Filomat 34:4 (2020), 1261–1270 https://doi.org/10.2298/FIL2004261M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Systems of *k* Boolean Inequations and a Boolean Equation

Ulfeta Marovac^a, Dragić Banković^a

^aUniversity of Novi Pazar, Department of Mathematics, Vuka Karadžića bb, 36300 Novi Pazar, Serbia

Abstract. In this paper elementary generalized systems of Boolean equations are investigated. The formula for solving systems of *k* Boolean inequations and a Boolean equation is presented. This systems have many applications in computer science for solving logical problems. Presented formulas can accelerate application of elementary generalized systems of Boolean equations.

1. Introduction

The study of Boolean equations in arbitrary Boolean algebras began with Bool, Schröder and Löwenheim. The basic facts and various forms of solutions of Boolean equations can be found in Rudeanu's books [5],[6]. Let $(B, \cap, \cup, ', 0, 1)$ be a Boolean algebra and n be a natural number.

 $x^1 = x, \qquad x^0 = x'.$

Definition 1.1. *Let* $x \in B$ *. Then*

If $X = (x_1, ..., x_n) \in B^n$ and $A = (a_1, ..., a_n) \in \{0, 1\}^n$ then

 $X^A = x_1^{a_1} \cap \cdots \cap x_n^{a_n}.$

In the sequel \cap will be omitted. For the following definitions and theorems, see e.g. Rudeanu [5].

Definition 1.2. *The Boolean functions of n variables (BF n) over the Boolean algebra* $(B, \cup, \cdot, ', 0, 1)$ *are determined by the following rules:*

0) For every $a \in B$, constant function $f_a : B^n \to B$ defined by

$$f_a(x_1,\ldots,x_n)=a \ (\forall x_1,\ldots,x_n\in B)$$

is a BF n.

1) For every i = 1, 2, ..., n, the projection function $\varepsilon_i : B^n \to B$ defined by

$$\varepsilon_i(x_1,\ldots,x_n)=x_i \ (\forall x_1,\ldots,x_n\in B)$$

²⁰¹⁰ Mathematics Subject Classification. Primary 06E30

Keywords. Boolean algebra, the generalized systems of Boolean equations, general solution

Received: 03 March 2017; Accepted: 22 February 2020

Communicated by Dragan S. Djordjević

Research partially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Projects No. III-44007

Email addresses: umarovac@np.ac.rs (Ulfeta Marovac), bankovicdragic@gmail.com (Dragić Banković)

is a BF n.

2) If $f, g: B^n \to B$ are BF n, then the functions $f \cup g, fg, f': B^n \to B$ defined by

$$(f \cup g)(x_1, \dots, x_n) = f(x_1, \dots, x_n) \cup g(x_1, \dots, x_n) (\forall x_1, \dots, x_n \in B)$$

$$(fg)(x_1, \dots, x_n) = f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n) (\forall x_1, \dots, x_n \in B),$$

$$f'(x_1, \dots, x_n) = (f(x_1, \dots, x_n))' (\forall x_1, \dots, x_n \in B)$$

are BF n.

3) Any BF n is obtained by applying the rules 0), 1) and 2) a finite number of times.

Theorem 1.3. (Corollary 1 in [5]) The function $f : B^n \to B$ is Boolean if and only if it can be written in the canonical disjunctive form

$$f(X) = \bigcup_A f(A)X^A.$$

A Boolean equation in *n* unknown is an equation of the form

$$f(X) = q(X),$$

where $f, g: B^n \to B$ are Boolean function.

Theorem 1.4. (*Theorem 2.1 in [5]*) Every Boolean equations is equivalent to a single Boolean equation of the form f(X)=0.

Theorem 1.5. (*Theorem 1.5,*(1.52) in [5]) Let $x_1, ..., x_n, a_c, b_c(C \in \{0, 1\}^n \subseteq B^n)$ be elements of a Boolean algebra $(B, \cup, \cdot, ', 0, 1)$; put $X = (x_1, x_2, ..., x_n)$. The following relation holds:

 $(\bigcup_c a_c X^c)(\bigcup_c b_c X^c) = (\bigcup_c a_c b_c X^c).$

2. Generalized systems of Boolean equations

Definition 2.1. *The generalized systems of Boolean equations (GSBE's for short) over a Boolean algebra are defined recursively as follows:*

(*i*) every Boolean equation f(X) = 0 is a GSBE;

(ii) the negation, logical conjunction and logical disjunction of any GSBE's is a GSBE;

(iii) every GSBE is obtained by applying rules (i) and (ii) finitely many times.

