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Abstract. In this paper, we study the category of braided categorical Leibniz algebras and braided crossed
modules of Leibniz algebras, and we relate these structures with the categories of braided categorical Lie
algebras and braided crossed modules of Lie algebras using the Loday-Pirashvili category.

Introduction

This manuscript is the second part of the article [6]. The first part deals with study braiding for crossed
modules and internal categories of associative and Lie algebras. In this work, we will consider braidings
for the corresponding structures in the Leibniz algebras case.

Crossed modules for associative algebras [2], Lie algebras [9] and Leibniz algebras [10] act in an analo-
gous way to the crossed modules of groups [13]. Moreover, it is known that the categories of these crossed
modules are equivalent to their respective internal categories, and the notion of braiding for categorical
groups provides an equivalent category to the category of braided crossed modules of groups (see [1, 8]).

Leibniz algebras appear in mathematics as a “non-antisymmetric” case of Lie algebras. Bearing this in
mind, in this paper, we will show how to extend the idea of braiding for crossed modules and internal
categories of Lie algebras to the Leibniz setting. After introducing these notions, we will prove the
equivalence between braided crossed modules of Leibniz algebras and braided categorical Leibniz algebras,
and we will show the parallelism between its examples and the ones given for groups, associative algebras
and Lie algebras (see [6]).

For extending the notion of braiding, we will use the Loday-Pirashvili category [11], allowing us to see
Leibniz algebras as a special case of Lie algebras in the category of linear maps with a certain structure of
the braided monoidal category.

This paper is organized as follows. In the preliminaries, we will recall some ideas from [6] and a few
basic definitions and properties about crossed modules of Leibniz algebras, including their relationship
with crossed modules of Lie algebras. In Section 2, we show the internalization of the notion of a crossed
module with a left Lie action of Lie objects in an arbitrary category. We will also define braidings for crossed
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modules of Lie objects and categorical Lie objects. We will apply this definition to the Loday-Pirashvili
category LMK, and we will obtain the concepts of braiding for crossed modules of Leibniz algebras and
categorical Leibniz algebras. In Section 3, we will prove the equivalence between braided categories in the
Leibniz algebras case. Finally, in Section 4, we will show that the non-abelian tensor product of Leibniz
algebras gives an example of a braided crossed module of Leibniz algebras.

1. Preliminaries

1.1. Crossed Modules of Lie algebras
We will recall the definitions of braiding for categorical Lie K-algebras and crossed modules of Lie

K-algebras and some results on them (see [6]).

Definition 1.1. Let C = (C1,C0, s, t, e, k) be a categorical Lie K-algebra.
A braiding on C is a K-bilinear map τ : C0 × C0 −→ C1, (a, b) 7→ τa,b, satisfying the following properties:

τa,b : [a, b] −→ [b, a], (LieT1)

[s(x), s(y)] [t(x), t(y)]

[s(y), s(x)] [t(y), t(x)],

τs(x),s(y)

[x,y]

τt(x),t(y)

[y,x]

(LieT2)

τ[a,b],c = τa,[b,c] − τb,[a,c], (LieT3)
τa,[b,c] = τ[a,b],c − τ[a,c],b, a, b, c ∈ C0, x, y ∈ C1. (LieT4)

Definition 1.2. Let X = (M,N, ·, ∂) be a crossed module of Lie K-algebras.
A braiding (or Peiffer lifting) on the crossed module X is a K-bilinear map {−,−} : N ×N −→M, satisfying:

∂{n,n′} = [n,n′], (BLie1)
{∂m, ∂m′} = [m,m′], (BLie2)
{∂m,n} = −n ·m, (BLie3)
{n, ∂m} = n ·m, (BLie4)

{n, [n′,n′′]} = {[n,n′],n′′} − {[n,n′′],n′}, (BLie5)
{[n,n′],n′′} = {n, [n′,n′′]} − {n′, [n,n′′]}, m,m′ ∈M, n,n′,n′′ ∈ N. (BLie6)

If {−,−} is a braiding on X, we will say that (M,N, ·, ∂, {−,−}) is a braided crossed module of Lie K-algebras.

Definition 1.3. A K-algebra (M, [−,−]) is called a Leibniz K-algebra if the Leibniz identity is satisfied, i.e.

[x, [y, z]] = [[x, y], z] − [[x, z], y], x, y, z ∈M.

Remember, as we saw in [6], that we are working in internal categories where all the internal morphisms
are internal isomorphisms. We have the following properties.

Lemma 1.4. Let (C1,C0, s, t, e, k) be an internal (associative, Lie, Leibniz) K-algebra or a categorical group whose
operation is denoted by “+”. Then the following rule for the composition is true

k((x, y)) = x − e(t(x)) + y = x − e(s(y)) + y, (x, y) ∈ C1 ×C0 C1.

Proposition 1.5 ([6]). Let K be a field of char(K) , 2 and (C1,C0, s, t, e, k) a categorical Lie K-algebra.
If τ : C0 × C0 −→ C1 is a K-bilinear map satisfying (LieT1) and (LieT2), then

τa,[b,c] = [e(a), τb,c] and τ[b,c],a = [τb,c, e(a)].

In particular, by the anticommutativity, we have that τa,[b,c] = −τ[b,c],a.
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1.2. Crossed Modules of Leibniz algebras
The definition of crossed modules of Leibniz K-algebras, “non-antisymmetric” case of Lie K-algebras,

was introduced by Loday and Pirashvili in [10].

Definition 1.6. Let N and M be two Leibniz K-algebras. A Leibniz action of N on M is a pair · = (·1, ·2) where
·1 : N ×M −→M and ·2 : M ×N −→M are K-bilinear maps and the following properties are satisfied

n ·1 [m,m′] = [n ·1 m,m′] − [n ·1 m′,m], (ALeib1)
[m,n ·1 m′] = [m ·2 n,m′] − [m,m′] ·2 n, (ALeib2)
[m,m′ ·2 n] = [m,m′] ·2 n − [m ·2 n,m′], (ALeib3)
m ·2 [n,n′] = (m ·2 n) ·2 n′ − (m ·2 n′) ·2 n, (ALeib4)

n ·1 (m ·2 n′) = (n ·1 m) ·2 n′ − [n,n′] ·1 m, (ALeib5)
n ·1 (n′ ·1 m) = [n,n′] ·1 m − (n ·1 m) ·2 n′, m,m′ ∈M, n,n′ ∈ N. (ALeib6)

Remark 1.7. If we change the notation of ·1 and ·2 by [−,−] in both cases, the axioms of the Leibniz actions are all
possible rewritings of the Leibniz identity when we choose two elements in M and one in N (the first three) or one in
M and two N (the last three).

In particular, we have that the pair ([−,−], [−,−]) where [−,−] is the Leibniz bracket of the Leibniz K-algebra M
is a Leibniz action of M on itself.

Definition 1.8. A crossed module of Leibniz K-algebras is a 4-tuple (M,N, ·, ∂) where M and N are Leibniz K-
algebras, · = (·1, ·2) is a Leibniz action of N on M, ∂ : M −→ N is a Leibniz K-homomorphism, and the following
properties are satisfied:

• ∂ is an N-equivariant Leibniz K-homomorphism (we suppose that the bracket gives the action in N), i.e.
∂(n ·1 m) = [n, ∂(m)] and ∂(m ·2 n) = [∂(m),n],

• ∂(m) ·1 m′ = [m,m′] = m ·2 ∂(m′) m,m′ ∈M, n ∈ N (Peiffer identity).

Example 1.9. If M is a Leibniz K-algebra then (M,M, ([−,−], [−,−]), IdM) is a crossed module of Leibniz K-algebras
(see [6] for the Lie case).

The next propositions give a relation between crossed modules of Lie and Leibniz K-algebras.

Proposition 1.10. Let M and N be two Lie K-algebras. Then, · is a Lie action of N on M if and only if (·, ·−) is a
Leibniz action of N on M, where ·− : M ×N −→M is defined by m ·− n B −n ·m.

That is, the Lie action is a particular case of a Leibniz action when the action is “anticommutative”.

Proposition 1.11. Let M and N be Lie K-algebras. Then, (M,N, ·, ∂) is a crossed module of Lie K-algebras if and
only if (M,N, (·, ·−), ∂) is a crossed module of Leibniz K-algebras.

Definition 1.12. Let (M,N, ·, ∂) and (M′,N′, ∗, ∂′) be crossed modules of Leibniz K-algebras. A homomorphism is a
pair of Leibniz K-homomorphisms, f1 : M −→M′ and f2 : N −→ N′ such that

f1(n ·1 m) = f2(n) ∗1 f1(m), f1(m ·2 n) = f1(m) ∗2 f2(n), n ∈ N,m ∈M, and ∂′ ◦ f1 = f2 ◦ ∂.

We will denote by X(LeibAlgK) the category of crossed modules of Leibniz K-algebras and its homo-
morphisms.

Remark 1.13. As in the case of groups and Lie K-algebras, we have an equivalence between the categories X(LeibAlgK)
and ICat(LeibAlgK). A proof of this can be found in [3].

X(LieAlgK) can be seen as a full subcategory of the category X(LeibAlgK) using Proposition 1.11 (we actually
have a functorial isomorphism between a full subcategory of X(LeibAlgK) and X(LieAlgK)).
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Since the pullbacks in LieAlgK and LeibAlgK are the same, it is immediate to show that ICat(LieAlgK) is a full
subcategory of ICat(LeibAlgK). We know that the equivalence in the Leibniz case generalizes the equivalence in the
Lie case. The bracket gives the action in the functors (which was presented in [3]), and then, it is anticommutative
when we have Lie K-algebras. We only have to check that the Leibniz semidirect product generalizes the Lie semidirect
product, but this is immediate from definition (since m ·2 n′ = −n′ ·1 m is the Lie case).

Definition 1.14. Let M and N be two Leibniz K-algebras and · a Leibniz action of N on M. The semidirect product,
denoted by M oN, is the K-vector space M ×N with the bracket

[(m,n), (m′,n′)] B ([m,m′] + n ·1 m′ + m ·2 n′, [n,n′]), m,m′ ∈M, n,n′ ∈ N.

2. Braiding for categorical Leibniz algebras and crossed modules of Leibniz algebras

In this section, we will use the idea of Loday and Pirashvili ([11]) to see the Leibniz K-algebras as a
particular case of a Lie algebra in the monoidal category of linear maps LMK, also known as the Loday-
Pirashvili category ([4, 12]). Using this, we will try to define the concept of braiding in the case of Leibniz
algebras taking advantage of the fact that they will be a particular case of braidings for the corresponding
ideas over Lie objects in that category.

First, we will introduce some notation.

Let C be a category with coproducts ⊕. If we have A
f
−→ C

1
←− B we denote the unique morphism given

by the universal property of the coproduct as f � 1 : A ⊕ B −→ C.
We let the notation ⊕ in morphisms for the coproduct bifunctor and + for the addition in an additive

category.
The definition of the category LMK can be seen in [11].

Definition 2.1. The category LMK is a monoidal category with the following data:

• As objects we take the K-linear maps.

• If
M

N

f and
L

H

1 are two linear maps, a morphism between them is a pair α = (α1, α2), α1 : M −→ L and α2 : N −→ H

of K-linear maps such that the following diagram is commutative:

M L

N H.

