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Abstract. This paper deals with the spectral inclusion properties of 2 × 2 operator matrices with un-
bounded entries in Hilbert space. The conditions for spectral inclusion by the quadratic numerical range
are described. In addition, some examples are given to illustrate the main results.

1. Introduction

Operator matrices arise in various areas of mathematics and mathematical physics such as elastic
mechanics and quantum mechanics. As a result, their spectral properties play an important role in reflecting
the time evolution and hence the stability of the underlying physical systems (see [1, 2]). Thus, many authors
are attracted to focus on the spectral properties of operator matrices (see [3–5] and the references there in).

As is known, for an operator T in Hilbert space, the spectrum σ(T) can be located by its numerical
range W(T). However, the numerical range can not provide an accurate description for the spectrum of an
operator T, if σ(T) consists of two separate parts. Therefore, the quadratic numerical range W2(M), which
gives a preferable characterization of the spectrum than the numerical range, was introduced in [5] for

operator matrix M =

(
A B
C D

)
. Note that H. Langer and C. Tretter proved in [5] that σp(M) ⊂ W2(M) and

σapp(M) ⊂W2(M) hold while diagonal entries A,D are densely defined closed and off-diagonal elements B,C
are bounded. After that H. Langer, A. Markus, V. Matsaev and C. Tretter verified in [6] that W2(M) ⊂W(M)
and σ(M) ⊂ W2(M) are true for bounded operator matrix M, and found that W2(M) may not be convex.
However, the spectral inclusion σ(M) ⊂W2(M) do not hold naturally for operator matrices with unbounded
entries. As follows, we provide a simple illustrating example.

Example 1.1. LetH = L2[0,∞), and let A = D = i
d

dx
: D(A) = D(D) = {u ∈ H : u is absolutely continuous,

u′ ∈ H ,u(0) = 0}. Consider the operator matrix M =

(
A 0
0 D

)
, and it is easy to see W2(M) ⊂ R since A and D
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are symmetric operators. On the other hand, through calculations we have σr(M) = σr(A) = {λ ∈ C : Imλ <
0}, and hence σ(M) 1W2(M).

Thus, assuming all entries A,B,C and D are unbounded, C. Tretter investigated the spectral inclusion of

M =

(
A B
C D

)
in [7], and proved the following conclusions:

(i) W2(M) ⊂W(M) and σp(M) ⊂W2(M) are still true.
(ii) If one of the following statements is satisfied:

(a) M is diagonally dominant of order 0;
(b) M is off-diagonally dominant of order 0 and B,C are boundedly invertible.

Then σapp(M) ⊂W2(M).

(iii) If one of the conditions (ii)(a) and (ii)(b) is fulfilled, and every component of C \W2(M) contains a
point µ ∈ ρ(M), then σ(M) ⊂W2(M).

Based on the above works, Y. Qi, J. Huang and A. Chen studied in [8] the spectral inclusion properties of

Hamiltonian operator matrix H =

(
A B
C −A∗

)
, and verified that σ(H) ⊂ W2(H) holds (the general 2 × 2 case)

under either of the following assumptions:
(i) H is diagonally dominant of order 0, andD(A) = D(A∗);
(ii) H is off-diagonally dominant of order 0,D(B) = D(C) and 0 < σp(B) ∩ σp(C).

In this paper, we will weaken the tight assumption in [7, 8] that the order of dominance is 0, and drop
the rigorous condition that imposed on the domain of dominant operators in [8]. It is one of our main
techniques to discuss the spectral inclusion properties on the core of dominant operators.

2. Preliminaries

Throughout this paper,H is always a complex Hilbert space.

Definition 2.1. (See [3, P.92]) Let T be a closable linear operator inH , then the resolvent set and the spectrum
of T are defined as

ρ(T) = {λ ∈ C : T − λ is an injection, (T − λ)−1 is bounded}, σ(T) = C \ ρ(T),

respectively, and the point spectrum σp(T), residual spectrum σr(T) and continuous spectrum σc(T) as

σp(T) = {λ ∈ C : T − λ is not an injection},

σr(T) = {λ ∈ C : T − λ is injective,R(T − λ) , H},

σc(T) = {λ ∈ C : T − λ is injective,R(T − λ) = H ,R(T − λ) , H}.