Definition 2.2. Let $S(x_1, ..., x_n)$ denote a GSBE whose (free!) variables belong to the set $\{x_1, ..., x_n\}$. By a solution of $S(x_1, ..., x_n)$ is meant any vector $(a_1, ..., a_n) \in B^n$ such that the statement $S(a_1, ..., a_n)$ obtained by replacing each x_i by a_i is true. A GSBE which has solutions is said to be consistent or satisfiable. Two GSBE's $S(x_1, ..., x_n)$ and $T(x_1, ..., x_n)$ are said to be equivalent provided they have the same set of solutions.

Definition 2.3. An elementary GSBE is either a Boolean equation f(X) = 0 or the system of the form

(1)
$$f_1(X) \neq 0 \land \cdots \land f_k(X) \neq 0$$

or of the form

(2)
$$g(X) = 0 \wedge f_1(X) \neq 0 \wedge \cdots \wedge f_k(X) \neq 0.$$

If k = 1 then the GSBE is atomic. An atomic GSBE of the form $f(X) \neq 0$ will be called a Boolean inequation. The problem of solving GSBE's reduces to a particular case of it.

The previous definitions and more on generalized systems of Boolean equations can be found in Rudeanu [6]. The problem of solving GSBE's is not completely solved. In the sequel we describe all solutions of elementary GSBE's.

3. Boolean equations

To solve a Boolean equation f(X) = 0 means to determine all $X \in B^n$ such that f(X) = 0 holds i.e. to determine the set $S = \{X | f(X) = 0 \land X \in B^n\}$.

Theorem 3.1. (Theorem 2.3 in [5]) Let $f : B^n \to B$ be a Boolean function. The equation f(X) = 0 has a solution if and only if

$$\prod_{A} f(A) = 0$$

Let $T = (t_1, \ldots, t_n) \in B^n$.

Definition 3.2. Let $f, F_1, \ldots, F_n : B^n \to B$ be Boolean functions and $F = (F_1, \ldots, F_n)$. The formula X = F(T),

or in scalar form

$$x_i = F_i(t_1, \dots, t_n), \quad (i = 1, \dots, n)$$

expresses a general solution of the Boolean equation $f(X) = 0$ if and only if, for every $X \in B^n$,
 $f(X) = 0 \Leftrightarrow (\exists T)X = F(T).$

Definition 3.3. Let $f, F_1, \ldots, F_n : B^n \times B^m \to B$ be Boolean functions and $F = (F_1, \ldots, F_n)$. The formula

$$X = F(T, Y),$$

or in scalar form

$$x_i = F_i(t_1, ..., t_n, Y), \quad (i = 1, ..., n)$$

expresses a general solution of the Boolean equation f(X, Y) = 0 *by* X *if and only if, for every* $X \in B^n$ *and every* $Y \in B^m$ *,*

$$f(X,Y) = 0 \Leftrightarrow (\exists S \in B^n) f(S,Y) = 0 \land (\exists T \in B^n) X = F(T,Y).$$

In accordance with Theorem 3.1. the previous formula can be written as

$$f(X,Y) = 0 \Leftrightarrow \prod_{A} f(A,Y) = 0 \land (\exists T \in B^{n})X = F(T,Y).$$

Lemma 3.4. (Lemma 2.2 in [5]). Suppose that the equation

 $ax \cup bx' = 0$

has a solution (ab = 0). Then

(3)
$$ax \cup bx' = 0 \Leftrightarrow (\exists t)(x = a't \cup bt')$$

$$ax \cup bx' = 0 \Leftrightarrow b \le x \le a'$$

for all $x \in B$.

Theorem 3.5. (Theorem 3. in [1]) Let $f : B^n \to B$ be a Boolean function. If f(X) = 0 is consistent then, for every $X \in B^n$

$$f(X) = 0 \Leftrightarrow (\exists T) X = \bigcup_{i=0}^{n} (f'(A_i)A_i \cup f(A_i)f'(A_{i_1})A_{i_1} \cup f(A_i)f(A_{i_1})f'(A_{i_2})A_{i_2}) \\ \cup \dots \cup f(A_i)f(A_{i_1})f(A_{i_2}) \cdots f(A_{i_{k-1}})f'(A_{i_k})A_{i_k})T^{A_i}$$

where, for every $i \in \{0, 1, ..., k\}$ *,* $A_i, A_{i_1}, ..., A_{i_k}$ *is a permutation of* $\{0, 1\}^n$ *.*

4. Systems of Boolean inequations

We shall use the following obvious equivalence

(5)
$$f(X) \neq 0 \Leftrightarrow (\exists p)(p \neq 0 \land f(X) = p)$$

Let $f : B^n \to B$ be a Boolean function. The relation

$$f(X) \neq 0$$

is called a Boolean inequation. To solve a Boolean inequation $f(X) \neq 0$ means to determine all $X \in B^n$ such that $f(X) \neq 0$ holds.