α1

f 1

α2

• The tensor product
M

N

f ⊗

L

H

1 B

(M ⊗H) ⊕ (N ⊗ L)

N ⊗H

( f⊗IdH )�(IdN ⊗1)
, where ⊗ between K-vector spaces is the usual tensor product

and ⊕ is the direct sum of vector spaces. In morphisms the tensor product is given by ( f1, f2) ⊗ (11, 12) =
(( f1 ⊗ 12) ⊕ ( f2 ⊗ 11), 11 ⊗ 12).

This is a braided monoidal category with the braiding given by the isomorphism T f ,1 = (T 1
f ,1,T

2
f ,1) :

M

N

f ⊗

L

H

1 −→

L

H

1 ⊗

M

N

f , with the K-linear isomorphism T 2
f ,1 = TN,H : N ⊗ H −→ H ⊗ N, the usual braiding for the K-vector tensor

product, and T 1
f ,1 : (M ⊗H) ⊕ (N ⊗ L) −→ (L ⊗N) ⊕ (H ⊗M) given by T 1

f ,1((m ⊗ h) + (n ⊗ l)) = (l ⊗ n) + (h ⊗m).
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Remark 2.2. LMK is an additive category with
{0}

{0}

0 as zero object, where we have
M

N

f ×

L

H

1 B

M × L

N ×H

f×1 as product and

the usual abelian group structure on morphisms.

Analogously to [11], we can categorify the idea of Lie K-algebra and define it in the LMK category. We
generalize this scheme to a semigroupal category (see [6]).

Definition 2.3. Let C = (C,⊗, a,T ) be a braided semigroupal category where C is an additive category.
We say that a pair (A, µ) with A ∈ Ob(C) and µ : A ⊗ A −→ A is a Lie object in C if and only if we have that:

0 = µ ◦ TA,A + µ,

0 = µ ◦ (IdA ⊗µ) ◦ aA,A,A + µ ◦ (µ ⊗ IdA) ◦ a−1
A,A,A ◦ (IdA ⊗TA,A) ◦ aA,A,A − µ ◦ (µ ⊗ IdA).

We will say that a morphism f : (A, µA) −→ (B, µB) is a Lie morphism if it satisfies the following diagram:

A ⊗ A A

B ⊗ B B.

f⊗ f

µA

f

µB

So, we have the category Lie(C).

Example 2.4. Let (V, µ) be a Lie object. If we take in VectK the usual tensor product, then µ : V⊗V −→ V can be seen
as a K-bilinear map, µ(a, b) =: [a, b], which satisfies

[a, b] = −[b, a] and [a, [b, c]] + [[a, c], b] − [[a, b], c] = 0.

The first is the anticommutativity and the second one is the Leibniz identity.
It is clear that, if char(K) , 2, Lie(VectK) is isomorphic to LieAlgK.

Since the generalization is only true for char(K) , 2, we will assume it for the rest of the paper.
We want to explain what are an object and a morphism in Lie(LMK).

Definition 2.5. Let M and N be Lie K-algebras and α : M −→ N a Lie K-homomorphism.

Let (V, ·) be a right (resp. left) M-module and (W, ∗) a right (resp. left) N-module. A K-linear map V
f
−→ W is

(α : M −→ N, ·, ∗)-equivariant if we have that

f (v ·m) = f (v) ∗ α(m) (resp. f (m · v) = α(m) ∗ f (v)), for v ∈ V, m ∈M.

When N = M and α = IdM we said that f is (M, ·, ∗)-equivariant.

Let (V, ·) be a left M-module and (W, ∗) a right N-module. A K-linear map V
f
−→W is (α : M −→ N, ·, ∗)-equivariant

if we have that

f (m · v) = − f (v) ∗ α(m), for v ∈ V, m ∈M.

When N = M and α = IdM we said that f is (M, ·, ∗)-equivariant.

Remark 2.6. It is easy to check that if (M, [−,−]) is a Lie K-algebra, then (M, [−,−]) is a right and left (M, [−,−])-
module.

Moreover, if · is a Lie action of N in M, we have that (M, ·) is a left N-module.

Using this, we can see in [11] that a Lie object in LMK is the following data:
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Definition 2.7. A Lie object in LMK is a triple (
M

N

f ,∗MN , [−,−]N) where

• (N, [−,−]N) is a Lie K-algebra.

• ∗
M
N : M ×N −→M is such that (M, ∗MN ) is an (N, [−,−]N)-module.

• f is ((N, [−,−]N), ∗MN , [−,−]N)-equivariant.

As in the case of Lie K-algebras, we will denote a Lie object in LMK using the K-linear map on which it is defined
when there is no confusion.

Remark 2.8. The “anticommutative” property of Lie object for LMK allows to recover the Lie product µ = (µ1, µ2)

for
M

N

f with the maps µ2 = [−,−]N and µ1 : (M⊗N)⊕(N⊗M) −→M, with µ1((m⊗n)+(n′⊗m′)) = m∗MN n−m′ ∗MN n′.

Definition 2.9. Let
M

N

f and
L

H

1 be Lie objects. A Lie morphism inLMK between them is anLMK morphism (α1, α2)

such that:

• α2 : N −→ H is a Lie K-homomorphism.

• α1 : M −→ L is an (α2 : N −→ H, ∗MN , ∗
L
H)-equivariant map.

In [11] is shown a way to see the Leibniz K-algebras as a particular case of Lie objects inLMK. We show
it in the next example.

Example 2.10. Let M be a Leibniz K-algebra.
We denote for IM the ideal generated by elements of the form [x, x] with x ∈ M. It is evident that the quotient

Leibniz K-algebra is a Lie K-algebra. We will denote its Lie bracket as [−,−], and the elements of the quotient as m
with m ∈M.

Lie(M) B M
IM

is known as Lieization (note that if M is a Lie K-algebra, then Lie(M) is trivially naturally isomorphic
to M), and it is functorial.

We consider the following Lie object in LMK:

We take
M

Lie(M)

πM where π(m) = m is the natural map. It is a Lie object in LMK with the following data:

• m ∗MLie(M) m′ = [m,m′],

• [m,m′]Lie(M) = [m,m′] B [m,m′].

It is evident that π is (Lie(M), ∗MLie(M), [−,−]Lie(M))-equivariant.

So, we have a functor Φ : LeibAlgK −→ Lie(LMK), that is trivially full. This functor is also injective on
objects and morphisms, because there is a functor Ψ : Lie(LMK) −→ LeibAlgK such that Ψ ◦ Φ = IdLeibAlgK

(see [11]). The functor Ψ on objects is described in the following proposition.

Proposition 2.11 ([11]). Let
M

N

f be a Lie object inLMK. Then (M, [−,−]), where [m,m′] B m∗MN f (m′), is a Leibniz

K-algebra.
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In [4], we can see that the previous construction can be extended to crossed modules of Lie algebras
in LMK. They did a crossed module with a right action. In this paper, we will define which is a crossed
module with a left action, or simply a crossed module of Lie objects.

Definition 2.12. Let C = (C,⊗, a,T ) be a braided semigroupal category where C is an additive category.
If (A, µA) and (B, µB) are Lie objects, then a (left) Lie action of (B, µB) on (A, µA) is a morphism p : B ⊗ A −→ A

such that

p ◦ (µB ⊗ IdA) = p ◦ (IdB ⊗p) ◦ aB,B,A ◦ (Id(B⊗B)⊗A −(τB,B ⊗ IdA)),

p ◦ (IdB ⊗µA) ◦ aB,A,A = µA ◦ (p ⊗ IdA) ◦ (Id(B⊗B)⊗A −(a−1
B,A,A ◦ (IdB ⊗τA,A) ◦ aB,A,A)).

We said that ((A, µA), (B, µB), p, ∂) is a crossed module of Lie objects if p is a Lie action of (B, µB) on (A, µA) and
∂ : (A, µA) −→ (B, µB) is a Lie morphism such that

∂ ◦ p = µB ◦ (IdB ⊗∂),
µA = p ◦ (∂ ⊗ IdA).

A morphism between two crossed modules of Lie objects ((A, µA), (B, µB), p, ∂) and ((C, µC), (D, µD), q, δ) is a pair
of Lie morphisms (α, β), α : (A, µA) −→ (C, µC) and β : (B, µB) −→ (D, µD), which satisfies the following diagrams:

B ⊗ A A

D ⊗ C C,

β⊗α

p

α

q

A B

C D.

α

∂

β

δ

We have the category XLie(C) with the usual composition in C × C for pairs of morphisms of Lie morphisms.

Example 2.13. We have that XLie(VectK) and X(LieAlgK) are isomorphic categories with the usual tensor product
in VectK (we assume char(K) , 2).

Now, we describe the category XLie(LMK).

Definition 2.14. Let
M

N

f and
L

H

1 be Lie objects in LMK. A (left) Lie action of
L

H

1 on
M

N

f in LMK is a triple

·̄ = (·1, ·2, ξ·) where

• ·1 : H ×M −→M is a K-bilinear map such that (M, ·1) is a left H-module;

• ·2 : H ×N −→ N is a Lie action of H on N;

• ξ· : L ×N −→M is a K-bilinear map;

such that the following properties are satisfied:

• ·1 and ·2 are compatible actions with ∗MN . That is, for h ∈ H, n ∈ N, m ∈M, we have

h ·1 (m ∗MN n) = (h ·1 m) ∗MN n + m ∗MN (h ·2 n);

• f is an (H, ·1, ·2)-equivariant map;

• ξ· satisfies, for l ∈ L, n,n′ ∈ N, h ∈ H, the following equalities

f (ξ·(l,n)) = 1(l) ·2 n,

ξ·(l ∗LH h,n) = ξ·(l, h ·2 n) − h ·1 ξ·(l,n),

ξ·(l, [n,n′]N) = ξ·(l,n) ∗MN n′ − ξ·(l,n′) ∗MN n.
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Remark 2.15. An action is, in fact, a pair ·̄ = (·̄1, ·̄2), with the two maps

·̄1 : (L ⊗N) ⊕ (H ⊗N) −→M and ·̄2 : H ⊗N −→ N

satisfying the general properties, but we can easily obtain the previous definition taking ·2 B ·̄2 and recovering
·̄1((l ⊗ n) + (h ⊗m)) =: ξ·(l,n) + h ·1 m.

Definition 2.16. A crossed module of Lie objects inLMK is a 4-tuple (
M

N

f ,
L

H

1 , ·̄, ∂) where
M

N

f and
L

H

1 are Lie objects

in LMK, ·̄ is a Lie action of
L

H

1 on
M

N

f , and ∂ = (∂1, ∂2) :
M

N

f −→

L

H

1 is a Lie morphism in LMK such that

• (N,H, ·2, ∂2) is a crossed module of Lie K-algebras;

• ∂1 is an (H, ·1, ∗LH)-equivariant map;

• ∂1(ξ·(l,n)) = l ∗LN ∂2(h) and ξ·(∂1(m),n) = m ∗MN n = −∂2(n) ·1 m, h ∈ H, l ∈ L, m ∈M, n ∈ N.