In addition, if T is a closed operator, then by the closed graph theorem, we have

ρ(T) = {λ ∈ C : T − λ is a bijection},

and hence
σ(T) = σp(T) ∪ σr(T) ∪ σc(T).

Beside, the set
σapp(T) = {λ ∈ C : ∃(vn)+∞

n=1 ⊂ D(T), ‖vn‖ = 1, (T − λ)vn → 0,n→∞}

is called the approximate point spectrum of T.
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Definition 2.2. (See [3, P.92–100]) Let T and S be operators with the same domain Banach spaceB such that

‖Sv‖ ≤ aS‖v‖ + bS‖Tv‖, v ∈ D(T), (1)

where aS, bS ≥ 0. Then we say that S is relatively bounded with respect to T (or T-bounded). The infimum δS of
all bS so that (1) holds for some aS is called relative bound of S with respect to T (or T-bound of S).

LetB1,B2 be Banach spaces. The operator matrix M =

(
A B
C D

)
in the product spaceB = B1⊕B2 is called

(i) diagonally dominant of order δ, if C is A-bounded with A-bound δC, B is D-bounded with D-bound δB,
and δ = max{δB, δC},

(ii) off-diagonally dominant of order δ, if A is C-bounded with C-bound δA, and D is B-bounded with
B-bound δD, and δ = max{δA, δD}.

Definition 2.3. (See [6, P.91]) LetH1, H2 be Hilbert spaces, and let M =

(
A B
C D

)
be a block operator matrix

withD(M) = D1 ⊕D2 := (D(A)∩D(C))⊕ (D(B)∩D(D)) inH1 ⊕H2. For f ∈ D1, 1 ∈ D2 with ‖ f ‖ = ‖1‖ = 1,
define the 2 × 2 complex matrix

M f ,1 =

(
(A f , f ) (B1, f )
(C f , 1) (D1, 1)

)
.

Then the set
W2(M) =

⋃
f∈D1,1∈D2,
‖ f ‖=‖1‖=1

σp(M f ,1)

is called the quadratic numerical range of M (with respect toH1 ⊕H2).

Definition 2.4. (See [9, P.166]) Let T : D(T) ⊂ H → H be a closed operator. If S : D(S) ⊂ H → H is a
closable operator and S = T, thenD(S) is called the core of T.

Proposition 2.5. (See [10, P.88]) Let T : D(T) ⊂ H → H be a closable linear operator, then

D(T) =

{
v ∈ H :

∃(vn) ⊂ D(T) such that vn → v
and for which (Tvn) is also convergent

}
,

Tv = lim
n→∞

Tvn, v ∈ D(T).

Lemma 2.6. (See [11, P.1132]) If T is a densely defined closed linear operator inH , then σ(T) ⊂W(T) holds
if and only if σr,1(T) ⊂W(T), where

σr,1(T) = {λ ∈ σr(T) : R(T − λ) is closed}.

Lemma 2.7. (See [9, P.190]) Let B1,B2 be Banach spaces, let T, S be linear operators from B1 to B2, and let
S be T-bounded with T-bounded < 1. Then T + S is closable if and only if so is T, andD(T + S) = D(T). In
particular, T + S is closed if and only if so is T.

Lemma 2.8. (See [12, P.524]) Let B1,B2 be Banach spaces, and let T : D(T) ⊂ B1 → B2 be densely defined
closed operator. Suppose S is a T-bounded operator such that S∗ is T∗-bounded with both relative bounds
smaller than one. Then T + S is closed and (T + S)∗ = T∗ + S∗.

Lemma 2.9. (See [4, P.919–920]) Let H =

(
A B
C −A∗

)
: D(H) ⊂ H ⊕H → H ⊕H be a symplectic self-adjoint

Hamiltonian operator matrix(i.e., (JH)∗ = JH holds with J =

(
0 I
−I 0

)
). Then σ(H), σp(H) ∪ σr(H) and σc(H)

are symmetric with respect to the imaginary axis, respectively.
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3. Main results

In this section, the spectral inclusion of the densely defined operator matrix

M =

(
A B
C D

)
: D(M) ⊂ H ⊕H → H ⊕H

is discussed. Here, if no other statement, A, B, C and D are densely defined closable operators inH .