Theorem 4.1. (*Remark* 10.5 in [5]) Let $f : B^n \to B$ be a Boolean function. The inequation $f(X) \neq 0$ has a solution if and only if $\bigcup_A f(A) \neq 0$.

Theorem 4.2. (*Theorem 5 in* [2]) Let $f : B^n \to B$ be a Boolean function. Then

$$f(X) \neq 0 \Leftrightarrow (\exists p)(p \neq 0 \land \bigcup_{A} ((f(A) + p)X^{A}) = 0).$$

Theorem 4.3. (*Theorem 6 in* [2]) Let $f : B^n \to B$ be a Boolean function. Suppose that the inequation $f(X) \neq 0$ has a solution. Let $X = \Phi(T, p)$ expresses the general solution of the equation

$$\bigcup_{A} ((f(A) + p)X^A) = 0.$$

Then, for every $X \in B^n$,

$$f(X) \neq 0 \Leftrightarrow (\exists p)(\exists T)(p \neq 0 \land \prod_{A} f(A) \le p \le \bigcup_{A} f(A) \land X = \Phi(T,p)).$$

Lemma 4.4. (Lemma 4 in [7]) Let $f_1, \ldots, f_k : B^n \to B$ be Boolean functions. Then the equation

(6)
$$\prod_{A} ((f_1(A) + p_1) \cup \dots \cup (f_k(A) + p_k)) = 0$$

in p_1, \ldots, p_k has a solution.

Theorem 4.5. (*Theorem 11 in* [7]) Let $f_1, \ldots, f_k : B^n \to B$ be Boolean function. Then

$$f_1(X) \neq 0 \land \dots \land f_k(X) \neq 0 \Leftrightarrow$$
$$(\exists p_1) \cdots (\exists p_k) (\exists T) (p_1 \neq 0 \land \dots \land p_k \neq 0 \land X = \Phi(p_1, \dots, p_k, T)$$
$$\land \prod_A f_1(A) \leq p_1 \leq \bigcup_A f_1(A)$$
$$\land p_1 \prod_A (f_1'(A) \cup f_2(A)) \cup p_1' \prod_A (f_1(A) \cup f_2(A))$$
$$\leq p_2 \leq p_1 \bigcup_A (f_1(A) f_2(A)) \cup p_1' \bigcup_A (f_1'(A) f_2(A))$$

$$\bigcup_{C_{k-1}\in\{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \prod_A (f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k(A))$$

$$\leq p_k \leq \bigcup_{C_{k-1}\in\{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \bigcup_A (f_1^{c_1}(A) \cdots f_{k-1}^{c_{k-1}}(A) f_k(A))),$$

where $X = \Phi(p_1, ..., p_k, T)$ expresses the general solution of the equation

 $(f_1(X)+p_1)\cup\ldots\cup(f_k(X)+p_k)=0.$

5. Systems of k Boolean inequations and a Boolean equation

In this section we shall consider the system

(2)
$$g(X) = 0 \land f_1(X) \neq 0 \land \dots \land f_k(X) \neq 0$$

where $g, f_1, \ldots, f_k : B^n \to B$ are Boolean functions. When k=1 then

(7)
$$q(X) = 0 \land f(X) \neq 0.$$

Schröder give the condition of the consistency of the system (7). This condition can be found in [6].

Theorem 5.1. (Proposition 10.1. in [6]) System (7) has solution if and only if

(8)
$$\prod_{A} g(A) = 0 \land \bigcup_{A} f(A)g'(A) \neq 0$$

Banković describe all solutions of the system (7) when the system is consistent.

