a, b, c, e, f ∈ [0, 1) with a + b + c + e + f < 1 such that for all
x, y ∈ X

d(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + cd(y,Ty) + ed(x,Ty) + f d(y,Tx). (3)

Theorem 1.2. In a complete metric space (X, d), a mapping T : X → X satisfying either Kannan or Reich or
Hardy-Rogers type contractive condition, possesses a unique fixed point in X.
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Email addresses: spanja1729@gmail.com (Sayantan Panja), kushal.roy93@gmail.com (Kushal Roy), mantusaha.bu@gmail.com

(Mantu Saha), ravindra.bisht@yahoo.com (Ravindra K. Bisht)



S. Panja et al. / Filomat 34:5 (2020), 1621–1627 1622

Recently in the year 2019, J. Górnicki [7] studied a new class of contractive mappings (see also [11, 16])
and proved a fixed point theorem for such mappings with assumption of continuity, which is as follows.

Theorem 1.3. [7] In a complete metric space (X, d) a continuous and asymptotically regular mapping T : X → X
satisfying

d(Tx,Ty) ≤ αd(x, y) + K
{
d(x,Tx) + d(y,Ty)

}
for all x, y ∈ X (4)

for some α ∈ [0, 1) and for some K ≥ 0 has a unique fixed point u ∈ X and for each x ∈ X, Tnx→ u as n→∞.

Now recall some basic definitions as follows.

Definition 1.4. [1, 5] In a metric space (X, d), a mapping T : X→ X is said to be asymptotically regular at x ∈ X, if
limn→∞ d(Tnx,Tn+1x) = 0. If T is asymptotically regular at all x ∈ X, then T is said to be asymptotically regular.

Definition 1.5. For a self mapping T over a metric space (X, d) the set O(x,T) := {Tnx : n = 0, 1, 2, · · · }, x ∈ X, is
called an orbit of the mapping T.

Definition 1.6. [6] In a metric space (X, d), a mapping T : X→ X is said to be orbitally continuous at a point p ∈ X
if for any sequence {xn} ⊂ O(x,T) (for some x ∈ X) xn → p implies Txn → Tp as n→∞.

Definition 1.7. [12] In a metric space (X, d) a mapping T : X → X is called k− continuous (k = 1, 2, 3, · · · ) if for
some p ∈ X and for any sequence {xn} ⊂ X, Tk−1xn → p implies Tkxn → Tp as n→∞.

Bisht [2] replaced the assumption of continuity in Theorem 1.3 by a weaker version of continuity condi-
tion, namely, orbital continuity or k-continuity.

In 1988, Rhoades [19] asked the question of the existence of a contractive condition which admits dis-
continuity at the fixed point as an existing open problem. Pant [14] resolved this problem in the setting of
metric space. Several other solutions of this problem can be found in [2–4, 12, 13, 15, 20, 21].

In the following section we generalize the Górnicki type mapping (4) replacing the term K
{
d(x,Tx) + d(y,Ty)

}
by an arbitrary function of d(x,Tx) and d(y,Ty), together with Reich, Hardy-Rogers and Ćirić type map-
pings and proved a fixed point theorem with the help of either orbitally continuity or k-continuity. We also
provide some new answers to Rhoades open problem in the setting of metric space.

2. Main Result

We define an extended version of Kannan type contractive mappings, which is given below.

Definition 2.1. (Kannan-Górnicki type mapping) In a metric space (X, d) a mapping T : X → X is said to be
Kannan-Górnicki type contractive mapping if there exists some ζ ≥ 0 such that

d(Tx,Ty) ≤ ζ{d(x,Tx) + d(y,Ty)} for all x, y ∈ X. (5)

Clearly any Kannan mapping is also Kannan-Górnicki type contractive mapping but one can find
various Kannan-Górnicki type contractive mapping which are not Kannan contractive mapping.

