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Abstract. In this paper, we will establish some results on perturbation theory of block operator matrices
acting on Xn, where X is a Banach space. These results are exploited to investigate the M-essential spectra
of a general class of operators defined by a 3×3 block operator matrix acting on a product of Banach spaces
X3.

1. Introduction

Let X be a Banach space. In this paper, we investigate the M-essential spectra of a general class of
operators defined by a 3 × 3 block operator matrix acting on a product of Banach spaces X3

L0 =

 A B C
D E F
G H K

 ,
where the entries of the matrix are in general unbounded operators. Note that L0 is neither a closed nor a
closable operator, even if its entries are closed. We prove under some conditions, that L0 is closable. We
shall denote its closure by L. We denote by L(X) (respectively C(X)) the set of all bounded (respectively
closed, densely defined) linear operators acting on X and we denote by K (X) the subspace of compact
operators. For T ∈ C(X), we write D(T) ⊂ X for the domain, N(T) ⊂ X for the null space and R(T) ⊂ X for
the range of T. The nullity, α(T), of T is defined as the dimension of N(T) and the deficiency, β(T), of T is
defined as the codimension of R(T) in X.

We denote by Φ+(X), Φ−(X) and Φ(X) the classes of upper semi-Fredholm, lower semi-Fredholm and
Fredholm operators. The sets of left and right Fredholm inverses are respectively, defined by:

Φl(X) := {T ∈ C(X) such that T has a left Fredholm inverse},
Φr(X) := {T ∈ C(X) such that T has a right Fredholm inverse}.

Let Φb
+(X), Φb

−
(X), Φb(X), Φb

l (X) and Φb
r (X) denote respectively the sets

Φ+(X) ∩ L(X), Φ−(X) ∩ L(X), Φ(X) ∩ L(X), Φl(X) ∩ L(X) and Φr(X) ∩ L(X).
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It follows from [9, Theorem 14. and 15. p. 160] that

Φb
l (X) = {T ∈ Φb

+(X) such that R(T) is complemented}

and
Φb

r (X) = {T ∈ Φb
−(X) such that ker(T) is complemented}.

Note that we have the following inclusions:

Φb(X) ⊂ Φb
l (X) ⊂ Φb

+(X)

and
Φb(X) ⊂ Φb

r (X) ⊂ Φb
−(X).

Definition 1.1. Let X be a Banach space and let F ∈ L(X).

(i) The operator F is called Fredholm perturbation if U + F ∈ Φ(X) whenever U ∈ Φ(X).

(ii) F is called a upper (resp. lower) semi-Fredholm perturbation if U + F ∈ Φ+(X) (resp. U + F ∈ Φ−(X)) whenever
U ∈ Φ+(X) (resp. U ∈ Φ−(X)).

(iii) F is called a left (resp. right) semi-Fredholm perturbation if U + F ∈ Φl(X) (resp. U + F ∈ Φr(X)) whenever
U ∈ Φl(X) (resp. U ∈ Φr(X)).

We denote by F (X), F+(X), F−(X), Fl(X), Fr(X), the sets of Fredholm, upper semi-Fredholm, lower semi-
Fredholm, left semi-Fredholm and right semi-Fredholm respectively.

If in Definition 1.1 we replace Φ(X), Φ+(X), Φ−(X), Φl(X) and Φr(X) by Φb(X), Φb
+(X), Φb

−
(X), Φb

l (X) and
Φb

r (X) we obtain the setsF b(X), F b
+(X), F b

−
(X), F b

l (X) andF b
r (X). These classes of operators were introduced

and investigated in [7, 13]. In particular it is shown that F b(X), F b
+(X), F b

−
(X), F b

l (X) and F b
r (X) are closed

two-sided ideals of L(X). Note that in general we have:

K (X) ⊂ F b
+(X) ⊂ F b(X),

K (X) ⊂ F b
−(X) ⊂ F b(X).