Theorem 5.2. (*Theorem 9 in* [3]) Let $g, f : B^n \to B$ be Boolean functions. Suppose that the system

$$g(X) = 0 \land f(X) \neq 0$$

has solution i.e.

$$\prod_{A} g(A) = 0 \land \bigcup_{A} f(A)g'(A) \neq 0$$

Let $X = \Phi(T, p)$ *expresses the general solution of the equation*

$$(f(X) + p) \cup g(X) = 0.$$

Then for every $X \in B^n$,

$$g(X) = 0 \land f(X) \neq 0 \Leftrightarrow$$
$$(\exists p)(\exists T)(p \neq 0 \land \prod_{A} (f(A) \cup g(A)) \le p \le \bigcup_{A} f(A)g'(A) \land X = \Phi(T, p)).$$

. .

Marriott and Odersky determinated satisfiability of system (2) in [8]. They applied this sistem for query optimization in databases [9]. These results are presented in [6].

Theorem 5.3. (Proposition 5.5 in [6]) Suppose $g, f_1 \dots f_k$ are single Boolean fuctions and $card(B) \ge 2^{k-1}$. Then the following conditions are equivalent:

- 1. $g(X) = 0 \land f_1(X) \neq 0 \land \cdots \land f_k(X) \neq 0$ is satisfiable;
- 2. each atomic GSBE $g(X) = 0 \land f_i(X) \neq 0$ (i = 1...k) is satisfiable;
- 3. each negated Boolean equation $f_i(X) \not\leq g(X)$ (i = 1...k) is satisfiable;
- 4. $\bigvee_A g'(A) f_i(A) \neq 0 \ (i = 1 \dots k).$

Lemma 5.4. Let $g, f_1, \ldots, f_k : B^n \to B$ be Boolean functions. Then

$$g(X) = 0 \land f_1(X) \neq 0 \land \dots \land f_k(X) \neq 0 \Leftrightarrow$$

$$(\exists p_1)\cdots(\exists p_k)(p_1\neq 0\wedge\cdots\wedge p_k\neq 0\wedge (g(X)\cup (f_1(X)+p_1)\cup\cdots\cup (f_k(X)+p_k))=0).$$

Proof. Using (5) and formula $(\exists X)A(x) \land B \Leftrightarrow (\exists x)(A(x) \land B)$ (*x* is not free in *B*) we get

$$\begin{split} g(X) &= 0 \quad \wedge f_1(X) \neq 0 \quad \wedge \cdots \wedge f_k(X) \neq 0 \\ \Leftrightarrow g(X) &= 0 \quad \wedge (\exists p_1)(p_1 \neq 0 \land f_1(X) = p_1) \land \cdots \land (\exists p_k)(p_k \neq 0 \land f_k(X) = p_k) \\ \Leftrightarrow (\exists p_1) \cdots (\exists p_k)(g(X) = 0 \quad \wedge p_1 \neq 0 \land f_1(X) = p_1 \land \cdots \land p_k \neq 0 \land f_k(X) = p_k) \\ \Leftrightarrow (\exists p_1) \cdots (\exists p_k)(p_1 \neq 0 \land \cdots \land p_k \neq 0 \land g(X) = 0 \quad \wedge f_1(X) + p_1 = 0 \land \cdots \land f_k(X) + p_k = 0) \\ \Leftrightarrow (\exists p_1) \cdots (\exists p_k)(p_1 \neq 0 \land \cdots \land p_k \neq 0 \land g(X) \cup (f_1(X) + p_1) \cup \cdots \cup (f_k(X) + p_k) = 0). \\ \Box \end{split}$$

Lemma 5.5. Let $g, f_1, \ldots, f_k : B^n \to B$ be Boolean functions and $p_1, \ldots, p_k \in B$. Then

(10)
$$\prod_{A} (g(A) \cup (f_1(A) + p_1) \cup \dots \cup (f_k(A) + p_k)) = \bigcup_{(c_1, \dots, c_k) \in \{0,1\}^k} p_1^{c_1} \cdots p_k^{c_k} \prod_{A} (g(A) \cup f_1^{c_1'}(A) \cup \dots \cup f_k^{c_k'}(A))$$

Proof. Let F be the Boolean function defined by

$$F(p_1,...,p_k) = \prod_A (g(A) \cup (f_1(A) + p_1) \cup \cdots \cup (f_k(A) + p_k)).$$

Then, by Theorem 1.3,

$$F(p_1, \dots, p_k) = \bigcup_{\substack{(c_1, \dots, c_k) \in \{0, 1\}^k}} p_1^{c_1} \cdots p_k^{c_k} F(c_1, \dots, c_k)$$
$$= \bigcup_{\substack{(c_1, \dots, c_k) \in \{0, 1\}^k}} p_1^{c_1} \cdots p_k^{c_k} \prod_A (g(A) \cup (f_1(A) + c_1) \cup \dots \cup (f_k(A) + c_k)).$$