First, we consider the upper-triangular operator matrix M =

(
A B
0 D

)
.

Theorem 3.1. Let M =

(
A B
0 D

)
: D(A) ⊕ D(D) → H ⊕H be a densely defined upper-triangular operator

matrix. If A and D are closed operators, σr,1(A) ⊂W(A) and σr,1(D) ⊂W(D) are satisfied, then

σ(M) ⊂W2(M).

Proof. From the Definition 2.3, we see that

W2(M) = W(A) ∪W(D).

On the other hand, it is easy to proof σ(M) ⊂ (σ(A) ∪ σ(D)). By Lemma 2.6, it follows from σr,1(A) ⊂
W(A)(resp. σr,1(D) ⊂W(D)) that σ(A) ⊂W(A)(resp. σ(D) ⊂W(D)), and hence

σ(M) ⊂ (σ(A) ∪ σ(D)) ⊂W(A) ∪W(D) = W2(M).

Corollary 3.2. Let M =

(
A B
0 D

)
: D(A) ⊕ D(D) → H ⊕H be a densely defined upper-triangular operator

matrix. If A and D are both self-adjoint operators, then

σ(M) ⊂W2(M).

Proof. Since A and D are self-adjoint operators, we have σr(A) = σr(D) = ∅. Thus σ(M) ⊂W2(M) by Theorem
3.1.

Next, we discuss the spectral inclusion of general operator matrix M =

(
A B
C D

)
.

Theorem 3.3. Let M =

(
A B
C D

)
be a densely defined operator matrix inH ⊕H . Then

(I) Assume that M is diagonally dominant with order δ < 1, A and D are closed operators. IfD(A)∩D(D)
is a core of A and D, and every component of C \W2(M) contains a point µ ∈ ρ(M), then

σ(M) ⊂W2(M).

(II) Assume that M is off-diagonally dominant with order δ < 1, B and C are closed operators. If
D(B) ∩D(C) is a core of B and C, and every component of C \W2(M) contains a point µ ∈ ρ(M), then

σ(M) ⊂W2(M).
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Proof. According to [3, Theorem 1.3.1], σ(M) ⊂ W2(M) holds immediately in finite dimensional Hilbert
space H ⊕H . Hence, we only need to discuss in the infinite dimensional space. Here, we prove (I), the
proof of (II) is analogous.

Since A, D are closed operators and M is diagonally dominant with order δ < 1, we decompose M as
M = T + S, where

T =

(
A 0
0 D

)
and S =

(
0 B
C 0

)
.

Then, T is closed and S is T bounded with T-bound < 1, clearly. Hence, M is closed by Lemma 2.7.
We claim that

σapp(M) ⊂W2(M). (2)

To this end, let λ0 ∈ σapp(M), then there exists (vn)∞n=1 = (( fn 1n)t)∞n=1 ⊂ D(M) with ‖ fn‖2 + ‖1n‖
2 = 1 such that

(M − λ0)vn → 0 (n→∞). (3)

WriteD0 = D(A) ∩D(D), and thenD = D0 ⊕D0 is a core of M clearly. SinceD is a core of M, according to
Proposition 2.5, for each vn = ( fn 1n)t

∈ D(M), there exists (v(k)
n )∞k=1 = (( f (k)

n 1
(k)
n )t)∞k=1 ⊂ Dwith ‖ f (k)

n ‖
2+‖1(k)

n ‖
2 =

1 such that
v(k)

n → vn (k→∞), Mv(k)
n →Mvn (k→∞).