The following result was established in [3]

Lemma 1.2. [3] Let X be a Banach space, then

F (X) = F b(X), F+(X) = F b
+(X) and F−(X) = F b

−(X).

Let S ∈ L(X). For T ∈ C(X), we define the S-resolvent set by:

ρS(T) := {λ ∈ C, λS − T has a bounded inverse},

and the S-spectrum of T
σS(T) = C \ ρS(T).

In this paper, for S ∈ L(X), we are concerned with the following S-essential spectra:

σe1,S(T) := {λ ∈ C such that λS − T < Φ+(X)},
σe2,S(T) := {λ ∈ C such that λS − T < Φ−(X)},
σe3,S(T) := {λ ∈ C such that λS − T < Φ±(X)},
σe4,S(T) := {λ ∈ C such that λS − T < Φ(X)},
σe5,S(T) := C \ {λ ∈ ΦT,S such that i(λS − T) = 0},
σe6,S(T) := C \ {λ ∈ C such that all scalars near λ are in ρS(T) and that i(λS − T) = 0}.
σle,S(T) := {λ ∈ C such that λS − T < Φl(X)},
σre,S(T) := {λ ∈ C such that λS − T < Φr(X)}.
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Remark that
σe3,S(T) := σe1,S(T) ∩ σe2,S(T) ⊂ σe4,S(T) ⊂ σe5,S(T) ⊂ σe6,S(T).

Note that if S = I, we recover the usual definition of the essential spectra of a closed densely defined
operator T.

A complex number λ is in ΦT,S if λS − T ∈ Φ(X). The set ΦT,S has very nice properties such as:

Proposition 1.3. [15] Let T ∈ C(X) and S a non null bounded linear operator acting on X. Then we have the
following results:

(i) ΦT,S is open.

(ii) i(λS − T) is constant on any component of ΦT,S.

(iii) α(λS − T) and β(λS − T) are constant on any component of ΦT,S except on a discrete set of points on which they
have larger values.

In the following we will denote the complement of a subset Ω ⊂ C by CΩ.

Proposition 1.4. [15] Let T ∈ C(X) and M ∈ L(X).
(i) If Cσe4,M(T) is connected and ρM(T) is not empty, then

σe4,M(T) = σe5,M(T).

(ii) If Cσe5,M(T) is connected and ρM(T) is not empty, then

σe5,M(T) = σe6,M(T).

The study of the essential spectra of block operator matrices has been arround for many years. Among the
works in this subject we can quote, for example, [1, 4–6, 8, 14–19]. Note that the idea of studying the spectral
characteristics of block operator matrices goes back to the classics of the spectral theoryfor the differential
operator (see for instance [9–12]). Recently, C. Tretter gives in [16–18] an account research and presents a
wide panorama of methods to investigate the spectral theory of block operator matrices. In the paper [6],
M. Faierman, R. Mennicken and M. Möller propose a method for dailing with the spectral theory for pencils
of the form L0 − µM, where M is a bounded operator. The authors in [4], extend the obtained results in
[19] and prove some localization results on the essential spectra of a general class of operators defined by a
2× 2 block operator matrix. The analysis uses the concept of the measures of weak-noncompactness which
possess some nice properties (cf [2]). Similarly, [15] study the M-essential spectra of 2 × 2 operator matrix.
Whereas in the paper of [5], Aref and all investigate the essential spectra of a 3 × 3 blok operator matrix.

The purpose of this work is to pursue the analysis started in [4, 5, 8, 15, 19]. In Section 1, we establish
some stability results on Fredholm theory. The main results of this section is Theorem 2.4. In Section 2, we
apply the results of Section 1 to describe the M-essential spectra of a general class of operators defined by
a 3 × 3 block operator matrix, where M is a bounded operator (see Theorem 3.3).

2. Some results on perturbation theory of matrix operator

In this section we will establish some results on perturbation theory of matrix operator that acts on Xn

where X is a Banach space. We beguin with the following preparating results which are crucial for the
purpose of our paper.