There are several contraction mappings which are not Kannan mappings. See the following example.

Example 2.2. Let X = [0, 1] with usual metric, T : X→ X be defined by Tx = x
2 for all x ∈ X. Then it can be easily

checked that it is not usual Kannan contractive mapping.

But any contraction mapping is also Kannan-Górnicki type contractive mapping. If (X, d) is a metric
space and T : X→ X is a contraction mapping with Lipschitz constant α ∈ [0, 1) then it can be easily verified
that T is a Kannan-Górnicki type contractive mapping with Lipschitz constant α

1−α .
From Theorem 1.3 we can get the following obvious theorem.
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Theorem 2.3. In a complete metric space (X, d) a continuous and asymptotically regular Kannan-Górnicki type
contractive mapping has a unique fixed point.

It is known that if T is a Kannan mapping on a metric space (X, d) with constant ξ ∈ [0, 1
2 ) then Tm is also a

Kannan mapping with constant ξ
(
ξ

1−ξ

)m−1
for any positive integer m ≥ 2. But in case of a Kannan-Górnicki

contractive mapping it is not always true. See the following example.

Example 2.4. Let X = [ 1
2 , 2] with discrete metric ds defined by ds(x, y) = 0 if x = y and ds(x, y) = 1 if x , y. Also

let T : X → X be given by Tx = 1
x for all x ∈ X. Then T is a Kannan-Górnicki contractive mapping with Lipschitz

constant ζ = 1 but T2 is the identity mapping which can not be Kannan-Górnicki contractive mapping for any ζ ≥ 0.

From Theorem 1.2 we see that any Kannan mapping has a unique fixed point in a complete metric space.
But there are Kannan-Górnicki contractive mappings which have no fixed point in a complete metric space.
The following examples show this.

Example 2.5. Let X = R with discrete metric ds defined by ds(x, y) = 0 if x = y and ds(x, y) = 1 if x , y.
(i) Let T : X → X be given by Tx = x + 1 for all x ∈ X. Then T is a Kannan-Górnicki contractive mapping

with Lipschitz constant ζ = 1
2 . Clearly T has no fixed point in X. Actually here all the conditions of Theorem 2.3 are

satisfied except for T is asymptotically regular.
(ii) Let T : X → X be given by Tx =

√
3 if x ∈ Q and Tx = 1 if x ∈ R\Q. Then T is a Kannan-Górnicki

contractive mapping with Lipschitz constant ζ = 1
2 . It is clear that T has no fixed point in X. In this example also all

the conditions of Theorem 2.3 are satisfied for T except for T is asymptotically regular.

Now we give some more general versions of Kannan contractive mappings and Górnicki contractive
mappings (the contractive condition used in Theorem 1.3), see the following definitions.

First we define, the class F of such functions F : [0,∞) × [0,∞) → [0,∞) satisfying the following
conditions:
(i) F(0, 0) = 0
(ii) F is continuous at (0, 0).

Definition 2.6. In a metric space (X, d), a mapping T : X→ X is said to be
(i) Ćirić-Proinov-Górnicki type mapping if there exists α ∈ [0, 1) such that

d(Tx,Ty) ≤ αmax{d(x, y), d(x,Ty), d(y,Tx)} + F(d(x,Tx), d(y,Ty)) (6)

(ii) Hardy-Rogers-Proinov-Górnicki type mapping if there exist α, β, γ ∈ [0, 1) with α + β + γ < 1 such that

d(Tx,Ty) ≤ αd(x, y) + βd(x,Ty) + γd(y,Tx) + F(d(x,Tx), d(y,Ty)) (7)

(iii) Reich-Proinov-Górnicki type mapping if there exist α ∈ [0, 1) such that

d(Tx,Ty) ≤ αd(x, y) + F(d(x,Tx), d(y,Ty)) (8)

for all x, y ∈ X and for some F ∈ F.