Definition 2.17. Let (
M

N

f ,
L

H

1 , ·̄, ∂) and (
X

Y

k ,
V

W

h ,?̄, δ) be crossed modules of Lie objects inLMK. A morphism of crossed

modules of Lie objects in LMK is a pair (α, β) of Lie morphisms α = (α1, α2) :
M

N

f −→

X

Y

k and β = (β1, β2) :
L

H

1−→

V

W

h

such that

• (α2, β2) : (N,H, ·2, ∂2) −→ (Y,W, ?2, δ2) is an homomorphism of crossed modules of Lie K-algebras;

• α1(ξ·(l,n)) = ξ?(β1(l), α2(n)), for l ∈ L, n ∈ N;

• α1 is an (H
β2
−→W, ·1, ?1)-equivariant map;

• β1 ◦ ∂1 = δ1 ◦ α1.

As in the case of Leibniz K-algebras we want to have a pair of functors between the categories XLie(LMK)
and XLeibAlgK. For this purpose, we give the following propositions of which we omit their proofs because
they are immediate. The first is symmetrical to the construction we can see in [4] for crossed modules with
right actions.

Proposition 2.18. Let (M,N, (·1, ·2), ∂) be a crossed module of Leibniz K-algebras.

Then (
M

M
[M,N]x

πM ,
N

Lie(N)

πN , ¯̄·, ∂) is a crossed module of Lie objects in LMK, where

•
M

[M,N]x
is the Lie K-algebra quotient of M by the ideal [M,N]x whose generators are [m,m] for m ∈ M and

n ·1 m + m ·2 n for n ∈ N, m ∈ M; we denote the natural map by πM : M −→ M
[M,N]x

, and the elements of M
[M,N]x

by m,

• ·̄1 : Lie(N) ×M −→M, (n,m) 7→ −m ·2 n,

• ·̄2 : Lie(N) × M
[M,N]x

−→
M

[M,N]x
, (n,m) 7→ n ·1 m = −m ·2 n,

• ξ·̄ : N × M
[M,N]x

−→M, (n,m) −→ n ·1 m,
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• ∂1 : M −→ N, m 7→ ∂(m),

• ∂2 : M
[M,N]x

−→ Lie(N), m 7→ ∂m.

Remark 2.19. We will say that the bottom part ( M
[M,N]x

,Lie(N), ·̄2, ∂2) is the Lieization of the crossed module of
Leibniz K-algebras. In this way we found a similar relation with the Leibniz and Lie object case.

This Lieization satisfies again that applied on a crossed module of Lie K-algebras, thought as a crossed module of
Leibniz K-algebras with the action (·, ·−), is naturally isomorphic to itself. That occurs because, in the quotient, the
second generators are null too:

n ·1 m + m ·2 n = n ·m + m ·− n = n ·m − n ·m = 0.

Proposition 2.20. Let (
M

N

f ,
L

H

1 , ·̄, ∂) be a crossed module of Lie objects in LMK, then (M,L, (·̃1, ·̃2), ∂1) is a crossed

module of Leibniz K-algebras, where

• The Leibniz brackets are: [m,m′] = m ∗MN f (m′) for m,m′ ∈M and [l, l′] = l ∗LH 1(l
′) for l, l′ ∈M;

• ·̃1 : L ×N −→M is defined by l·̃1m = ξ·(l, f (m)) for l ∈ L, m ∈M;

• ·̃2 : M × L −→M is defined by m·̃2l = −1(l) ·1 m for l ∈ L, m ∈M.

We have the functors X(LeibAlgK)
XΦ //

XLie(LMK)
XΨ
oo satisfying XΨ ◦ XΦ = IdX(LeibAlgK), and so, the

functor XΦ is a full inclusion functor.

2.1. Braiding for Crossed modules of Lie objects in LMK and crossed modules of Leibniz algebras
We want to define the notion of braiding for crossed modules of Leibniz algebras. We will use the idea

that the braiding for crossed module of Leibniz K-algebras must be a particular case of braiding for Lie
objects in LMK, satisfying symmetrical properties to the previous ones.

Definition 2.21. Let C = (C,⊗, a,T ) be a braided semigroupal category where C is an additive category. Let
X = ((A, µA), (B, µB), p, ∂) be a crossed module of Lie objects in C.

A braiding (or Peiffer lifting) on X is a morphism T : B ⊗ B −→ A satisfying:

∂ ◦ T = µB,

T ◦ (∂ ⊗ ∂) = µA,

−T ◦ (∂ ⊗ IdB) = p ◦ TA,B,

T ◦ (IdB ⊗∂) = p,

T ◦ (IdB ⊗µB) ⊗ aB,B,B = T ◦ (µB ⊗ IdB) ◦ (Id(B⊗B)⊗B −(a−1
B,B,B ◦ (IdB ⊗TB,B) ◦ aB,B,B)),

T ◦ (µB ⊗ IdB) = T ◦ (IdB ⊗µB) ◦ aB,B,B ◦ (Id(B⊗B)⊗B −(TB,B ⊗ IdB)).

((A, µA), (B, µB), p, ∂,T) will be called a braided crossed module of Lie objects in C.
A morphism (α, β) : ((A, µA), (B, µB), p, ∂,T)→ ((C, µC), (D, µD), q, δ,Y) of braided crossed modules of Lie objects

is a morphism of crossed modules of Lie objects in the category C satisfying the following commutative diagram

B ⊗ B A

D ⊗D B.

β⊗β

T

α

Y

We denote this new category as BXLie(C).
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Example 2.22. As in the previous cases, we have that BXLie(VectK) and BX(LieAlgK) are isomorphic, taking in
VectK the usual tensor product.

BXLie(LMK) is described in the following definitions.

Definition 2.23. Let X =(
M

N

f ,
L

H

1 , ·̄, ∂) be a crossed module of Lie objects in LMK.

A braiding (or Peiffer lifting) for X is given by a triple of maps T{−,−} = ({−,−}LH, {−,−}HL, {−,−}2) where

• {−,−}2 : H × H −→ N is a K-bilinear map such that (N,H, ·2, ∂2, {−,−}2) is a braided crossed module of Lie
K-algebras.

• {−,−}LH : L×H −→M and {−,−}HL : H × L −→M are K-bilinear maps, which with {−,−}2 satisfy the following
properties for l ∈ L, h, h′ ∈ H, m ∈M, n ∈ N:

f ({l, h}LH) = {1(l), h}2, f ({h, l}HL) = {h, 1(l)}2,

∂1{l, h}LH = l ∗LH h, ∂1{h, l}HL = −l ∗LH h,

{∂1(m), ∂2(n)}LH = m ∗MN n, {∂2(n), ∂1(m)}HL = −m ∗MN n,
{∂1(m), h}LH = −h ·1 m, {∂2(n), l}HL = −ξ·(l,n),
{l, ∂2(n)} = ξ·(l,n), {h, ∂1(m)} = h ·1 m,

{l, [h, h′]H}LH = {l ∗LH h, h′}LH − {l ∗LH h′, h}LH,

{[h, h′]H, l}HL = −{h, l ∗LH h′}HL − {l ∗LH h, h′}LH,

{l, [h, h′]H}LH = {l ∗LH h, h′}LH + {h, l ∗LH h′}HL,

{[h, h′]H, l}HL = −{h, l ∗LH h′}HL + {h′, l ∗LH h}HL.

We will say that (
M

N

f ,
L

H

1 , ·̄, ∂,T{−,−}) is a braided crossed module of Lie objects in LMK.

Remark 2.24. A braiding is a pair T{−,−} = (T1
{−,−},T

2
{−,−}), but for simplicity we denote T1

{−,−} : (L⊗H)⊕(H⊗L) −→M
with T1

{−,−}((l ⊗ h) + (h′ ⊗ l′)) = {l, h}LH + {h′, l′}HL and T2
{−,−}(h, h

′) = {h, h′}2.

Definition 2.25. Let (
M

N

f ,
L

H

1 , ·̄, ∂,T{−,−}) and (
X

Y

k ,
V

W

h , ?̄, δ,T{−,−}′ ) be braided crossed modules of Lie objects inLMK.

A morphism of braided crossed modules of Lie objects in LMK is a morphism (α, β) of crossed modules of Lie objects
in LMK satisfying:

• (α2, β2) : (N,H, ·2, ∂2, {−,−}2) −→ (Y,W, ?2, δ2, {−,−}′2) is an homomorphism of braided crossed modules of Lie
K-algebras,

• α1({l, h}LH) = {β1(l), β2(h)}′VW , for l ∈ L, h ∈ H,

• α1({h, l}HL) = {β2(h), β1(l)}′WV, for l ∈ L, h ∈ H.

We want to use the concept of braiding on crossed modules of Lie objects inLMK to obtain a definition

for crossed modules of Leibniz K-algebras. For that, we will take a braiding on (
M

M
[M,N]x

πM ,
N

Lie(N)

πN , ¯̄·, ∂). If we

try to take one K-bilinear map {−,−} we would find problems with the way of defining the corresponding
maps because we have that the first properties add one more quotient that we would like to be trivial for
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Lie K-algebras, or if we take it to be trivial, the rest of properties prevent it from being made for the general
case of Leibniz K-algebras (if we take {n,n′}N Lie(N) = {n,n′} = {n,n′}Lie(N)N for example, the third and fourth
property leads us to prove that M must be Lie K-algebra).

For this, as in the case of the two actions, we will take for braiding two K-bilinear maps {−,−}, 〈−,−〉 : N×
N −→ M, and define {n,n′}N Lie(N) = {n,n′}, {n,n′}Lie(N)N = −〈n′,n〉 and {n,n′}2 = {n,n′} = −〈n′,n〉, where we
can see that we introduce a new quotient in M.

Definition 2.26. Let X = (M,N, (·1, ·2), ∂) be a crossed module of Leibniz K-algebras.
A braiding (or Peiffer lifting) on X is a pair ({−,−}, 〈−,−〉) of K-bilinear maps {−,−}, 〈−,−〉 : N × N −→ M,

(n,n′) 7→ {n,n′} and (n,n′) 7→ 〈n,n′〉, satisfying:

∂{n,n′} = [n,n′] = ∂〈n,n′〉, (BLeib1)
{∂m, ∂m′} = [m,m′] = 〈∂m, ∂m′〉, (BLeib2)
{∂m,n} = m ·2 n = 〈∂m,n〉, (BLeib3)
{n, ∂m} = n ·1 m = 〈n, ∂m〉, (BLeib4)

{n, [n′,n′′]} = {[n,n′],n′′}−{[n,n′′],n′}, (BLeib5)
〈n, [n′,n′′]〉 = {[n,n′],n′′}−〈[n,n′′],n′〉, (BLeib6)
{n, [n′,n′′]} = {[n,n′],n′′}−〈[n,n′′],n′〉, (BLeib7)
〈n, [n′,n′′]〉 = 〈[n,n′],n′′〉−〈[n,n′′],n′〉, n,n′,n′′ ∈ N, m,m′ ∈M. (BLeib8)

In this case, we say that (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) is a braided crossed module of Leibniz K-algebras.

Definition 2.27. An homomorphism ( f1, f2) of braided crossed modules of Leibniz K-algebras

(M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉))
( f1, f2)
−−−−→ (M′,N′, (∗1, ∗2), ∂′, ({−,−}′, 〈−,−〉′))

is an homomorphism between the corresponding crossed modules of Leibniz K-algebras satisfying:

f1({n,n′}) = { f2(n), f2(n′)}′, (LeibHB1)
f1(〈n,n′〉) = 〈 f2(n), f2(n′)〉′, n,n′ ∈ N. (LeibHB2)

We denote the category of braided crossed modules of Leibniz K-algebras and its homomorphisms by BX(LeibAlgK).