In each sequence (v(k)
n )∞k=1(n ∈ N), we choose an element v(n)

n = ( f (n)
n 1

(n)
n )t
∈ (v(k)

n )∞k=1, then get a sequence
(v(n)

n )∞n=1 = (( f (n)
n 1

(n)
n )t)∞n=1 with ‖ f (n)

n ‖
2 + ‖1(n)

n ‖
2 = 1, and it follows from (3) that

(M − λ0)v(n)
n → 0 (n→∞), (4)

i.e.,

(A − λ0) f (n)
n + B1(n)

n := h(n)
n → 0,

C f (n)
n + (D − λ0)1(n)

n := k(n)
n → 0,

(n→∞). (5)

As follows, we discuss in three cases.
Case 1: lim inf

n→∞
‖ f (n)

n ‖ > 0 and lim inf
n→∞

‖1
(n)
n ‖ > 0. Without loss of generality, we may assume ‖ f (n)

n ‖ >

0, ‖1(n)
n ‖ > 0 (n ∈N). It follows from (5) that

(A f (n)
n , f (n)

n )

( f (n)
n , f (n)

n )
− λ0 +

(B1(n)
n , f (n)

n )

( f (n)
n , f (n)

n )
=

(h(n)
n , f (n)

n )

( f (n)
n , f (n)

n )
, (6)

(C f (n)
n , 1(n)

n )

(1(n)
n , 1

(n)
n )

+
(D1(n)

n , 1
(n)
n )

(1(n)
n , 1

(n)
n )
− λ0 =

(k(n)
n , 1

(n)
n )

(1(n)
n , 1

(n)
n )
. (7)

Let

dn(λ) = det


(A f (n)

n , f (n)
n )

( f (n)
n , f (n)

n )
− λ

(B1(n)
n , f (n)

n )

( f (n)
n , f (n)

n )
(C f (n)

n , 1(n)
n )

(1(n)
n , 1

(n)
n )

(D1(n)
n , 1

(n)
n )

(1(n)
n , 1

(n)
n )
− λ

 = det


(A f (n)

n , f (n)
n )

( f (n)
n , f (n)

n )
− λ

(B1(n)
n , f (n)

n )

‖ f (n)
n ‖‖1

(n)
n ‖

(C f (n)
n , 1(n)

n )

‖ f (n)
n ‖‖1

(n)
n ‖

(D1(n)
n , 1

(n)
n )

(1(n)
n , 1

(n)
n )
− λ

 .
As dn(λ) is a monic quadratic polynomial, we can write

dn(λ) = (λ − λ1
n)(λ − λ2

n),
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where λ1
n, λ

2
n are the solutions of the quadratic equation dn(λ) = 0, and hence λ1

n, λ
2
n ∈ W2(M|D). Substitute

(6) and (7) into the first column of dn(λ0), then

dn(λ0) = det


(h(n)

n , f (n)
n )

( f (n)
n , f (n)

n )

(B1(n)
n , f (n)

n )

( f (n)
n , f (n)

n )
(k(n)

n , 1
(n)
n )

(1(n)
n , 1

(n)
n )

(D1(n)
n , 1

(n)
n )

(1(n)
n , 1

(n)
n )
− λ0

 .

Since M is diagonally dominant of order δ < 1, the operator S =

(
0 B
C 0

)
is M-bounded. From (4), it follows

that (Sv(n)
n )∞n=1 and hence (B1(n)

n )∞n=1, (C f (n)
n )∞n=1 are bounded, which together with (5) implies ((D − λ0)1(n)

n )∞n=1

is bounded as well. Hence, the facts h(n)
n → 0 (n → ∞) and k(n)

n → 0 (n → ∞) imply dn(λ0) → 0 (n → ∞),
and thus λ1

n → λ0 or λ2
n → λ0 (n→∞). Therefore, λ0 ∈W2(M|D) and hence λ0 ∈W2(M).

Case 2: lim inf
n→∞

‖1
(n)
n ‖ = 0. It follows from ‖ f (n)

n ‖
2 + ‖1(n)

n ‖
2 = 1 that lim inf

n→∞
‖ f (n)

n ‖ > 0. Without loss of

generality, we assume lim
n→∞
1

(n)
n = 0, ‖ f (n)

n ‖ > γ (n ∈ N) for some γ ∈ (0, 1]. Since C f (n)
n ∈ H (n ∈ N) and

dimH = ∞, there exists zn ∈ D(D), zn , 0 (n ∈ N) such that (C f (n)
n , zn) = 0 (n ∈ N). Let λn =

(A f (n)
n , f (n)

n )

( f (n)
n , f (n)

n )
,

then

det


(A f (n)

n , f (n)
n )