We begin with the following result:

Theorem 2.7. Let (X, d) be a complete metric space and T : X→ X be asymptotically regular Ćirić-Proinov-Górnicki
type mapping. Then T has a unique fixed point provided either T is k-continuous for k ≥ 1 or T is orbitally continuous.

Proof. Let x0 ∈ X. Construct the iteration xn+1 = Txn for all n = 0, 1, 2, · · · . For n,m ∈N,m > n we have,

d(xn, xm) = d(Tnx0,Tmx0)

≤ αmax
{
d(Tn−1x0,Tm−1x0), d(Tn−1x0,Tmx0), d(Tm−1x0,Tnx0)

}
+ F

(
d(Tn−1x0,Tnx0), d(Tm−1x0,Tmx0)

)
= αCn,m + F(an, bm) , (say)
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where Cn,m = max
{
d(Tn−1x0,Tm−1x0), d(Tn−1x0,Tmx0), d(Tm−1x0,Tnx0)

}
and

an = d(Tn−1x0,Tnx0), bm = d(Tm−1x0,Tmx0).

Case 1: If Cn,m = d(Tn−1x0,Tm−1x0) then,

d(xn, xm) ≤ αd(Tn−1x0,Tm−1x0) + F(an, bm)

≤ α
[
d(Tn−1x0,Tnx0) + d(Tnx0,Tmx0) + d(Tmx0,Tm−1x0)

]
+ F(an, bm),

which implies

d(xn, xm) ≤
α

1 − α

[
d(Tn−1x0,Tnx0) + d(Tm−1x0,Tmx0)

]
+

1
1 − α

F(an, bm). (9)

Case 2: If Cn,m = d(Tn−1x0,Tmx0) then,

d(xn, xm) ≤ d(Tn−1x0,Tmx0) + F(an, bm)

≤ α
[
d(Tn−1x0,Tnx0) + d(Tnx0,Tmx0)

]
+ F(an, bm),

implying that

d(xn, xm) ≤
α

1 − α
d(Tn−1x0,Tnx0) +

1
1 − α

F(an, bm). (10)

Case 3: If Cn,m = d(Tm−1x0,Tnx0) then,

d(xn, xm) ≤ αd(Tm−1x0,Tnx0) + F(an, bm)

≤ α
[
d(Tm−1x0,Tmx0) + d(Tmx0,Tnx0)

]
+ F(an, bm),

which yields

d(xn, xm) ≤
α

1 − α
d(Tm−1x0,Tmx0) +

1
1 − α

F(an, bm). (11)

So in any case from (9), (10) and (11) we can write

d(xn, xm) ≤
α

1 − α

[
d(Tn−1x0,Tnx0) + d(Tm−1x0,Tmx0)

]
+

1
1 − α

F(an, bm)

=
α

1 − α
(an + bm) +

1
1 − α

F(an, bm). (12)

Now since T is asymptotically regular, so an → 0 and bm → 0 as m > n→∞. Then using the continuity
of F, from (12) we have that {xn} is a Cauchy sequence in X. Since X is complete so {xn} is convergent and
let limn→∞ xn = p ∈ X.

Suppose T is k-continuous: Since limn→∞ xn+1 = p, so limn→∞ Txn = p. Moreover, for each k ≥ 1 we have
limn→∞ Tkxn = p. Since limn→∞ Tk−1xn = p due to k-continuity of T we get limn→∞ Tkxn = Tp. Thus p = Tp.
i.e., p ∈ X is a fixed point of T.

Next suppose T is orbitally continuous: We have limn→∞ xn+1 = limn→∞ Txn = p. Again from orbitally
continuity limn→∞ xn = p implies limn→∞ Txn = Tp. Hence p = Tp. i.e., p ∈ X is a fixed point of T.
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For uniqueness let us suppose that T has two fixed points p ∈ X and q ∈ X. i.e., Tp = p and Tq = q. Then,

d(p, q) = d(Tp,Tq)
≤ αmax

{
d(p, q), d(p,Tq), d(q,Tp)

}
+ F (d(u,Tu), d(v,Tv))

= αd(p, q) + F(0, 0)

Since F(0, 0) = 0, we have (1 − α)d(p, q) ≤ 0 which yields that d(p, q) = 0, i.e. p = q and consequently fixed
point is unique.