We want to know how to introduce the braided crossed modules of Lie K-algebras as a particular case.
The next two properties answer this question:

Proposition 2.28. Let (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) be a braided crossed module of Leibniz K-algebras.
If for all n,n′ ∈ N it is satisfied that {n,n′} = −〈n′,n〉, then we have the following properties:

• m ·2 n = −n ·1 m.

• (M,N, ·1, ∂, {−,−}) is a braided crossed module of Lie K-algebras.

Proof. We will check first that M and N are Lie K-algebras.
By using (BLeib1), we have that for all n,n′ ∈ N, ∂〈n,n′〉 = [n,n′]. Then, if we use that 〈n,n′〉 = −{n′,n}

we obtain, again for (BLeib1):

[n,n] = ∂〈n,n′〉 = −∂{n′,n} = −[n,n′].

We conclude that N is a Lie K-algebra (we are working in a field of char(K) , 2).
Now we take m,m′ ∈ M. By (BLeib2) we have that 〈∂m, ∂m′〉 = [m,m′]. Using again 〈∂m, ∂m′〉 =

−{∂m′, ∂m} and (BLeib2) we have

[m,m′] = 〈∂m, ∂m′〉 = −{∂m′, ∂m} = −[m′,m].
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We will check that m ·2 n = −n ·1 m, for m ∈M, n ∈ N. We have

m ·2 n = 〈∂m,n〉 = −{n, ∂m} = −n ·1 m,

where we used (BLeib3) in the first equality and (BLeib4) in the third.
Now, we know that (M,N, ·1, ∂) is a crossed module of Lie K-algebras using Proposition 1.11.
We will prove the equivalences for the axioms of braiding.
The first equality of properties (BLeib1)–(BLeib4) coincides, respectively, with (BLie1)–(BLie4) (in the

case of (BLeib3) remember that m ·2 n = −n ·1 m).
The second identity of (BLeib1) and (BLeib2) is immediate because of the anticommutativity of the

bracket, while the second (BLeib3) is equivalent to (BLie4) and the second equality of (BLeib4) is to (BLie3)
(again using that n ·1 m = −m ·2 n).

It is clear that (BLeib5) and (BLie5) are identical, and it is straightforward to prove that (BLeib8) is
equivalent to (BLie6).

To see the last equivalences, we must prove an earlier property, which is satisfied for both braidings
under our assumptions:

If n,n′,n′′ ∈ N, then {[n,n′],n′′} = −{n′′, [n,n′]}.
We will start in the Lie case (we suppose we have an action ·).

{[n,n′],n′′} = {∂{n,n′},n′′} = −n′′ · {n,n′} = −{n′′, ∂{n,n′}} = −{n′′, [n,n′]},

where we use (BLie1), (BLie3) and (BLie4).
In the Leibniz case, it is not true in general, because we need m ·2 n = −n ·1 m.

{[n,n′],n′′} = {∂{n,n′},n′′} = {n,n′} ·2 n′′ = −n′′ ·1 {n,n′} = −{n′′, ∂{n,n′}} = −{n′′, [n,n′]},

where we use (BLeib1), (BLeib3) and (BLeib4).
With this property we can prove that (BLeib6) is equivalent to (BLie6), and (BLeib7) is equivalent to

(BLie5). In particular (M,N, ·1, ∂{−,−}) is a braided crossed module of Lie K-algebras.

The next two propositions are immediate, and the second one gives the construction of the functor.

Proposition 2.29. Let M and N be Lie K-algebras. Then, (M,N, ·, ∂, {−,−}) is a crossed module of Lie K-algebras if
and only if (M,N, (·, ·−), ∂, ({−,−}, {−,−}−)) is a crossed module of Leibniz K-algebras.
·
− : M ×N −→ N and {−,−}− : N ×N −→M are defined as m ·− n = −n ·m and {n,n′}− = −{n′,n}.

Proposition 2.30. Let (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) be a braided crossed module of Leibniz K-algebras.

Then (
M

M
{M,N}x

πM ,
N

Lie(N)

πN , ¯̄·, ∂, ({−,−}N Lie(N), {−,−}Lie(N)N, {−,−}2)) is a braided crossed module of Lie objects inLMK,

where

•
M

{M,N}x
is the Lie K-algebra quotient of M by the ideal {M,N}x whose generators are [x, x] for x ∈M, n ·1 m+m ·2 n

for n ∈ N, m ∈ M, and {n,n′} + 〈n′,n〉 for n,n′ ∈ N; we denote the natural map by πM : M −→ M
{M,N}x

, and the
elements of M

{M,N}x
by m,

• ·̄1 : Lie(N) ×M −→M, (n,m) 7→ −m ·2 n,

• ·̄2 : Lie(N) × M
{M,N}x

−→
M

{M,N}x
, (n,m) 7→ n ·1 m = −m ·2 n,

• ξ·̄ : N × M
{M,N}x

−→M, (n,m) −→ n ·1 m,

• ∂1 : M −→ N, m 7→ ∂(m),

• ∂2 : M
{M,N}x

−→ Lie(N), m 7→ ∂m,
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• {−,−}N Lie(N) : N × Lie(N) −→M, (n,n′) 7→ {n,n′},

• {−,−}Lie(N)N : Lie(N) ×N −→M, (n,n′) 7→ −〈n′,n〉,

• {−,−}2 : Lie(n) × Lie(N) −→M, (n,n′) 7→ {n,n′} = −〈n′,n〉.

Remark 2.31. As in the previous cases, ( M
{M,N}x

,Lie(N), ·̄2, ∂2, {−,−}2) will be called Lieization, and it is functorial.
If we apply this Lieization on a crossed module of Lie K-algebras, thought as a crossed module of Leibniz K-algebras

with the action (·, ·−) and the braiding ({−,−}, {−,−}−), the third generators are null too:

{n,n′} + 〈n′,n〉 = {n,n′} + {n′,n}− = {n,n′} − {n,n′} = 0.

In the Lie case, we obtain a natural isomorphism to itself after doing the Lieization.

Proposition 2.32. Let (
M

N

f ,
L

H

1 , ·̄, ∂,T{−,−}) be a braided crossed module of Lie objects in LMK.

Then (M,L, (·̃1, ·̃2), ∂1, ({−,−}T{−,−} , 〈−,−〉T{−,−} )) is a braided crossed module of Leibniz K-algebras, where

• The Leibniz brackets are: [m,m′] = m ∗MN f (m′) for m,m′ ∈M and [l, l′] = l ∗LH 1(l
′) for l, l′ ∈M;

• ·̃1 : L ×N −→M is defined by l ·̃1m = ξ·(l, f (m)) for l ∈ L, m ∈M;

• ·̃2 : M × L −→M is defined as m·̃2l = −1(l) ·1 m for l ∈ L, m ∈M;

• {−,−}T{−,−} : L × L −→M is defined as {l, l′}T{−,−} = {l, 1(l′)}LH for l, l′ ∈ L;

• 〈−,−〉T{−,−} : L × L −→M is defined as 〈l, l′〉T{−,−} = −{1(l′), l}HL for l, l′ ∈ L.

Thus, we have the functors BX(LeibAlgK)
BXΦ //

BXLie(LMK)
BXΨ
oo satisfying BXΨ ◦ BXΦ = IdBX(LeibAlgK),

and so, the functor BXΦ is a full inclusion functor.

2.2. Braiding for categorical Lie objects in LMK and categorical Leibniz algebras

We also want to define a braiding for categorical Leibniz K-algebras. As in the crossed module case, we
will use the idea of the category LMK. We only need to show that LMK is a category with pullbacks.

Remark 2.33. LMK is a category with pullbacks.

If we have the morphisms
A

B

f
α
−→

X

Y

h

β
←−

C

D

1 , then (
A ×X C

B ×Y D

f×h1 , (πA, πB), (πC, πD)) is their pullback.

It is easy to check that Lie(LMK) has the same pullback with the operations [(b, d), (b′, d′)]B×YD B ([b, b′]B, [d, d′]D)
and (a, c) ∗A×XC

B×YD (b, d) B (a ∗AB b, c ∗CD d). So, we can speak about categorical Lie objects in LMK.

As in the crossed module case, we have the following result.

Proposition 2.34. Let (C1,C0, s, t, e, k) be a categorical Leibniz K-algebra.

Then (
C1

Lie(C1)

πC1 ,
C0

Lie(C0)

πC0 , (s,Lie(s)), (t,Lie(t)), (e,Lie(e)), (k, k)) is a categorical Lie object inLMK, where we denote the

Lieization functor as Lie : LeibAlgK −→ LieAlgK, the composition morphism k : Lie(C1) ×Lie(C0) Lie(C1) −→ Lie(C1)

is defined as k(x, y) = k̊(x, y) and k̊ : C1 × C1 −→ C1 is the extension of k to the Leibniz product, defined as k̊(x, y) =
x + y − e(s(y)).
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Remark 2.35. k̊ is an extension of k, since the same formula is satisfied for composition, as can be seen in Lemma 1.4.
One can ask why not to extend k as k̊′(x, y) = x + y − e(t(x)), which is not identical to k̊ in the general case. But,

in this case we have that the result is the same

k̊(x, y) = x + y − Lie(e)(Lie(s)(y)) = x + y − Lie(e)(Lie(t)(x)) = k̊′(x, y),

since (x, y) ∈ Lie(C1) ×Lie(C0) Lie(C1) implies Lie(s)(y) = Lie(t)(x).

Remark 2.36. We again have in the bottom part the Lieization, and in the case of Lie K-algebras thought as Leibniz
K-algebras, we obtain the identity.

Proposition 2.37. If (
C1

D1

f1 ,
C0

D0

f0 , s, t, e, k) is a categorical Lie object inLMK, then (C1,C0, s1, t1, e1, k1) is a categorical

Leibniz K-algebra, where [x, y]C1 = x ∗C1
D1

y and [a, b]C0 = a ∗C0
D0

b, for x, y ∈ C1, a, b ∈ C0.

Analogously to the crossed modules case, we have once again for internal categories the pair of functors

ICat(LeibAlgK)
IΦ //

ICat(Lie(LMK))
IΨ
oo satisfying IΨ ◦ IΦ = IdICat(LeibAlgK), and so, the functor IΦ is a full

inclusion functor.
This new inclusion functor allows us to define a braiding on categorical Leibniz K-algebras using the

idea of braiding of Lie objects in LMK.

Proposition 2.38. Let C = (C,⊗, a,T ) be a braided semigroupal category where C is an additive category with
pullbacks. Then Lie(C) has pullbacks.

Proof. If we have two Lie morphisms

(A, µA)

(B, µB) (C, µC),

f

1

the pullback is given by ((A ×C B, µA×CB), πA, πB), where A ×C B is the pullback in C

A ×C B A

B C,

πA

πB f

1

and µA×CB is the unique morphism such that πX ◦ µA×CB = µX ◦ (πX ⊗ πX) for X ∈ {A,B} constructed by the
universal property of pullbacks in C in the following diagram:

(A ×C B) ⊗ (A ×C B) A ⊗ A

A ×C B A

B ⊗ B B C.

µA×CB

πB⊗πB

πA⊗πA

µA

πA

πB f

µB 1



A. Fernández-Fariña, M. Ladra / Filomat 34:5 (2020), 1443–1469 1457

It is straightforward to see that µA×CB is well defined. Now, we will prove that (A ×C B, µA×CB) is a Lie
object checking the first axiom. For simplicity of notation, we will denote D B A×C B. Let X ∈ {A,B}. Using
universal properties we have:

πX ◦ (−µD ◦ TD,D) = −πX ◦ µD ◦ TD,D = −µX ◦ (πX ⊗ πX) ◦ TD,D.