( f (n)
n , f (n)

n )
− λn

(Bzn, f (n)
n )

‖zn‖‖ f (n)
n ‖

(C f (n)
n , zn)

‖ f (n)
n ‖‖zn‖

(Dzn, zn)
(zn, zn)

− λn

 = det


0

(Bzn, f (n)
n )

‖zn‖‖ f (n)
n ‖

0
(Dzn, zn)
(zn, zn)

− λn

 = 0,

and hence λn ∈W2(M). It follows from (6) that

λ0 = λn +
(B1(n)

n , f (n)
n )

( f (n)
n , f (n)

n )
−

(h(n)
n , f (n)

n )

( f (n)
n , f (n)

n )
.

From 1(n)
n → 0 (n → ∞) and D0 is a core of D, it follows that D1(n)

n → 0 (n → ∞). As B is D-bounded,
we have B1(n)

n → 0 (n → ∞), which combing with h(n)
n → 0 (n → ∞) imply λn → λ0 (n → ∞), and thus

λ0 ∈W2(M).
Case 3: lim inf

n→∞
‖ fn‖ = 0. This case can be treated analogously, if we see that C is A-bounded andD0 is a

core of A. Then, the proof of claim (2) is completed.
Besides, according to [9, Theorem V.3.2], for λ ∈ C \ σapp(M), R(M − λ) is closed and the mapping

λ→ dimR(M − λ)⊥ is a constant on every component of C \ σapp(M). Thus, by (2), the same is true on each
component of C \W2(M) ⊂ C \ σapp(M). It follows that R(M − λ) = H ⊕ H holds for all λ ∈ C \W2(M).
Therefore, we obtain C \W2(M) ⊂ ρ(M), and hence σ(M) ⊂W2(M).

Theorem 3.4. Let M =

(
A B
C D

)
be a densely defined operator matrix in H ⊕H . Assume that A is closed,

B and C are both self-adjoint or both anti-self-adjoint operators(i.e., B∗ = −B and C∗ = −C), and D = ±A∗.
Then

(I) If M is diagonally dominant with order δ < 1, andD(A) ∩D(D) is a core of A and D, then

σ(M) ⊂W2(M).

(II) If M is off-diagonally dominant with order δ < 1, andD(B) ∩D(C) is a core of B and C, then

σ(M) ⊂W2(M).
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Proof. We only need to prove (II), the proof of (I) is analogous.
WriteD0 = D(B) ∩D(C), and we claim that

W2(M) = W2(M|D), (8)

where D = D0 ⊕ D0. It suffices to show W2(M) ⊂ W2(M|D). To this end, let λ ∈ W2(M). Then, there exists
( f 1)t

∈ D(M) = D(C) ⊕D(B) with ‖ f ‖ = ‖1‖ = 1 such that

det(M f ,1 − λ) = det
(
(A f , f ) − λ (B1, f )

(C f , 1) (D1, 1) − λ

)
= 0,

and hence λ has one of the following expressions:

λ± =
1
2

(
(A f , f ) + (D1, 1) ±

√(
(A f , f ) − (D1, 1)

)2 + 4(B1, f )(C f , 1)
)
.

SinceD0 is a core of B and C, there are two sequences ( f̂n)∞n=1 and (1̂n)∞n=1 inD0 such that

f̂n → f (n→∞), C f̂n → C f (n→∞),
1̂n → 1 (n→∞), B1̂n → B1 (n→∞).

Obviously, ‖ f̂n‖ → 1 (n→ ∞), ‖1̂n‖ → 1 (n→ ∞). We may assume f̂n , 0, 1̂n , 0, and let fn = f̂n/‖ f̂n‖, 1n =
1̂n/‖1̂n‖, then ‖ fn‖ = ‖1n‖ = 1 and

fn → f (n→∞), C fn → C f (n→∞),
1n → 1 (n→∞), B1n → B1 (n→∞).

Since A is C-bounded and D is B-bounded, we see that (A fn)∞n=1 and (D1n)∞n=1 are both Cauchy sequences.
From the closedness of A and D, it follows that

A fn → A f (n→∞), D1n → D1 (n→∞).