Since $f_i(A) + c_i = f_i(A) = f_i^{c'_i}(A)$ for $c_i = 0$ and $f_i(A) + c_i = f'_i(A) = f_i^{c'_i}(A)$ for $c_i = 1$, for every $i \in (1, ..., k)$, it follows that $F(p_1, ..., p_k) = | \quad | \quad p_1^{c_1} \cdots p_k^{c_k} \prod (q(A) \cup f_1^{c'_1}(A) \cup \cdots \cup f_k^{c'_k}(A)).$

$$p(p_1,\ldots,p_k) = \bigcup_{(c_1,\ldots,c_k)\in\{0,1\}^k} p_1^{c_1}\cdots p_k^{c_k} \prod_A (g(A)\cup f_1^{c_1'}(A)\cup\cdots\cup f_k^{c_k'}(A)).$$

Let $C_i = (c_1, ..., c_i)$.

Lemma 5.6. Let $g, f_1, \ldots, f_k : B^n \to B$ be Boolean functions. Then the equation

(11)
$$\prod_{A} (g(A) \cup (f_1(A) + p_1) \cup \dots \cup (f_k(A) + p_k)) = 0$$

in p_1, \ldots, p_k has a solution if g(X) = 0 has a solution.

Proof. The equation (11) has a solution if and only if

(12)
$$\prod_{C_k \in \{0,1\}^k} \prod_A (g(A) \cup (f_1(A) + c_1) \cup \dots \cup (f_k(A) + c_k)) = 0$$

by Theorem 3.1. The equality (12) can be written as

$$\prod_{C_k \in \{0,1\}^k} \prod_A (g(A)) \cup \prod_{C_k \in \{0,1\}^k} \prod_A ((f_1(A) + c_1) \cup \dots \cup (f_k(A) + c_k)) = 0.$$

Since equation (6) has solution, by Lemma 4.4, it follows that

$$\prod_{C_k \in [0,1]^k} \prod_A ((f_1(A) + c_1) \cup \dots \cup (f_k(A) + c_k)) = 0$$

by Theorem 3.1. If the equation g(X) = 0 has a solution then $\prod_A (g(A)) = 0$. Thus

$$\prod_{C_k\in\{0,1\}^k}\prod_A(g(A))=0.$$

Therefore (12) holds i.e. the equation (11) has a solution. \Box

Lemma 5.7. Let $g, f_1, \ldots, f_k : B^n \to B$ be Boolean functions and $p_1, \ldots, p_k \in B$. Then

$$\prod_{A} (g(A) \cup (f_{1}(A) + p_{1}) \cup \dots \cup (f_{k}(A) + p_{k})) = 0 \Leftrightarrow$$

$$\bigcup_{C_{k-1} \in [0,1]^{k-1}} p_{1}^{c_{1}} \cdots p_{k-1}^{c_{k-1}} \prod_{A} (g(A) \cup f_{1}^{c'_{1}}(A) \cup \dots \cup f_{k-1}^{c'_{k-1}}(A) \cup f_{k}(A))$$

$$\leq p_{k} \leq \bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_{1}^{c_{1}} \cdots p_{k-1}^{c_{k-1}} \bigcup_{A} (g'(A)f_{1}^{c_{1}}(A) \cdots f_{k-1}^{c_{k-1}}(A)f_{k}(A))$$

$$\wedge \prod_{A} (g(A) \cup (f_{1}(A) + p_{1}) \cup \dots \cup (f_{k-1}(A) + p_{k-1})) = 0.$$

Proof. Using (10) we have

$$\Pi_{A}(g(A) \cup (f_{1}(A) + p_{1}) \cup \dots \cup (f_{k}(A) + p_{k}))$$

$$= \bigcup_{C_{k} \in \{0,1\}^{k}} p_{1}^{c_{1}} \cdots p_{k}^{c_{k}} \prod_{A}(g(A) \cup f_{1}^{c'_{1}}(A) \cup \dots \cup f_{k}^{c'_{k}}(A))$$

$$= p_{k}(\bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_{1}^{c_{1}} \cdots p_{k-1}^{c_{k-1}} \prod_{A}(g(A) \cup f_{1}^{c'_{1}}(A) \cup \dots \cup f_{k-1}^{c'_{k-1}}(A) \cup f_{k}'(A)))$$

$$\cup p_{k}'(\bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_{1}^{c_{1}} \cdots p_{k-1}^{c_{k-1}} \prod_{A}(g(A) \cup f_{1}^{c'_{1}}(A) \cup \dots \cup f_{k-1}^{c'_{k-1}}(A) \cup f_{k}(A)))).$$
Let us introduce the following potation