Since T is a natural isomorphism and that (X, µX) is a Lie object, we get

πX ◦ (−µD ◦ TD,D) = −µX ◦ TX,X ◦ (πX ⊗ πX) = µX ◦ (πX ⊗ πX).

We conclude that µD = −µD ◦ TD,D because µD is the unique morphism that satisfies the previous equality
for X ∈ {A,B}.

Now, we will check the second axiom of Lie object.
For the first summand, we have:

πX ◦ µD ◦ (IdD ⊗µD) ◦ aD,D,D = µX ◦ (πX ⊗ πX) ◦ (IdD ⊗µD) ◦ aD,D,D

= µX ◦ (πX ⊗ (πX ◦ µD)) ◦ aD,D,D = µX ◦ (πX ⊗ (µX ◦ (πX ⊗ πX))) ◦ aD,D,D

= µX ◦ (IdX ⊗µX) ◦ (πX ⊗ (πX ⊗ πX)) ◦ aD,D,D.

Using that a is a natural isomorphism, we have

πX ◦ µD ◦ (IdD ⊗µD) ◦ aD,D,D = µX ◦ (IdX ⊗µX) ◦ aX,X,X ◦ ((πX ⊗ πX) ⊗ πX).

Doing the same for the second and third summands (the naturalness of a gives the same naturalness to
a−1), we have that:

πX ◦ µD ◦ (µD ⊗ IdD) ◦ a−1
D,D,D ◦ (IdD ⊗TD,D) ◦ aD,D,D

= µX ◦ (µX ⊗ IdX) ◦ a−1
X,X,X ◦ (IdX ⊗TX,X) ◦ aX,X,X ◦ ((πX ⊗ πX) ⊗ πX),

πX ◦ (−µD ◦ (µD ⊗ IdD)) = −µX ◦ (µX ⊗ IdX) ◦ ((πX ⊗ πX) ⊗ πX).

Adding the three last equalities and using the distributivity of the composition, we have πX ◦ LD =
LX ◦ ((πX⊗πX)⊗πX), where denote byLY the morphism that is in the first term of the equality of the second
axiom for a Lie object (Y, µY). Since (X, µX) is a Lie object, we getLX = (X⊗X)⊗X0X, and soπX ◦LD = (D⊗D)⊗D0X.

Now, by the universal property, we have that LD = (D⊗D)⊗D0D and therefore (D, µD) is a Lie object.
To conclude the proof it is enough to check that the morphism given by the pullback in C is a Lie

morphism, but this is a routine verification.

Definition 2.39. Let C = (C,⊗, a,T ) be a braided semigroupal category where C is an additive category with
pullbacks.

Let C = ((C1, µC1 ), (C0, µC0 ), s, t, e, k) be a categorical Lie object in Lie(C).
A braiding on C is a morphism τ : C0 ⊗ C0 −→ C1 satisfying:

• s ◦ τ = µC0 and t ◦ τ = µC0 ◦ TC0,C0 ,

• We define C0 ⊗ C0
µC1×C0 (τ◦(t⊗t)),(τ◦(s⊗s))×C0 (µC1◦T )
−−−−−−−−−−−−−−−−−−−−−−−−−→ C1 ×C0 C1 as the two unique morphisms which satisfy the

universal property, respectively, in the following diagrams:

C1 ⊗ C1

C1 ×C0 C1 C1

C1 C0

µC1

τ◦(t⊗t)

π1

π2 t

s

C1 ⊗ C1

C1 ×C0 C1 C1

C1 C0

τ◦(s⊗s)

µC1◦TC1 ,C1

π1

π2 t

s

,
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and the equality

k ◦ (µC1 ×C0 (τ ◦ (t ⊗ t))) = k ◦ ((τ ◦ (s ⊗ s)) ×C0 (µC1 ◦ T )).

• It must satisfy

τ ◦ (IdC0 ⊗µC0 ) ⊗ aC0,C0,C0 = τ ◦ (µC0 ⊗ IdC0 ) ◦ (Id(C0⊗C0)⊗C0 −(a−1
C0,C0,C0

◦ (IdC0 ⊗TC0,C0 ) ◦ aC0,C0,C0 )),

τ ◦ (µC0 ⊗ IdC0 ) = τ ◦ (IdC0 ⊗µC0 ) ◦ aC0,C0,C0 ◦ (Id(C0⊗C0)⊗C0 −(TC0,C0 ⊗ IdC0 )).

We will say that ((C1, µC1 ), (C0, µC0 ), s, t, e, k, τ) is a braided categorical Lie object in C.

An internal functor ((C1, µC1 ), (C0, µC0 ), s, t, e, k, τ)
(F1,F0)
−−−−→ ((C′1, µC′1 ), (C′0, µC′0 ), s′, t′, e′, k′, τ′) is said to be a

braided internal functor of braided categorical Lie objects in C if it satisfies the following diagram:

C0 ⊗ C0 C1

C′0 ⊗ C′0 C1.

F0⊗F0

τ

F1

τ′

We denote this new category as BICat(Lie(C)).

Example 2.40. We have that the categories BICat(Lie(VectK)) and BICat(LieAlgK) are isomorphic, taking in VectK
the usual tensor product (we assume char(K) , 2).

Definition 2.41. Let C =(
C1

D1

f1 ,
C0

D0

f0 , s, t, e, k) be a categorical Lie object in LMK.

A braiding on C is a triple τ = (τC0,D0 , τD0,C0 , τ2) where

• τ2 : D0 × D0 −→ D1 is a K-bilinear map such that (D1,D0, s, t, e, k, τ2) is a braided crossed module of Lie
K-algebras,

• τD0,C0 : D0 × C0 −→ C1 and τC0,D0 : C0 × D0 −→ C1 are K-bilinear maps which, with τ2, satisfy the following
properties for c ∈ C0, d, d′ ∈ D0, x ∈ C1, y ∈ D1:

f1(τC0,D0
c,d ) = τ2

f0(c),d and f1(τD0,C0
d,c ) = τ2

d, f0(c),

τC0,D0
c,d : c ∗C0

D0
d −→ −c ∗C0

D0
d and τD0,C0

d,c : − c ∗C0
D0

d −→ c ∗C0
D0

d.

The following diagrams are satisfied in the internal category:

s1(x) ∗C0
D0

s2(y) t1(x) ∗C0
D0

t2(y)

−s1(x) ∗C0
D0

s2(y) −t1(x) ∗C0
D0

t2(y)

τ
C0 ,D0
s1(x),s2(y)

x∗C1
C0

y

τ
C0 ,D0
t1(x),t2(y)

−x∗C1
D1

y

,

−s1(x) ∗C0
D0

s2(y) −t1(x) ∗C0
D0

t2(y)

s1(x) ∗C0
D0

s2(y) t1(x) ∗C0
D0

t2(y)

τ
D0 ,C0
s2(y),s1(x)

−x∗C1
C0

y

τ
D0 ,C0
t2(y),t1(x)

x∗C1
D1

y

.

Moreover, we have the following properties:

τC0,D0
c,[d,d′]D0

= τC0,D0

c∗C0
D0

d,d′
− τC0,D0

c∗C0
D0

d′,d
,

τD0,C0
[d,d′]D0 ,c

= −τD0,C0

d,c∗C0
D0

d′
− τC0,D0

c∗C0
D0

d,d′
,

τC0,D0
c,[d,d′]D0

= τC0,D0

c∗C0
D0

d,d′
+ τD0,C0

d,c∗C0
D0

d′
,

τD0,C0
[d,d′]D0 ,c

= −τD0,C0

d,c∗C0
D0

d′
+ τD0,C0

d′,c∗C0
D0

d
.
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We will say that (
C1

D1

f1 ,
C0

D0

f0 , s, t, e, k, τ) is a braided categorical Lie object in LMK.

Remark 2.42. A braiding is a pair τ = (τ1, τ2) but, for simplicity, we denote τ2(d, d′) = τ2
d,d′ and τ1 : (C0 ⊗ D0) ⊕

(D0 ⊗ C0) −→ C1 by the expression τ1((c ⊗ d) + (d′ ⊗ c′)) = τC0,D0
c,d + τD0,C0

d′,c′ .

Definition 2.43. Let (
C1

D1

f1 ,
C0

D0

f0 , s, t, e, k, τ) and (
C′1

D′1

11 ,
C′0

D′0

10 , s′, t′, e′, k′, ψ) be braided categorical Lie objects in LMK.

A braided internal functor between categorical Lie objects in LMK is an internal functor ((F1
1,F

0
1), (F1

0,F
0
0)) between

the respective categorical Lie objects which satisfies:

• (F0
1,F

0
0) : (D1,D0, s2, t2, e2, k2, τ2) −→ (D′1,D

′

0, s
′

2, t
′

2, e
′

2, k
′

2, ψ2) is a braided internal functor between categorical
Lie K-algebras.

• F1
1(τC0,D0

c,d ) = ψ
C′0,D

′

0

F1
0(c),F0

0(d)
for c ∈ C0, d ∈ D0.

• F1
1(τD0,C0

d,c ) = ψ
D′0,C

′

0

F0
0(d),F1

0(c)
for c ∈ C0, d ∈ D0.

To introduce a braiding for the categorical Leibniz K-algebras with the previous scheme, we will use two
K-bilinear maps τ, ψ : C0 × C0 −→ C1, as in the case of a braiding of crossed modules of Leibniz K-algebras.
Consider for the inclusion Lie object in LMK the braiding τ̄ defined by τ̄C0,Lie(C0)

a,b
= τa,b, τ̄Lie(C0),C0

a,b = −ψb,a

and τ̄2
a,b

= τa,b = −ψb,a, where we introduce a quotient in C1 whose elements we will denote as x.

Definition 2.44. A braiding for the categorical Leibniz K-algebra (C1,C0, s, t, e, k) is a pair (τ, ψ) of K-bilinear maps
τ, ψ : C0 × C0 −→ C1, (a, b) 7→ τa,b and (a, b) 7→ ψa,b, satisfying:

τa,b : [a, b] −→ −[a, b] and ψa,b : [a, b] −→ −[a, b], (LeibT1)

[s(x), s(y)] [t(x), t(y)]

−[s(x), s(y)] −[t(x), t(y)],

τs(x),s(y)

[x,y]

τt(x),t(y)

−[x,y]

[s(x), s(y)] [t(x), t(y)]

−[s(x), s(y)] −[t(x), t(y)],

ψs(x),s(y)

[x,y]

ψt(x),t(y)

−[x,y]

(LeibT2)

τa,[b,c] = τ[a,b],c − τ[a,c],b, (LeibT3)
ψa,[b,c] = τ[a,b],c − ψ[a,c],b, (LeibT4)
τa,[b,c] = τ[a,b],c − ψ[a,c],b, (LeibT5)
ψa,[b,c] = ψ[a,b],c − ψ[a,c],b, a, b, c ∈ C0, x, y ∈ C1. (LeibT6)

We will say that (C1,C0, s, t, e, k, (τ, ψ)) is a braided categorical Leibniz K-algebra.