Example 2.8. Let X = [0, 2] equipped with the usual metric d. Define T : X→ X by

T(x) =

1 if 0 ≤ x ≤ 1
x − 1 if 1 < x ≤ 2.

(13)

Then T satisfies all the conditions of Theorem 2.7 and has a unique fixed point x = 1.

Explanation: Take F(x, y) = x2 + y2. Then F ∈ F. Also take α = 1
2 . Now we consider three cases.

Case 1: When x, y ∈ [0, 1] then d(Tx,Ty) = 0 and therefore the relation (6) holds trivially.
Case 2: Let x, y ∈ (1, 2] and let Γx,y = max{d(x, y), d(x,Ty), d(y,Tx)}. We are not worried about the case

x = y, because in that case d(Tx,Ty) = 0 and then we are done. So for x , y we have, d(Tx,Ty) ≤ 1 and
αΓx,y + F(1, 1) ≥ 2. Thus the relation (6) clearly holds whatever the value of Γx,y.

Case 3: Finally let x ∈ [0, 1] and y ∈ (1, 2]. Then F(d(x,Tx), d(y,Ty)) = 1 + (1 − x)2 > 1 and d(Tx,Ty) =
|y − 2| < 1 for all x ∈ [0, 1] and y ∈ (1, 2].

Corollary 2.9. In a complete metric space (X, d), an asymptotically regular Hardy-Rogers-Proinov-Górnicki type
self mapping T has a unique fixed point provided either T is k-continuous for k ≥ 1 or T is orbitally continuous.

Proof. Since T is Hardy-Rogers-Proinov-Górnicki type mapping we have for any x, y ∈ X,

d(Tx,Ty) ≤ αd(x, y) + βd(x,Ty) + γd(y,Tx) + F(d(x,Tx), d(y,Ty))
≤ (α + β + γ) max

{
d(x, y), d(x,Ty), d(y,Tx)

}
+ F(d(x,Tx), d(y,Ty)).

Since α + β + γ < 1 it follows that T satisfies contractive condition (6). Therefore the conclusion follows
from the Theorem 2.7.

Corollary 2.10. In (7) if we take β = 0 = γ and F(x, y) = K(x + y) for some K ≥ 0 then we can get the Górnicki type
mapping (Contractive condition (4)) and thus Theorem 1.3 follows from Corollary 2.9.

Contractive conditions (6), (7) and (8) do not always implies contractive condition (4). Some examples
of nonlinear mappings are given below which prove our assertion.

Example 2.11. Consider, X = {0} ∪ { 1
n : n ∈ N} ⊂ R equipped with the usual metric on R. Define a mapping

T : X→ X by T(0) = 0 and T( 1
n ) = 1

n+1 for all n ≥ 1.
We claim that T does not satisfy the contractive condition (4). If it is, then by taking x = 1

n and y = 0 we have,
1 ≤ α n+1

n + M
n , and for sufficiently large values of n, we can get α ≥ 1, arrives at a contradiction.

But here T satisfies all the three contractive conditions (6), (7) and (8) by taking α = 1
2 and F(x, y) =

√
x +
√

y for
all x, y ∈ [0,∞). Moreover all the conditions of the Theorem 2.7 are satisfied and x = 0 is the unique fixed point of T
in X.

Example 2.12. Consider the space X = [0,∞) ⊂ R endowed with the usual metric on R. Define a mapping
T : X→ X by T(x) = x

x2+1 for all x ∈ X.
First we claim that T does not satisfy the contractive condition (4). If it is, then by taking x = 0 and y = 1

n we have
1 ≤ α n2+1

n2 + M. 1
n2 and if we take n sufficiently large then we get α ≥ 1, which is a contradiction.