Proposition 2.1. Let Ai j ∈ L(X), (i, j) ∈ {1, ...,n}2 such that Ai j = 0 if i > j, and consider the matrix operator:

Tu = (Ai j)1≤i, j≤n ∈ L(Xn).



B. Abdelmoumen, S. Yengui / Filomat 34:4 (2020), 1187–1196 1190

(i) If, ∀i ∈ {1, ...,n}, Aii ∈ Φ∗(X), then Tu ∈ Φ∗(Xn), where ∗ designs +,−, l or r.

(ii) If Tu ∈ Φ+(Xn), then A11 ∈ Φ+(X).

(iii) If Tu ∈ Φ−(Xn), then Ann ∈ Φ−(X).

(iv) If Tu ∈ Φl(Xn), then A11 ∈ Φl(X).

(v) If Tu ∈ Φr(Xn), then Ann ∈ Φr(X).

Proof. (i) We can write Tu in the following form:

Tu =


I 0 · · · 0
0 A22 · · · A2n
...

. . .
. . .

...
0 · · · 0 Ann




I A12 · · · A1n

0
. . . 0 0

...
. . .

. . .
...

0 · · · 0 I




A11 0 · · · 0
0 I 0 0
...

. . .
. . .

...
0 · · · 0 I

 (1)

We use a reasoning by induction on n ∈N\{0, 1} and we apply [9, Theorem 5, p 156].

The results of (ii) and (iv) follow immediately from (1) and [9, Theorem 6, p 157].

The assertions (iii) and (v) can be checked if we write Tu in the following form:

Tu =


I 0 · · · . 0

0
. . . 0 . 0

...
. . . . .

...
. . I 0
0 · · · . 0 Ann





I 0 · · · 0 A1n

0
. . .

. . .
...

...

0
. . . 0 .

...
. . .

. . .
. . . An−1n

0 · · · 0 I




A11 · · · A1 n−1 0

0
. . .

...
...

. .
...

. . . An−1 n−1 0
0 · · · 0 I

 . (2)

Using the same reasoning as the proof of the previous proposition, we can show the following:

Proposition 2.2. Let Ai j ∈ L(X), (i, j) ∈ {1, ...,n}2 such that Ai j = 0 if i < j, and consider the matrix operator:

Tl = (Ai j)1≤i, j≤n ∈ L(Xn).

(i) If, ∀i ∈ {1, ...,n}, Aii ∈ Φ∗(X) then Tl ∈ Φ∗(Xn), where ∗ designs +,−, l or r.

(ii) If Tl ∈ Φ+(Xn), then Ann ∈ Φ+(X).

(iii) If Tl ∈ Φ−(Xn), then A11 ∈ Φ−(X).

(iv) If Tl ∈ Φl(Xn), then Ann ∈ Φl(X).

(v) If Tl ∈ Φr(Xn), then A11 ∈ Φr(X).

As an immediate consequence of propositions 2.1 and 2.2 we have:

Corollary 2.3. If Tu ∈ Φ(Xn) (resp. Tl ∈ Φ(Xn)), then A11 ∈ Φ+(X) and Ann ∈ Φ−(X).

(resp. A11 ∈ Φ−(X) and Ann ∈ Φ+(X)).

The main result of this section is the following:

Theorem 2.4. Let F := (Fi j)1≤i, j≤n where Fi j ∈ L(X), ∀(i, j) ∈ {1, ...,n}2. Then

(i) F ∈ F (Xn) if and only if Fi j ∈ F (X), ∀(i, j) ∈ {1, ...,n}2.

(ii) F ∈ Fr(Xn) if and only if Fi j ∈ Fr(X), ∀(i, j) ∈ {1, ...,n}2.