Definition 2.45. Let (C1,C0, s, t, e, k, (τ, ψ)) and (C′1,C
′

0, s
′, t′, e′, k′, (τ′, ψ′)) be two braided categorical Leibniz K-

algebras.

An internal functor (C1,C0, s, t, e, k)
(F1,F0)
−−−−→ (C′1,C

′

0, s
′, t′, e′, k′) is said to be a braided internal functor between

two braided categorical Leibniz K-algebras if it satisfies:

F1(τa,b) = τ′F0(a),F0(b), (LeibHT1)

F1(ψa,b) = ψ′F0(a),F0(b), a, b ∈ C0. (LeibHT2)

We denote the category of braided categorical Leibniz K-algebras and braided internal functors between them as
BICat(LeibAlgK).
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We want to see the braided categorical Lie K-algebras as a particular case of braided categorical Leibniz
K-algebras.

Proposition 2.46. Let C1 and C0 be Lie K-algebras. Then, (C1,C0, s, t, e, k, τ) is a braided categorical Lie K-algebra
if and only if (C1,C0, s, t, e, k, (τ, τ−)) is a braided categorical Leibniz K-algebra. τ− : C0 × C0 −→ C1 is defined as
τ−a,b = −τb,a.

Proof. Immediately, (LeibT1) and (LeibT2) can be rewritten as (LieT1) and (LieT2), respectively, using
the anticommutativity. Moreover, it is clear that (LeibT3) and (LieT4) are identical, and that (LeibT6) is
equivalent to (LieT3).

To see the last equivalences, (LeibT4) with (LieT3), and (LeibT5) with (BLie4), we must prove τ[a,b],c =
−τc,[a,b], for a, b, c ∈ C0.

• In the Lie case, it is true using Proposition 1.5.

• In the Leibniz case it is not true in general, because we need τa,b = −ψb,a; but using (LeibT4) and
(LeibT5) we can observe that τa,[b,c] = ψa,[b,c] = τ−a,[b,c] = −τ[b,c],a.

Proposition 2.47. Let (C1,C0, s, t, e, k, (τ, ψ)) be a braided categorical Leibniz K-algebra. Then

(
C1

C1
[τC0 ,C0

]

πC1 ,
C0

Lie(C0)

πC0 , (s, s), (t, t), (e, e), (k, k̃), τ̄) is a braided categorical Lie object in LMK, where C1
[τC0 ,C0 ] is the Lie

K-algebra which is a Leibniz quotient of C1 by the ideal generated by elements of the form [x, x] and τa,b +ψb,a, x ∈ C1,
a, b ∈ C0; and the maps are the following ones:

• s : C1
[τC0 ,C0 ] −→ Lie(C0) defined as s(x) = s(x) for x ∈ C1

[τC0 ,C0 ] ;

• t : C1
[τC0 ,C0 ] −→ Lie(C0) defined as t(x) = t(x) for x ∈ C1

[τC0 ,C0 ] ;

• e : Lie(C0) −→ C1
[τC0 ,C0 ] defined as e(a) = e(a) for a ∈ Lie(C0);

• k̃ : C1
[τC0 ,C0 ] ×Lie(C0)

C1
[τC0 ,C0 ] −→

C1
[τC0 ,C0 ] defined as k((x, y)) = k̊(x, y) for (x, y) ∈ C1

[τC0 ,C0 ] ×Lie(C0)
C1

[τC0 ,C0 ] , where k̊ is

again the extension to the product k̊(x, y) = x + y − e(s(y)) (we can take k̊′(x, y) = x + y − e(t(x)) too, because
in the quotient it will not change anything);

• τ̄C0,Lie(C0) : C0 × Lie(C0) −→ C1 defined as τ̄C0,Lie(C0)

a,b
= τa,b for a ∈ C0, b ∈ Lie(C0);

• τ̄Lie(C0),C0 : Lie(C0) × C0 −→ C1 defined as τ̄Lie(C0),C0

a,b = −ψb,a for a ∈ Lie(C0), b ∈ C0;

• τ̄2 : Lie(C0) × Lie(C0) −→ C1
[τC0 ,C0 ] defined as τ2

a,b
= τa,b = −ψb,a for a, b ∈ Lie(C0).

Remark 2.48. The bottom part ( C1
[τC0 ,C0 ] ,Lie(C0), s, t, e, k̃, τ̄2) will be called Lieization, and it is again functorial.

If we apply this Lieization on a braided categorical Lie K-algebra, thought as a crossed module of Leibniz K-algebras
with the action with the braiding (τ, τ−), the new generator is null

τa,b + ψb,a = τa,b + τ−b,a = τa,b − τa,b = 0.

Proposition 2.49. Let (
C1

D1

f1 ,
C0

D0

f0 , s, t, e, k, τ) be a braided categorical Lie object in LMK.

Then (C1,C0, s1, t1, e1, k1, (τ̄τ, ψ̄τ)) is a braided categorical Leibniz K-algebra, where [x, y]C1 = x ∗C1
D1

y and
[a, b]C0 = a ∗C0

D0
b for x, y ∈ C1, a, b ∈ C0, and τ̄τa,b = τC0,D0

a, f0(b), ψ̄
τ
a,b = −τD0,C0

f (b),a for a, b ∈ C0.
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We have again the pair of functors BICat(LeibAlgK)
BIΦ //

BICat(Lie(LMK))
BIΨ
oo satisfying BIΨ ◦ BIΦ =

IdBICat(LeibAlgK), and so, the functor BIΦ is a full inclusion functor.

3. The equivalence between the categories of braided crossed modules and braided internal categories
in the case of Leibniz algebras

First, we will prove that the categories BICat(LeibAlgK) and BX(LeibAlgK) are equivalent, as in the case
of groups and Lie K-algebras. Moreover, the equivalence must generalize the Lie K-algebras case (i.e. the
braidings of the Leibniz K-algebras must satisfy {n,n′} = −〈n′,n〉 and τa,b = −ψb,a and the functors for the
Lie case would be recovered) and must be an extension of the one given to the non-braiding case.

Proposition 3.1. Let X = (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) be a braided crossed module of Leibniz K-algebras.
Then CX B (M oN,N, s̄, t̄, ē, k̄, (τ̄, ψ̄)) is a braided categorical Leibniz K-algebra where

• s̄ : M oN −→ N, s̄((m,n)) = n,

• t̄ : M oN −→ N, t̄((m,n)) = ∂m + n,

• ē : N −→M oN, ē(n) = (0,n),

• k̄ : (MoN)×N (MoN) −→MoN, where the source is the pullback of t̄ with s̄, defined as k(((m,n), (m′, ∂m+n))) =
(m + m′,n),

• τ̄ : N ×N −→M oN, τ̄n,n′ = (−2{n,n′}, [n,n′]),

• ψ̄ : N ×N −→M oN, ψ̄n,n′ = (−2〈n,n′〉, [n,n′]).

Proof. We only need to check the braiding axioms, since (MoN,N, s̄, t̄, ē, k̄) is a categorical Leibniz K-algebra
(see [3]).

We will start with (LeibT1). Let n,n′ ∈ N.

s̄(τ̄n,n′ ) = s̄((−2{n,n′}, [n,n′])) = [n,n′],
t̄(τ̄n,n′ ) = t̄((−2{n,n′}, [n,n′])) = −2∂{n,n′} + [n,n′] = −2[n,n′] + [n,n′] = −[n,n′],

where we use (BLeib1). In the same way we can prove this property of ψ̄by the symmetry of the construction.
We will prove now (LeibT2). Again, we will only check this for τ̄. Let x = (m,n), y = (m′,n′) ∈M oN.
We need to show that τt(x),t(y) ◦ [x, y] = −[x, y] ◦ τs(x),s(y). Now, we will write the equalities in function of

the data given by the braided crossed module.

τt(x),t(y) ◦ [x, y]

= k̄(([(m,n), (m′,n′)], (−2{t̄((m,n)), t̄((m′,n′))}, [t̄((m,n)), t̄((m′,n′))])))

= k̄(([(m,n), (m′,n′)], (−2{∂m + n, ∂m′ + n′}, [∂m + n, ∂m′ + n′])))

= k̄((([m,m′] + n ·1 m′ + m ·2 n′, [n,n′]), (−2{∂m + n, ∂m′ + n′}, [∂m + n, ∂m′ + n′])))
= ([m,m′] + n ·1 m′ + m ·2 n′ − 2{∂m + n, ∂m′ + n′}, [n,n′])
= ([m,m′] + n ·1 m′ + m ·2 n′ − 2{∂m, ∂m′} − 2{∂m,n′} − 2{n, ∂m′} − 2{n,n′}, [n,n′])
= ([m,m′] + n ·1 m′ + m ·2 n′ − 2[m,m′] − 2(m ·2 n′) − 2(n ·1 m′) − 2{n,n′}, [n,n′])
= (−[m,m′] − n ·1 m′ −m ·2 n′ − 2{n,n′}, [n,n′]),
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where we use (BLeib2), (BLeib3) and (BLeib4) in the sixth equality. In the other way,

− [x, y] ◦ τs(x),s(y)

= k̄(((−2{s̄((m,n)), s̄((m,n′))}, [s̄((m,n)), s̄((m′,n′))]),−[(m,n), (m′,n′)]))

= k̄(((−2{n,n′}, [n,n′]),−[(m,n), (m′,n′)]))

= k̄(((−2{n,n′}, [n,n′]), (−[m,m′] − n ·1 m′ −m ·2 n′,−[n,n′])))
= (−2{n,n′} − [m,m′] − n ·1 m′ −m ·2 n′, [n,n′]).

We will satisfy (LeibT3) below. Let n,n′,n′′ ∈ N. Then

τ̄n,[n′,n′′] = (−2{n, [n′,n′′]}, [n, [n′,n′′]])
= (−2({[n,n′],n′′} − {[n,n′′],n′}), [[n,n′],n′′] − [[n,n′′],n′])
= (−2{[n,n′],n′′}, [[n,n′],n′′]) − (−2{[n,n′′],n′}, [[n,n′′],n′])
= τ̄[n,n′],n′′ − τ̄[n,n′′],n′ ,

where we use (BLeib5) and the Leibniz identity in the second equality.
The same argument is valid for (LeibT6), using (BLeib8) and by the symmetry of the properties.
Finally, we will show that (LeibT4) and (LeibT5) are satisfied.

ψ̄n,[n′,n′′] = (−2〈n, [n′,n′′]〉, [n, [n′,n′′]])
= (−2({[n,n′],n′′} − 〈[n,n′′],n′〉), [[n,n′],n′′] − [[n,n′′],n′])
= (−2{[n,n′],n′′}, [[n,n′],n′′]) − (−2〈[n,n′′],n′〉, [[n,n′′],n′])
= τ̄[n,n′],n′′ − ψ̄[n,n′′],n′

= (−2({[n,n′],n′′} − 〈[n,n′′],n′〉), [[n,n′],n′′] − [[n,n′′],n′])
= (−2{n, [n′,n′′]}, [n, [n′,n′′]]) = τ̄n,[n′,n′′],

where we use (BLeib6) along with the Leibniz identity in the second equality; and (BLeib7) with the Leibniz
identity in the penultimate equality.

Remark 3.2. Note that if X is a braided crossed module of Lie K-algebras, then

τ̄n,n′ = (−2{n,n′}, [n,n′]) = −(−2〈n′,n〉, [n′,n]) = −ψ̄n′,n

and we recover the construction for the Lie case (see [5]).