Let us introduce the following notation $a = \bigcup_{C_{k-1} \in [0,1]^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \prod_A (g(A) \cup f_1^{c'_1}(A) \cup \cdots \cup f_{k-1}^{c'_{k-1}}(A) \cup f'_k(A))$ $b = \bigcup_{C_{k-1} \in [0,1]^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \prod_A (g(A) \cup f_1^{c'_1}(A) \cup \cdots \cup f_{k-1}^{c'_{k-1}}(A) \cup f_k(A)).$ Applying Theorem 1.5 we get

$$ab = \bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} (\prod_A (g(A) \cup f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k'(A))) (\prod_A (g(A) \cup f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k(A))).$$

Using the equality $(x \cup y)(x \cup y') = x$, we get

$$(g(A) \cup f_1^{c_1'}(A) \cup \dots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k(A))(g(A) \cup f_1^{c_1'}(A) \cup \dots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k'(A)) = g(A) \cup f_1^{c_1'}(A) \cup \dots \cup f_{k-1}^{c_{k-1}'}(A).$$

Thus

$$ab = \bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} (\prod_A (g(A) \cup f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A))).$$

In accordance with Lemma 5.5 we have

$$ab = \prod_{A} (g(A) \cup (f_1(A) + p_1) \cup \dots \cup (f_{k-1}(A) + p_{k-1}))$$

The equation $ap_k \cup bp'_k = 0$ has a solution if and only if ab = 0, by Lemma 3.4. The equality ab = 0 can be written as

$$\prod_{A} (g(A) \cup (f_1(A) + p_1) \cup \ldots \cup (f_{k-1}(A) + p_{k-1})) = 0.$$

This equation has a solution, by Lemma 5.6 if g(X) = 0 has a solution. In accordance with Lemma 3.4, the equation $ap_k \cup bp'_k = 0$ is equivalent to $b \le p_k \le a'$, i.e.

$$\bigcup_{C_{k-1}\in\{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \prod_A (g(A) \cup f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k(A))$$

$$\leq p_k \leq \bigcup_{C_{k-1}\in\{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \bigcup_A (g'(A)f_1^{c_1}(A) \cdots f_{k-1}^{c_{k-1}'}(A)f_k(A)).$$

Theorem 5.8. Let $g, f_1, \ldots, f_k : B^n \to B$ be Boolean function. Then

$$g(X) = 0 \land f_{1}(X) \neq 0 \land \dots \land f_{k}(X) \neq 0 \Leftrightarrow$$

$$(\exists p_{1}) \cdots (\exists p_{k})(\exists T)(p_{1} \neq 0 \land \dots \land p_{k} \neq 0 \land X = \Phi(p_{1}, \dots, p_{k}, T)$$

$$\land \prod_{A}(g(A) \cup f_{1}(A)) \leq p_{1} \leq \bigcup_{A}(g'(A)f_{1}(A))$$

$$\land p_{1} \prod_{A}(g(A) \cup f'_{1}(A) \cup f_{2}(A)) \cup p'_{1} \prod_{A}(g(A) \cup f_{1}(A) \cup f_{2}(A))$$

$$\leq p_{2} \leq p_{1} \bigcup_{A}(g'(A)f_{1}(A)f_{2}(A)) \cup p'_{1} \bigcup_{A}(g'(A)f'_{1}(A)f_{2}(A))$$

$$\vdots$$

$$\vdots$$

$$\bigcup_{C_{k-1} \in [0,1]^{k-1}} p_{1}^{c_{1}} \cdots p_{k-1}^{c_{k-1}} \prod_{A}(g(A) \cup f'_{1}(A) \cup \dots \cup f'_{k-1}^{c'_{k-1}}(A) \cup f_{k}(A))$$

$$\leq p_k \leq \bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \bigcup_A (g'(A) f_1^{c_1}(A) \cdots f_{k-1}^{c_{k-1}}(A) f_k(A)),$$

where $X = \Phi(p_1, ..., p_k, T)$ expresses the general solution of the equation

$$g(X) \cup (f_1(X) + p_1) \cup \ldots \cup (f_k(X) + p_k) = 0.$$

Proof. By Lemma 5.4 equivalence (9) holds. Let $X = \Phi(p_1, \dots, p_k, T)$ be a general solution of the equation (13) $g(X) \cup (f_1(X) + p_1) \cup \dots \cup (f_k(X) + p_k) = 0.$