(iii) F ∈ Fl(Xn) if and only if Fi j ∈ Fl(X), ∀(i, j) ∈ {1, ...,n}2.
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Proof. (i) Suppose that F := (Fi j)1≤i, j≤n ∈ F (Xn). For (i, j) ∈ {1, ...,n}2, there exists Pi j and Qi j two invertible
matrix operators in L(Xn) such that:

Pi jFQi j =


Fi j · · ·

...
...

. . .
. . .

· · ·

 ∈ F (Xn). (3)

So, to prove that Fi j ∈ F (X), it suffice to prove that F11 ∈ F (X). Let A be in Φ(X) and consider

L1 :=



A −F12 · · · . −F1n

0 I −F23
...

...
. . .

. . .
. . . .
−Fn−1n

0 · · · 0 I


.

It follows from Proposition 2.1(i) that L1 ∈ Φ(Xn). Thus,

F + L1 =



F11 + A 0 · · · · · · 0

F21 I + F22 0 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

Fn1 · · · · · · Fnn−1 I + Fnn


∈ Φ(Xn).

Hence, by Corollary 2.3, F11 + A ∈ Φ−(X).

Let L2 =


A 0 · · · 0

−F21 I
. . .

...
...

. . .
. . . 0

−Fn1 · · · −Fn n−1 I

. Then according to Proposition 2.1(i), L2 ∈ Φ(Xn) and

F + L2 =


F11 + A F12 · · · F1n

0 I + F22
...

...
. . .

. . . Fn−1 nn
0 · · · 0 I + Fnn

 ∈ Φ(Xn).

Thus, by Corollary 2.3, F11 + A ∈ Φ+(X) and therefore, F11 ∈ F (X).

Conversely, suppose that Fi j ∈ F (X), ∀(i, j) ∈ {1, ...,n}2. We can write:

F =
∑

1≤i, j≤n

F̃i j, where F̃i j =



0 · · · 0 · · ·

...
...

. 0
· · · 0 Fi j 0 · · ·

... 0

0 · · ·
... · · ·


.
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So, it is sufficient to prove that if, for (i, j) ∈ {1, ...,n}2, Fi j ∈ F (X), then F̃i j ∈ F (Xn).Using the same reasoning
as (3):

Pi jF̃i jQi j =


Fi j 0 · · · 0

0 0 · · ·
...

...
0 · · · 0

 . (4)

So, to prove that F̃i j ∈ F (Xn), it suffice to prove that F̃11 ∈ F (Xn).

Suppose that F11 ∈ F (X) and let L := (Li j)1≤i, j≤n ∈ Φ(Xn). According to [9, Theorem 13. p. 159], there exists
L0 := (L0

i j)1≤i, j≤n ∈ Φ(Xn) such that LL0 = I + K, where K ∈ K (Xn). We have

(L + F̃11)L0 = I + K + F̃11L0 =


I + F11L0

11 F11L0
12 · · · F11L0

1n
0 I 0 0
...

. . .
. . .

...
0 · · · 0 I

 + K.

Since I + F11L0
11 ∈ Φ(X), then, by Proposition 2.1(i), (L + F̃11)L0 ∈ Φ(Xn). Thus L + F̃11 ∈ Φ(Xn) and therefore

F̃11 ∈ F (Xn).

We prove the assertion (ii) in the same way as in (i).

To prove the assertion (iii), suppose that F := (Fi j)1≤i, j≤n ∈ Fl(Xn). Arguing as the proof of (i), we can deduce
that Fi j ∈ Fl(X), ∀(i, j) ∈ {1, ...,n}2. Conversely, Suppose that F11 ∈ Fl(X) and let L := (Li j)1≤i, j≤n ∈ Φl(Xn).
There exists L0 := (L0

i j)1≤i, j≤n ∈ Φ(Xn) such that L0L = I + K, where K ∈ K (Xn). We have

L0(L + F̃11) = I + K + L0F̃11 =


I + F11L0

11 0 · · · 0
L0

21F21 I 0 0
...