Proposition 3.3. We have a functor C : BX(LeibAlgK) −→ BICat(LeibAlgK) defined as

C(X
( f1, f2)
−−−−→ X

′) B CX
( f1× f2, f2)
−−−−−−→ CX′ , where CX is constructed in the previous proposition.

Proof. It is enough to see that ( f1 × f2, f2) is a braided internal functor of braided categorical Leibniz K-
algebras, since ( f1 × f2, f2) is an internal functor between the respective internal categories (see [3]).

We will satisfy (LeibHT1). Let n,n′ ∈ N.

( f1 × f2)(τ̄n,n′ ) = ( f1 × f2)((−2{n,n′}, [n,n′])) = (−2 f1({n,n′}), f2([n,n′]))
= (−2{ f2(n), f2(n′)}′, [ f2(n), f2(n′)]) = τ̄′f2(n), f2(n′),

where we use (LeibHB1) in the penultimate equality.
Again, the same argument is valid to prove (LeibHT2), using (LeibHB2) and because of the symmetry

of the braiding’s properties and the construction.

Proposition 3.4. Let C = (C1,C0, s, t, e, k, (τ, ψ)) be a braided categorical Leibniz K-algebra.
Then XC B (ker(s),C0, (e

·, ·e), ∂t, ({−,−}τ, 〈−,−〉ψ)) is a braided crossed module of Leibniz K-algebras where
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•
e
· : C0 × ker(s) −→ ker(s), a e

· x B [e(a), x],

• ·
e : ker(s) × C0 −→ ker(s), x ·e a B [x, e(a)],

• ∂t B t|ker(s),

• {−,−}τ : C0 × C0 −→ ker(s), {a, b}τ B
e([a,b])−τa,b

2 ,

• 〈−,−〉ψ : C0 × C0 −→ ker(s), 〈a, b〉ψ B
e([a,b])−ψa,b

2 .

Proof. It is enough to show that ({−,−}τ, 〈−,−〉ψ) is a braiding on the crossed module of Leibniz K-algebras
(ker(s),C0, (·e, e

·), ∂t) (see [3]).
First let us see that it is well defined because the image falls in C1 which is not ker(s). We will check it

only for {−,−}τ, since for 〈−,−〉ψ we will have a completely symmetric argument. Let a, b ∈ C0, and using
(LeibT1), we have

s({a, b}τ) = s
( e([a, b]) − τa,b

2

)
=

[a, b] − [a, b]
2

= 0.

To check (BLeib1)–(BLeib4) we will only prove it for {−,−}τ.
First, we will check (BLeib1). Let a, b ∈ C0, and using (LeibT1), we get

∂t{a, b}τ = t
( e([a, b]) − τa,b

2

)
=

[a, b] − (−[a, b])
2

=
2[a, b]

2
= [a, b].

We will see now (BLeib2). Let x, y ∈ ker(s). Then

{∂tx, ∂ty}τ =
e([∂tx, ∂ty]) − τ∂tx,∂t y

2
=

e([t(x), t(y)]) − τt(x),t(y)

2
.

Let us see that e([t(x),t(y)])−τt(x),t(y)

2 = [x, y].
By axiom (LeibT2), we have k(([x, y], τt(x),t(y))) = k((τs(x),s(y),−[x, y])). As x ∈ ker(s), we have that s(x) = 0

(in the same way y), and τs(x),s(y) = 0 by K-bilinearity. So, we have k((τs(x),s(y),−[x, y])) = k((0,−[x, y])), and
therefore k(([x, y], τt(x),t(y))) = k((0,−[x, y])). Using now the K-linearity of k in the previous expression, we
obtain 0 = k(([x, y], τt(x),t(y) + [x, y])).

Since t(τt(x),t(y) + [x, y]) = −[t(x), t(y)] + [t(x), t(y)] = 0 = s(e(0)) we can talk about k((τt(x),t(y) + [x, y], e(0))).
Further k((τt(x),t(y) + [x, y], e(0))) = τt(x),t(y) + [x, y] by the internal category axioms.

Adding both equalities and by using the K-linearity of k we get

k(([x, y] + τt(x),t(y) + [x, y], τt(x),t(y) + [x, y])) = τt(x),t(y) + [x, y].

Therefore, by grouping, we have

k((2[x, y] + τt(x),t(y), τt(x),t(y) + [x, y])) = τt(x),t(y) + [x, y].

By using that ker(s) is an ideal and the fact that x or y are in ker(s), we have s(τt(x),t(y) +[x, y]) = [t(x), t(y)]−0 =
[t(x), t(y)], and so it makes sense to speak about the composition k((e([t(x), t(y)]), τt(x),t(y) + [x, y])), which is
equal to τt(x),t(y) + [x, y].

Subtracting both equalities and using the K-linearity of k, we obtain

k((2[x, y] + τt(x),t(y) − e([t(x), t(y)]), 0)) = 0.

Again, using the properties for internal categories, we have

0 = k((2[x, y] + τt(x),t(y) − e([t(x), t(y)]), 0))
= k((2[x, y] + τt(x),t(y) − e([t(x), t(y)]), e(0)))
= 2[x, y] + τt(x),t(y) − e([t(x), t(y)]),
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which gives us the required equality, since char(K) , 2.
As an observation to the above, in the part of the proof where we use that x, y ∈ ker(s), it is sufficient

that one of the two is in that kernel. Therefore, by repeating the argument, we have the following equalities
for x ∈ ker(s) and y ∈ C1:

e([t(x), t(y)]) − τt(x),t(y)

2
= [x, y],

e([t(y), t(x)]) − τt(y),t(x)

2
= [y, x].

With these equalities, we will check (BLeib3) and (BLeib4).
Let a ∈ C0 and x ∈ ker(s). Then

{∂tx, a}τ =
e([t(x), t(e(a))]) − τt(x),t(e(a))

2
= [x, e(a)] = x ·e a,

{a, ∂tx}τ =
e([t(e(a)), t(x)]) − τt(e(a)),t(x)

2
= [e(a), x] = a e

· x.

We will see now the last conditions, starting with (BLeib5). Let a, b, c ∈ C0.

{a, [b, c]}τ =
e([a, [b, c]]) − τa,[b,c]

2
=

e([[a, b], c]) − e([[a, c], b]) − τ[a,b],c + τ[a,c],b

2

=
e([[a, b], c]) − τ[a,b],c

2
−

e([[a, c], b]) − τ[a,c],b

2
= {[a, b], c}τ − {[a, c], b}τ,

where we use (LeibT3) and the Leibniz identity in the second equality. By symmetry we can prove (BLeib8),
using (LeibT6).

To conclude we will check (BLeib6) and (BLeib7).

〈a, [b, c]〉ψ =
e([a, [b, c]]) − ψa,[b,c]

2
=

e([[a, b], c]) − e([[a, c], b]) − τ[a,b],c + ψ[a,c],b

2

=
e([[a, b], c]) − τ[a,b],c

2
−

e([[a, c], b]) − ψ[a,c],b

2
= {[a, b], c}τ − 〈[a, c], b〉ψ

=
e([[a, b], c]) − e([[a, c], b]) − τ[a,b],c + ψ[a,c],b

2
=

e([a, [b, c]]) − τa,[b,c]

2
= {a, [b, c]}τ,

where we use (LeibT4) in the second equality together with Leibniz identity and (LeibT5) in the penultimate
equality with the Leibniz identity.

Remark 3.5. Note that if C is a braided categorical Lie K-algebra, then

{a, b}τ =
e([a, b]) − τa,b

2
= −

e([b, a]) − ψb,a

2
= −〈b, a〉ψ

and we recover the construction for the Lie case.

Proposition 3.6. We have a functor X : ICat(LeibAlgK) −→ BX(LeibAlgK) defined as

X(C
(F1,F0)
−−−−→ C

′) = XC
(Fs

1,F0)
−−−−→ XC′ ,

where XC is constructed in the previous proposition and Fs
1 : ker(s) −→ ker(s′) is defined as Fs

1(x) = F1(x) for
x ∈ ker(s).

Proof. X is a functor between the categories without braiding (see [3]). So, we only must check the axioms
of the homomorphisms of braided crossed of Leibniz K-algebras.
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We will start with (LeibHB1). Let a, b ∈ C0.

Fs
1({a, b}τ) = F1

( e([a, b]) − τa,b

2

)
=

F1(e([a, b])) − F1(τa,b)
2

=
e′(F0([a, b])) − τ′F0(a),F0(b)

2
=

e′([F0(a),F0(b)]) − τ′F0(a),F0(b)

2
= {F0(a),F0(b)}τ′ ,

where we use (LeibHT1) in the third equality.
Again, we can prove (LeibHB2) using the same argument, (LeibHT2) and the symmetry.

Remark 3.7. Note that, if (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) then ker(s̄) = {(m, 0) ∈ M o N | m ∈ M}, where s̄ is
defined for the functor C.

Proposition 3.8. The categories BX(LeibAlgK) and ICat(LeibAlgK) are equivalent categories.

Further, the functors C and X are inverse equivalences, where the natural isomorphisms IdBX(LeibAlgK)
α
� X ◦ C

and IdICat(LeibAlgK)
β
� C ◦ X are given by:

• IfZ = (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) is a braided crossed module of Leibniz K-algebras, then αZ = (αM, IdN),
where αM : M −→ (M, 0) is defined by αM(m) = (m, 0);

• IfD = (C1,C0, s, t, e, k, (τ, ψ)) is a braided categorical Leibniz K-algebra, then βD = (βs, IdC0 ), where βC1 : C1 −→

ker(s) o C0 is defined by βC1 (x) = (x − e(s(x)), s(x)).

Proof. C and X are natural isomorphisms in the categories without braiding (see [3]). So, it is enough to
show that they are morphisms between braided objects.

LetZ = (M,N, (·1, ·2), ∂, ({−,−}, 〈−,−〉)) a braided crossed module of Leibniz K-algebras. Let us see that
αZ = (αM, IdN) satisfies (LeibHB1).

IdN({n,n′}τ̄) = {n,n′}τ̄ =
ē([n,n′]) − τ̄n,n′

2
=

(0, [n,n′]) − (−2{n,n′}, [n,n′])
2

=
(2{n,n′}, 0)

2
= ({n,n′}, 0) = αM({n,n′}), n,n′ ∈ N.

Analogously (LeibHB2) is proven, by the similarity of definitions.
Let D = (C1,C0, s, t, e, k, (τ, ψ)) be a braided categorical Leibniz K-algebra. We will check that βD =

(βs, IdC0 ) satisfies (LeibHT1) and (LeibHT2). We only show the proof for (LeibHT1), since the one for
(LeibHT2) is similar.

Let us consider a, b ∈ C0. We have:

IdC0 (τ̄a,b) = τ̄a,b = (−2{a, b}τ, [a, b]) = (−2
e([a, b]) − τa,b

2
, [a, b])

= (τa,b − e([a, b]), [a, b]) = (τa,b − e(s(τa,b)), s(τa,b)) = βC1 (τa,b).