Hence
(A fn, fn) + (D1n, 1n)→ (A f , f ) + (D1, 1) (n→∞), ∆n → ∆ (n→∞),

where

∆n = ((A fn, fn) − (D1n, 1n))2 + 4(B1n, fn)(C fn, 1n),
∆ = ((A f , f ) − (D1, 1))2 + 4(B1, f )(C f , 1).

Thus

λ±n =
1
2

((A fn, fn) + (D1n, 1n) ±
√

∆n)→ λ± (n→∞).

In other words, λ ∈W2(M|D). This proves (8).
Next, we show that D = ±A∗ implies

λ ∈W2(M) ⇐⇒ ±λ ∈W2(M). (9)

To this end, we prove

λ ∈W2(M|D) ⇐⇒ ±λ ∈W2(M|D). (10)
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In fact, since D = ±A∗, for each ( f 1)t
∈ D = D0 ⊕D0 with ‖ f ‖ = ‖1‖ = 1, we have

det(M f ,1 − λ)

= det
(
(A f , f ) − λ (B1, f )

(C f , 1) (D1, 1) − λ

)
= det

(
(A f , f ) − λ (B1, f )

(C f , 1) (±A∗1, 1) − λ

)
= det

(
(A∗1, 1) ∓ λ (C f , 1)

(B1, f ) (±A f , f ) ∓ λ

)
. (11)

On the other hand, since M is off-diagonally dominant with order δ < 1, we decompose M as M = T + S,
where

T =

(
A 0
0 D

)
and S =

(
0 B
C 0

)
.

Then, T is S bounded and S-bound < 1, and thus it is easy to see that T∗ is S∗ bounded and S∗-bound < 1
since D = ±A∗, B and C are both self-adjoint or anti-self-adjoint. By Lemma 2.8, we have

(T + S)∗ = T∗ + S∗,

and thus D = A∗(resp. D = −A∗) implies

M∗ = JMJ (12)

with J =

(
0 I
I 0

)
(resp. J =

(
0 I
−I 0

)
). Hence, combing (11) and (12), we obtain

λ ∈W2(M|D) ⇐⇒ ±λ ∈W2(M∗|D).

Then it follows from

(M f ,1)∗ =

(
(A f , f ) (B1, f )
(C f , 1) (D1, 1)

)∗
=

(
(A f , f ) (B1, f )
(C f , 1) (±A∗1, 1)

)∗
=

(
(A f , f ) (C f , 1)
(B1, f ) (±A∗1, 1)

)
=

(
(A∗ f , f ) (±C1, f )
(±B f , 1) (±A1, 1)

)
= (M∗|D f ,1 )

that W2(M|D)∗ = W2(M∗|D), and hence (10) holds. Combing with (8), we see (9) is true. It means that
D = A∗(resp. D = −A∗) implies W2(M) is symmetric with respect to the real axis(resp. imaginary axis).

Similarly as proof in Theorem 3.3, the order of the dominance δ < 1 implies M is a closed operator.
Besides, by Lemma 2.9 and (12), from D = A∗(resp. D = −A∗), it is easy to see that σ(M), σp(M) ∪ σr(M)
and σc(M) are symmetric with respect to the real axis(resp. the imaginary axis), respectively. According to
Theorem 3.3, we have σapp(M) ⊂W2(M), and thus (σp(M) ∪ σc(M)) ⊂ σapp(M) ⊂W2(M). Since σp(M) ∪ σr(M)
and W2(M) have the same symmetric property, we see that (σp(M) ∪ σr(M)) ⊂ W2(M). Therefore, σ(M) ⊂
W2(M).

Finally, based on the results obtained above, we discuss some refined spectral distribution of operator

matrix M =

(
A B
C D

)
.

Lemma 3.5. (See [7, P.3821]) Let M =

(
a b
c d

)
be a matrix with a, b, c, d ∈ C, then the eigenvalues λ1, λ2 of M

have the following properties:
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(i) If Red < 0 < Rea and bc ≥ 0, then Reλ2 ≤ Red < 0 < Rea ≤ Reλ1.
(ii) If Red < Rea and bc ≤ 0, then

(a) Red ≤ Reλ2 ≤ Reλ1 ≤ Rea,
(b) Reλ2 ≤ Red +

√
|bc| < Rea −

√
|bc| ≤ Reλ1 if

√
|bc| < (Rea − Red)/2, and λ1, λ2 ∈ R if, in addition,

a, d ∈ R.
(c) Reλ1 = Reλ2 = (a + d)/2, |Imλ1| = |Imλ2| =

√
|bc| − (a − d)2/4 if

√
|bc| ≥ (a − d)/2 and a, d ∈ R.