Then, by Definition 3.3,

(14)

$$g(X) \cup (f_1(X) + p_1) \cup \dots \cup (f_k(X) + p_k) = 0 \Leftrightarrow$$
$$\prod_A (g(A) \cup (f_1(A) + p_1) \cup \dots \cup (f_k(A) + p_k)) = 0 \land (\exists T) X = \Phi(p_1, \dots, p_k, T).$$

The condition

$$\prod_{A} (g(A) \cup (f_1(A) + p_1) \cup \cdots \cup (f_k(A) + p_k)) = 0$$

is an equation in $p_1, \ldots p_k$, which has a solution, by Lemma 5.6. According to Lemma 5.7, this equation is equivalent to

$$\bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \prod_A (g(A) \cup f_1^{c_1'}(A) \cup \cdots \cup f_{k-1}^{c_{k-1}'}(A) \cup f_k(A))$$

$$\leq p_k \leq \bigcup_{C_{k-1} \in \{0,1\}^{k-1}} p_1^{c_1} \cdots p_{k-1}^{c_{k-1}} \bigcup_A (g'(A)f_1^{c_1}(A) \cdots f_{k-1}^{c_{k-1}}(A)f_k(A))$$

$$\wedge \prod_A (g(A) \cup (f_1(A) + p_1) \cup \cdots \cup (f_{k-1}(A) + p_{k-1})) = 0.$$

Similarly, according to Lemma 5.7 it follows that

$$\begin{aligned} \prod_{A} (g(A) \cup (f_{1}(A) + p_{1}) \cup \dots \cup (f_{k-1}(A) + p_{k-1})) &= 0 \Leftrightarrow \\ \bigcup_{C_{k-2} \in \{0,1\}^{k-2}} p_{1}^{c_{1}} \cdots p_{k-2}^{c_{k-2}} \prod_{A} (g(A) \cup f_{1}^{c_{1}'}(A) \cup \dots \cup f_{k-1}^{c_{k-2}'}(A) \cup f_{k-1}(A)) \\ &\leq p_{k-1} \leq \bigcup_{C_{k-2} \in \{0,1\}^{k-2}} p_{1}^{c_{1}} \cdots p_{k-2}^{c_{k-2}} \bigcup_{A} (g'(A) f_{1}^{c_{1}}(A) \cdots f_{k-1}^{c_{k-2}}(A) f_{k-1}(A)) \\ &\wedge \prod_{A} (g(A) \cup (f_{1}(A) + p_{1}) \cup \dots \cup (f_{k-2}(A) + p_{k-2})) = 0. \end{aligned}$$

Applying Lemma 5.7 *k* times we get $\prod_{A}(g(A) \cup (f_1(A) + p_1)) = 0$, which can be written as

(15)
$$\prod_{A} (g(A) \cup f'_{1}(A))p_{1} \cup \prod_{A} (g(A) \cup f_{1}(A))p'_{1} = 0.$$

This equation in p_1 has a solution if and only if $\prod_A (g(A) \cup f'_1(A)) \prod_A (g(A) \cup f_1(A)) = 0$, by Theorem 3.1. Since g(X) = 0 is consistent we have $\prod_A (g(A) \cup f'_1(A)) \prod_A (g(A) \cup f_1(A)) = \prod_A (g(A) = 0)$. Thus the equation (15) is consistent and its solutions are

$$\prod_A (g(A) \cup f_1(A)) \le p_1 \le \bigcup_A (g'(A)f_1(A))$$

by Lemma 3.4.

From (9), (14) and the previous conditions for p_1, \ldots, p_k we get Theorem 5.8. \Box

Let $m = 2^n - 1$ and $h(X, p_1, ..., p_k) = g(X) \cup (f_1(X) + p_1) \cup \cdots \cup (f_k(X) + p_k)$. According to Theorem 3.5 the general solution of the equation (13) can be obtained as follows:

(16)
$$\Phi(p_1,\ldots,p_k,T)) = \bigcup_{i=0}^m (h(A_i,p_1,\ldots,p_k)'A_i \cup$$

$$h(A_i, p_1, \dots, p_k)h(A_{i_1}, p_1, \dots, p_k)'A_{i_1} \cup \dots \cup$$
$$h(A_i, p_1, \dots, p_k)h(A_{i_1}, p_1, \dots, p_k) \cdots h(A_{i_m}, p_1, \dots, p_k)'A_{i_m})T^{A_i}$$

where for every $i \in \{0, ..., m\}$, $(A_i, A_{i_1}, ..., A_{i_m})$ is a permutation of $\{0, 1\}^n$.