4. The non-abelian tensor product as example of braiding

If (M, [−,−]) is a Leibniz K-algebra, then ([−,−], [−,−]) is a braiding on (M,M, ([−,−], [−,−]), IdM). This
example is analogous for the case of Leibniz K-algebras of the models (G,G,Conj, IdG, [−,−]) for groups
and (M,M, [−,−], IdM, [−,−]) for Lie K-algebras. Further, this example generalizes the Lie example, since
[y, x] = −[x, y] in this case.
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We will give another symmetric instance in the three frameworks: the non-abelian tensor product. The
non-abelian tensor product of Leibniz K-algebras was introduced by Gnedbaye in [7], where the tensor
product is denoted as M ? N, and its generators as m ∗ n and n ∗ m. In the general case it does not give
rise to confusion, but in the case M = N these generators would be denoted in the same way, giving rise to
confusion. To avoid this, we change the nomenclature, meaning m ∗ n as m ⊗ n and n ∗m as n ~m.

Definition 4.1. Let M and N two Leibniz K-algebras together with two Leibniz actions · = (·1, ·2) of M on N and
∗ = (∗1, ∗2) of N on M.

The non-abelian tensor product of M and N, denoted by M?N, is the Leibniz K-algebra generated by the symbols
m ⊗ n and n ~m with m ∈M, n ∈ N, together with the relations:

λ(m ⊗ n) = λm ⊗ n = m ⊗ λn, (RTLeib1)
λ(n ~m) = λn ~m = n ~ λm,

(m + m′) ⊗ n = m ⊗ n + m′ ⊗ n, (RTLeib2)
m ⊗ (n + n′) = m ⊗ n + m ⊗ n′,
(n + n′) ~m = n ~m + n′ ~m,
n ~ (m + m′) = n ~m + n ~m′,

m ⊗ [n,n′] = (m ∗2 n) ⊗ n′ − (m ∗2 n′) ⊗ n, (RTLeib3)
n ~ [m,m′] = (n ·2 m) ~m′ − (n ·2 m′) ~m,
[m,m′] ⊗ n = (m ·1 n) ~m′ −m ⊗ (n ·2 m′),
[n,n′] ~m = (n ∗1 m) ⊗ n′ − n ~ (m ∗2 n′),

m ⊗ (m′ ·1 n) = −m ⊗ (n ·2 m′), (RTLeib4)
n ~ (n′ ∗1 m) = −n ~ (m ∗2 n′),

(m ∗2 n) ⊗ (m′ ·1 n′) = [m ⊗ n,m′ ⊗ n′] = (m ·1 n) ~ (m′ ∗2 n′), (RTLeib5)
(m ∗2 n) ⊗ (n′ ·2 m′) = [m ⊗ n,n′ ~m′] = (m ·1 n) ~ (n′ ∗1 m′),
(n ∗1 m) ⊗ (n′ ·2 m′) = [n ~m,n′ ~m′] = (n ·2 m) ~ (n′ ∗1 m′),
(n ∗1 m) ⊗ (m′ ·1 n′) = [n ~m,m′ ⊗ n′] = (n ·2 m) ~ (m′ ∗2 n′), m,m′ ∈M, n,n′ ∈ N.

Proposition 4.2 ([7]). Let M be a Leibniz K-algebra.
Then (M ? M,M, (·1, ·2), ∂) is a crossed module of Leibniz K-algebras, where M ? M is the non-abelian tensor

product of M with itself using the actions given by the Leibniz bracket, where

• the left action on generators is given by m ·1 (m1 ⊗ m2) = [m,m1] ⊗ m2 − [m,m2] ~ m1, m ·1 (m1 ~ m2) =
[m,m1] ~m2 − [m,m2] ⊗m1;

• the right action on generators is given by (m1 ⊗ m2) ·2 m = [m1,m] ⊗ m2 + m1 ⊗ [m2,m], (m1 ~ m2) ·2 m =
[m1,m] ~m2 + m1 ~ [m2,m];

• the map ∂ is defined on generators as ∂(m1 ⊗m2) = [m1,m2] = ∂(m1 ~m2).

Remark 4.3. We will show how are the relations (RTLeib3)–(RTLeib5) for the non-abelian tensor product M ?M
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with the action ([−,−], [−,−]) on itself:

m1 ⊗ [m2,m3] = [m1,m2] ⊗m3 − [m1,m3] ⊗m2, (RTLeib3)
m1 ~ [m2,m3] = [m1,m2] ~m3 − [m1,m3] ~m2,

[m1,m2] ⊗m3 = [m1,m3] ~m2 −m1 ⊗ [m3,m2],
[m1,m2] ~m3 = [m1,m3] ⊗m2 −m1 ~ [m3,m2],
m1 ⊗ [m2,m3] = −m1 ⊗ [m3,m2], (RTLeib4)
m1 ~ [m2,m3] = −m1 ~ [m3,m2],

[m1,m2] ⊗ [m3,m4] = [m1 ⊗m2,m3 ⊗m4] = [m1,m2] ~ [m3,m4], (RTLeib5)
[m1,m2] ⊗ [m3,m4] = [m1 ⊗m2,m3 ~m4] = [m1,m2] ~ [m3,m4],
[m1,m2] ⊗ [m3,m4] = [m1 ~m2,m3 ~m4] = [m1,m2] ~ [m3,m4],
[m1,m2] ⊗ [m3,m4] = [m1 ~m2,m3 ⊗m4] = [m1,m2] ~ [m3,m4], m1,m2,m3,m4 ∈M.

The following example shows the necessity of a pair of braidings for the Leibniz K-algebras case since
they will be different.

Example 4.4. Let M be a Leibniz K-algebra.
The pair of K-bilinear maps {−,−}, 〈−,−〉 : M×M −→M⊗M defined as {m1,m2} = m1⊗m2 and 〈m1,m2〉 = m1~m2

is a braiding on the crossed module of Leibniz K-algebras (M ?M,M, (·1, ·2), ∂).
First, will check (BLeib1).

∂{m1,m2} = ∂(m1 ⊗m2) = [m1,m2] = ∂(m1 ~m2) = ∂〈m1,m2〉, m1,m2 ∈M.

Now, we will prove (BLeib2).

{∂(m1 ⊗m2), ∂(m3 ⊗m4)} = [m1,m2] ⊗ [m3,m4] = [m1 ⊗m2,m3 ⊗m4],
{∂(m1 ⊗m2), ∂(m3 ~m4)} = [m1,m2] ⊗ [m3,m4] = [m1 ⊗m2,m3 ~m4],
{∂(m1 ~m2), ∂(m3 ⊗m4)} = [m1,m2] ⊗ [m3,m4] = [m1 ~m2,m3 ⊗m4],
{∂(m1 ~m2), ∂(m3 ~m4)} = [m1,m2] ⊗ [m3,m4] = [m1 ~m2,m3 ~m4],
〈∂(m1 ⊗m2), ∂(m3 ⊗m4)〉 = [m1,m2] ~ [m3,m4] = [m1 ⊗m2,m3 ⊗m4],
〈∂(m1 ⊗m2), ∂(m3 ~m4)〉 = [m1,m2] ~ [m3,m4] = [m1 ⊗m2,m3 ~m4],
〈∂(m1 ~m2), ∂(m3 ⊗m4)〉 = [m1,m2] ~ [m3,m4] = [m1 ~m2,m3 ⊗m4],
〈∂(m1 ~m2), ∂(m3 ~m4)〉 = [m1,m2] ~ [m3,m4] = [m1 ~m2,m3 ~m4],

where in all the cases we used (RTLeib5).
Before to check the following axioms, we need to check a property that can be proven using (RTLeib3) and

(RTLeib4).
Using (RTLeib4) in the last equality of relation (RTLeib3) and rewriting that equality and the second one, we get

m1 ~ [m2,m3] = [m1,m2] ~m3 − [m1,m3] ~m2,

m1 ~ [m2,m3] = [m1,m2] ~m3 − [m1,m3] ⊗m2.

Subtracting, we obtain the equality [m1,m3] ⊗m2 = [m1,m3] ~m2. Using this last equality and the first and second
equality of (RTLeib3), we obtain

m1 ⊗ [m2,m3] = [m1,m2] ⊗m3 − [m1,m3] ⊗m2 = [m1,m2] ~m3 − [m1,m3] ~m2 = m1 ~ [m2,m3].

Let us satisfy now the first equality of (BLeib3) with m,m1,m2 ∈M,

{∂(m1 ⊗m2),m} = [m1,m2] ⊗m = [m1,m] ~m2 −m1 ⊗ [m,m2]
= [m1,m] ~m2 + m1 ⊗ [m2,m] = [m1,m] ⊗m2 + m1 ⊗ [m2,m] = (m1 ⊗m2) ·2 m,
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where we use (RTLeib3) and (RTLeib4).
The second equality is analogous:

{∂(m1 ~m2),m} = [m1,m2] ⊗m = [m1,m] ~m2 + m1 ⊗ [m2,m]
= [m1,m] ~m2 + m1 ~ [m2,m] = (m1 ~m2) ·2 m.

Using the exchange properties between ⊗ and ~ again, we will see the remaining equalities:

〈∂(m1 ⊗m2),m〉 = [m1,m2] ~m = [m1,m2] ⊗m = (m1 ⊗m2) ·2 m,
〈∂(m1 ~m2),m〉 = [m1,m2] ~m = [m1,m2] ⊗m = (m1 ~m2) ·2 m.

Now we will check the next axiom, (BLeib4), where we will use again that we can exchange the symbols if in one
side is the bracket. Starting with the first equality, we have

{m, ∂(m1 ⊗m2)} = m ⊗ [m1,m2] = [m,m1] ⊗m2 − [m,m2] ⊗m1

= [m,m1] ⊗m2 − [m,m2] ~m1 = m ·1 (m1 ⊗m2),

where we use (RTLeib3). Analogously we obtain the second equality:

{m, ∂(m1 ~m2)} = m ⊗ [m1,m2] = [m,m1] ⊗m2 − [m,m2] ⊗m1

= [m,m1] ~m2 − [m,m2] ⊗m1 = m ·1 (m1 ~m2).

So, the following properties are immediate:

〈m, ∂(m1 ⊗m2)〉 = m ~ [m1,m2] = m ⊗ [m1,m2] = m ·1 (m1 ⊗m2),
〈m, ∂(m1 ~m2)〉 = m ~ [m1,m2] = m ⊗ [m1,m2] = m ·1 (m1 ~m2).

To finalize, we will prove (BLeib5), because, if it is satisfied; (BLeib6)–(BLeib8) will be fulfilled using the following
properties:

{m, [m′,m′′]} = m ⊗ [m′,m′′] = m ~ [m′,m′′] = 〈m, [m′,m′′]〉,
{[m,m′],m′′} = [m,m′] ⊗m′′ = [m,m′] ~m′′ = 〈[m,m′],m′′〉.

By using (RTLeib3), we have (BLeib5):

{m, [m′,m′′]} = m ⊗ [m′,m′′] = [m,m′] ⊗m′′ − [m,m′′] ⊗m′ = {[m,m′],m′′} − {[m,m′′],m′},

Remark 4.5. Note that the actions can be written with a simpler notation, given by

m ·1 (m1 ⊗m2) = m ·1 (m1 ~m2) = m ⊗ [m1,m2] = m ~ [m1,m2],
(m1 ⊗m2) ·2 m = (m1 ~m2) ·2 m = [m1,m2] ⊗m = [m1,m2] ~m.

Remark 4.6. Example 4.4 generalizes the Lie example, since if we have that m1 ~m2 = −m2 ⊗m1 as a new relation,
we obtain the Lie non-abelian tensor product of M with itself using the adjoint action.
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