Theorem 3.6. Let M =

(
A B
C D

)
be a densely defined operator matrix in H ⊕H , where A is closed, B and

C are both self-adjoint or both anti-self-adjoint operators, and D = ±A∗. Assume that one of the following
assumptions is fulfilled:

(a) M is diagonally dominant with order δ < 1, andD(A) ∩D(D) is a core of A and D.
(b) M is off-diagonally dominant with order δ < 1, andD(B) ∩D(C) is a core of B and C.
Denote by D0 the subspace D(A) ∩D(D) (resp. D(B) ∩D(C)) in Case (a) (resp. in Case (b)), and write

the sector
Σω = {reiφ : r ≥ 0, |φ| ≤ ω}

for ω ∈ [0, π). Then the following statements hold:
(I) If C ⊂ γB with γ > 0 and there exist δ > 0 and θ ∈ [0, π/2] such that

W(A|D0 ) ⊂ {z ∈ Σθ : Rez ≥ δ},

then
σ(M) ⊂ {z ∈ −Σθ : Rez ≤ −δ} ∪ {z ∈ Σθ : Rez ≥ δ}.

(II) If C ⊂ γB with γ < 0 and A is self-adjoint, then we have
(i′) In Case (b), if A is bounded, we define

α = inf W(A), β = sup W(A),

then

σ(M) ∩R ⊂ [α,∞), σ(M) \R ⊂ {z ∈ C :
α + β

2
≤ Rez};

(ii′) In Case (a), if B,C are bounded, then C = γB and

σ(M) \R ⊂ {z ∈ C : |Imz| ≤ max{‖B‖, ‖C‖}}.

Proof. According to Theorem 3.4, either of the assumptions (a) and (b) implies that (8) holds and hence
σ(M) ⊂W2(M|D) withD = D0 ⊕D0. Replacing M by M f ,1 in Lemma 3.5 (i) yields

σp(M f ,1) ⊂ {z ∈ −Σθ : Rez ≤ −δ} ∪ {z ∈ Σθ : Rez ≥ δ}

for all ( f 1)t
∈ Dwith ‖ f ‖ = ‖1‖ = 1. Thus

σ(M) ⊂W2(M|D) ⊂ {z ∈ −Σθ : Rez ≤ −δ} ∪ {z ∈ Σθ : Rez ≥ δ}.

This proves (I).
Next we prove (II). Since A is self-adjoint, Lemma 3.5 (ii), applied to the 2 × 2 matrices M f ,1, implies

that the desired inclusions hold with W2(M) instead of σ(M). This proves (i′). If B,C are bounded, then we
consider the block operator matrices

T =

(
A 0
0 ±A∗

)
, S =

(
0 B
C 0

)
.

In view of T is self-adjoint and S is bounded, we see that M is a bounded perturbation of the self-adjoint
operator T. Since ‖S‖ ≤ max{‖B‖, ‖C‖}, the claim (ii′) follows from standard perturbation theorems (see [9,
Problem V.4.8]).
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4. Example

Example 4.1. LetH = L2(−∞,+∞). Consider the operator matrix

M =

(
A B
0 D

)
=


d2

dt2 i
d
dt

0 −
d2

dt2

 : D(M) = D(A) ⊕D(D) ⊂ H ⊕H → H ⊕H ,

where

D(A) = D(D) = {v ∈ H : v′, v′′ ∈ H , v′ is absolutely continuous},
D(B) = {v ∈ H : v′ ∈ H , v is absolutely continuous}.

It is easy to see that A and D are self-adjoint operators, and thus σ(M) ⊂W2(M) holds by Corollary 3.1.
On the other hand, the self-adjointness of A implies σ(A) ⊂ W(A) ⊂ R. Hence, from W2(M) = W(A) ∪

W(D), it follows that W2(M) is symmetric with respect to the imaginary axis, and

σ(M) ⊂ (σ(A) ∪ σ(D)) ⊂W2(M) ⊂ R.