But here T satisfies all the three contractive conditions (6), (7) and (8) by taking α = 1
2 and F(x, y) = 3

√
x + 3
√

y for all
x, y ∈ [0,∞). Moreover all the conditions of the Theorem 2.7 are satisfied and it is clear that x = 0 is the unique fixed
point of T in X.
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In the next theorem, we assume asymptotic regularity of the mapping T at some point x0 ∈ X instead of
for all x ∈ X [10].

Theorem 2.13. Let (X, d) be a complete metric space and T : X → X. Suppose that there exists x0 ∈ X such that
T is asymptotically regular at x0 satisfying Ćirić-Proinov-Górnicki type mapping. Then T has a unique fixed point
p ∈ X and for each x ∈ X, Tnx→ p as n→∞ for all x ∈ O(x0,T) provided either T is k-continuous for k ≥ 1 or T is
orbitally continuous.

Proof. Let x ∈ O(x0,T). Since T is asymptotically regular at x0, T is also asymptotically regular at x. The rest
of the proof follows from Theorem 2.7.

Here we give some examples of mappings in support of Theorem 2.13, each of which is asymptotically
regular only at one point instead of everywhere in a metric space (X, d).

Example 2.14. (i) Let X = {1, 2, 3} equipped with the usual metric. Let T : X → X be defined by T1 = 1, T2 = 3
and T3 = 2. Then T is a Ćirić-Proinov-Górnicki type mapping for suitable choice of α ∈ (0, 1) and F ∈ F and satisfies
all the conditions of Theorem 2.13. Here it is to be noted that T is not asymptotically regular at 2 and 3 and 1 is the
unique fixed point of T in X.

(ii) Let X =N ∪ {0} endowed with the usual metric. Let T : X→ X be defined by

T(x) =

0 if, x = 0
2n if, x = n ≥ 1.

Then T is a Ćirić-Proinov-Górnicki type mapping for proper choice of α ∈ (0, 1) and F ∈ F and satisfies all the
conditions of Theorem 2.13. Clearly T is not asymptotically regular at any n ≥ 1 and 0 is the unique fixed point of T
in X.

(iii) Let X = [0,∞) endowed with the discrete metric ds given by ds(x, y) = 0 if x = y and ds(x, y) = 1 if x , y.
Let T : X→ X be defined by

T(x) =

0 if, x = 0
x + 1 if, x , 0.

Then it can be easily checked that T is a Ćirić-Proinov-Górnicki type mapping and also satisfies all the conditions of
Theorem 2.13. Clearly T is not asymptotically regular at any x , 0 and 0 is the unique fixed point of T in X.

Corollary 2.15. Let (X, d) be a complete metric space and T : X → X. Suppose that there exists x0 ∈ X such that T
is asymptotically regular at x0 satisfying Hardy-Rogers-Proinov-Górnicki type mapping. Then T has a unique fixed
point p ∈ X and for each x ∈ X, Tnx→ p as n→ ∞ for all x ∈ O(x0,T) provided either T is k-continuous for k ≥ 1
or T is orbitally continuous.

Corollary 2.16. Let (X, d) be a complete metric space and T : X → X. Suppose that there exists x0 ∈ X such that
T is asymptotically regular at x0 satisfying Reich-Proinov-Górnicki type mapping. Then T has a unique fixed point
p ∈ X and for each x ∈ X, Tnx→ p as n→∞ for all x ∈ O(x0,T) provided either T is k-continuous for k ≥ 1 or T is
orbitally continuous.

Remark 2.17. Above proved theorems provide some new answers to the once open question (see Rhoades [19], p.242)
on the existence of contractive mappings which admit discontinuity at the fixed point.
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