Example 1. Let *a*, *b*, *c*, *d*, *e*, $f \in$ B.Solve the system

$$ax \cup bx' = 0 \land cx \cup dx' \neq 0 \land ex \cup fx' \neq 0.$$

Using Theorem 5.8 and (16) for n = 1 we get

 $ax \cup bx' = 0 \land cx \cup dx' \neq 0 \land ex \cup fx' \neq 0 \Leftrightarrow$

$$\begin{aligned} (\exists p)(\exists q)(\exists t)(p \neq 0 \land q \neq 0 \land (a \cup c)(b \cup d) \le p \le a'c \cup b'd \land p((a \cup c' \cup e)(b \cup d' \cup f)) \cup p'((a \cup c \cup e)(b \cup d \cup f))) \le q \le p((a'ce) \cup (b'df)) \cup p'((a'c'e) \cup (b'd'f)) \land x = (a \cup (c+p) \cup (e+q))'t \cup (b \cup (d+p) \cup (f+q))t). \end{aligned}$$

Example 2. Let $B = \{0, 1, m, l, k, m', l', k'\}$. Solve the system

$$m'x' = 0 \land m'x \neq 0 \land kx \cup lx' \neq 0.$$

Using Example 1, where a = 0, b = m', c = m', d = 0, e = k, f = l, we get $m'x' = 0 \land m'x \neq 0 \land kx \cup lx' \neq 0 \Leftrightarrow$ $(\exists p)(\exists q)(\exists t)(p \neq 0 \land q \neq 0 \land p = m' \land q = k \land$ $x = ((m' + p) \cup (k + q))'t \cup (m' \cup p \cup (l + q))t).$ Thus $x = t \cup m't'$. Taking $t \in \{0, 1, m, l, k, m', l', k'\}$ we get $x \in \{m', 1\}.$ Example 2. Let $R = \{0, 1, m, l, k, m', l', k'\}$ solve the system

Example 3. Let $B = \{0, 1, m, l, k, m', l', k'\}$. Solve the system

$$mx \cup lx' = 0 \land kx \cup lx' \neq 0 \land m'x' \neq 0.$$

Using Example 1, where a = m, b = l, c = k, d = l, e = 0, f = m', we get $mx \cup lx' = 0 \land kx \cup lx' \neq 0 \land m'x' \neq 0 \Leftrightarrow$ $(\exists p)(\exists q)(\exists t)(p \neq 0 \land q \neq 0 \land p = k \land q = 0 \land$ $x = (m \cup (k + p) \cup q)'t \cup (l \cup (l + p) \cup (m' + q))t).$

We get a contradiction $g \neq 0 \land q = 0$ and hence the system has no solution.

Acknowledgment

This paper is partially supported by the Ministry of Education, Science and Technological Development Republic of Serbia, Projects No. III44007

References

- [1] D. Banković, Formulas of general reproductive solutions of Boolean equations, Fuzzy sets and systems 75 (1995) 203 207.
- [2] D. Banković, Boolean inequations, Discrete Mathematics 307 (2007) 750–755.
- [3] D. Banković, Boolean equations and Boolean inequations, Journal of Multiple-Valued Logic and Soft Computing 16 (2010) 189-196.
- [4] D. Banković, U. Marovac, System of two Boolean inequations, Journal of Multiple-Valued Logic and Soft Computing, 24 :(5-6) (2015) 521 - 528.
- [5] S. Rudeanu, Boolean functions and equations, North-Holland, Amsterdam 1974.
- [6] S. Rudeanu, Lattice functions and equations, Springer, Berlin 2001.
- [7] U. Marovac, Systems of k Boolean inequations, Journal of Multiple-Valued Logic and Soft Computing, 25:5 (2015) 447-459.
- [8] K. Marriott, M. Odersky, Negative Boolean constraints, Theoretical Computer Science, 160:(1-2) (1996) 365 380.
- [9] R. Helm, K. Marriott, M. Odersky, Spatial Query Optimization: From Boolean Constraints to Range Queries, Journal of Computer and System Sciences, 51 (1995) 197-210.