Example 4.2. LetH = L2(0, 1). Investigate the operator matrix

M =

(
A B
C D

)
=


d2

dx2

d2

dx2 − I

−
d2

dx2 −
d2

dx2

 : D(M) = D(C) ⊕D(B) ⊂ H ⊕H → H ⊕H ,

where

D(A) = D(B) = D(C) = D(D) =

{
v ∈ H :

v′, v′′ ∈ H , v′ is absolutely continuous,
and v(0) = v(1) = 0

}
.

Obviously, M satisfies the conditions of Theorem 3.4, and hence σ(M) ⊂W2(M) holds.
On the other hand, through direct calculations, we will show the result is correct.
First, it is easy to see that C is boundedly invertible. Then, according to [3, Definition 2.3.1 and Theorem

2.3.7], the resolvent set and spectrum of M can be characterized by the quadratic complement T2(λ), here

T2(λ) = B − (A − λ)C−1(D − λ)

=
d2

dx2 − I − (
d2

dx2 − λ)(−
d2

dx2 )−1(−
d2

dx2 − λ)

=
d2

dx2 − I − (
d2

dx2 − λ)(I + λ(
d2

dx2 )−1)

=
d2

dx2 − I −
d2

dx2 + λ2(
d2

dx2 )−1

= λ2(
d2

dx2 )−1
− I, λ ∈ C.

We consider the equation T2(λ)v = 0, v ∈ D(B), i.e.,

λ2(
d2

dx2 )−1v − v = 0. (13)
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Let ṽ = (
d2

dx2 )−1v, then v = ṽ′′, and (13) turns into

d2ṽ
dx2 − λ

2ṽ = 0. (14)

From v ∈ D(B), it follows that ṽ(0) = ṽ(1) = 0 and ṽ′′(0) = ṽ′′(1) = 0. Since C is boundedly invertible,
ṽ(0) = ṽ(1) = 0 implies ṽ′′(0) = ṽ′′(1) = 0, and thus we ignore the latter. Then, solving the equation (14), we
see that (13) has non-zero solutions if and only if λ = ±kπi (k = 1, 2, . . . ). Thus,

σp(M) = σp(T2(λ)) = {λ ∈ C : λ = ±kπi, k = 1, 2, . . . }.

Clearly, if λ , ±kπi (k = 1, 2, . . . ), bounded linear operator T2(λ) is a bijection. Hence,

ρ(M) = ρ(T2(λ)) = {λ ∈ C : λ , ±kπi, k = 1, 2, . . . },

and thus σ(M) = σp(M).
Besides, by Definition 2.3, for each λ ∈ W2(M), there exist ( f 1)t

∈ D(M) with ‖ f ‖ = ‖1‖ = 1 such that
the quadratic equation

det(λ) : = det
(
(A f , f ) − λ (B1, f )

(C f , 1) (D1, 1) − λ

)
(15)

=
(
(A f , f ) − λ

)(
(D1, 1) − λ

)
− (B1, f )(C f , 1)

=
(
( f ′′, f ) − λ

)(
(−1′′, 1) − λ

)
− (1′′ − 1, f )(− f ′′, 1)

= λ2 +
(
(1′′, 1) − ( f ′′, f )

)
λ +

(
( f ′′, 1)(1′′, f ) − ( f ′′, 1)(1, f ) − ( f ′′, f )(1′′, 1)

)
= 0

holds. And, through calculations, we see that the eigenvalues and the corresponding eigenfunctions of
operator A are

τk = −k2π2, ξk =
√

2 sin kπx (k = 1, 2, 3, . . . ).

Thus, taking
fk = 1k = ξk/‖ξk‖ = sin kπx/‖ sin kπx‖ (k = 1, 2, 3, . . . )

in (15), we have
λ2

k = ( f ′′k , fk) = τk( fk, fk) = −k2π2 (k = 1, 2, 3, . . . ),

and hence λk = ±kπi (k = 1, 2, 3, . . . ). Therefore, the conclusion σ(M) ⊂W2(M) is true.
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