. . .
. . .

...
L0

n1F21 · · · 0 I

 + K.

Since I + F11L0
11 ∈ Φl(X), then, by Proposition 2.2, L0(L + F̃11) ∈ Φl(Xn). Thus L + F̃11 ∈ Φl(Xn) and therefore

F̃11 ∈ Fl(Xn).

3. The M-essential spectra of the 3 × 3 matrix operator L

The purpose of this section is to apply Theorem 2.4 to describe the M-essential spectra of the 3×3 matrix
operator L, closure of L0 that acts on the Banach space X3 where M is a bounded operator formally defined
on the product space X3 by a matrix

M =

 M11 M12 M13
M21 M22 M23
M31 M32 M33


and L0 is given by:

L0 =

 A B C
D E F
G H K

 .
Each of the entries operator acts on X and has its own domain.
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In what follows, we will assume that the following hypotheses:

(H1) The operator A is closed, densely defined linear operator on X with nonempty M11-resolvent set
ρM11 (A).

(H2) The operator D (resp. G) verifies that D(A) ⊂ D(D) (resp. D(A) ⊂ D(G)) and for some (hence for all)
µ ∈ ρM11 (A), the operator D(A − µM11)−1 (resp. G(A − µM11)−1) is bounded.

Set

F1(µ) = (D − µM21)(A − µM11)−1.

and

F2(µ) = (G − µM31)(A − µM11)−1.

(H3) The operators B and C are densely defined on X and for some (hence for all) µ ∈ ρM11 (A), the operator
(A − µM11)−1B (resp. (A − µM11)−1C) is bounded on its domain.

Let

G1(µ) = (A − µM11)−1(B − µM12)

and

G2(µ) = (A − µM11)−1(C − µM13).

(H4) The lineal D(B) ∩ D(E) is dense in X, and for some (hence for all) µ ∈ ρM11 (A), the operator S1(µ) =
E − (D − µM21)(A − µM11)−1(B − µM12) is closed.

To explain this, let λ, µ ∈ ρM11 (A). We have:

S1(λ) − S1(µ) = (λ − µ)
(
M21G1(µ) + F1(λ)M12 − F1(λ)M11G1(µ)

)
. (5)

Since the operator on the right-hand side is bounded on its domain, then the operator S1(µ) is closed for all
µ ∈ ρM11 (A) if it is closed for some µ ∈ ρM11 (A).

(H5) D(C) ⊂ D(F) and the operator F − D(A − µM11)−1C is bounded on its domain for some (hence for all)
µ ∈ ρM11 (A). We will suppose that there exist µ ∈ ρM11 (A) ∩ ρM22 (S1) and we will denote by:

G3(µ) = (S1(µ) − µM22)−1[(F − µM23) − (D − µM21)(A − µM11)−1(C − µM13)].

(H6) The operator H satisfies that D(B) ⊂ D(H), and for some (hence for all) µ ∈ ρM11 (A) ∩ ρM22 (S1) the
operator H − G(A − µM11)−1B(S1(µ) − µM22)−1 is bounded. Set

F3(µ) = [(H − µM32) − (G − µM31)(A − µM11)−1(B − µM12)](S1(µ) − µM22)−1.

(H7) For the operator K we will assume thatD(C) ⊂ D(K), and for some (hence for all) µ ∈ ρM11 (A)∩ρM22 (S1)
the operator K − GG2(µ)H − F2(µ)BG3(µ) is closable. Denote by S2(µ) the operator:

S2(µ) = K − (G − µM31)G2(µ)
[
(H − µM32) − F2(µ)(B − µM12)

]
G3(µ).

and by S2(µ) its closure.

In the following theorem we establish the closedness of the operator L0.
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Theorem 3.1. Let the conditions (H1) − (H7) be satisfied. Then the operator L0 is closable if and only if S2(µ) is
closable in X, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)). Moreover, the closure L of L0 can been written as follows:

L = µM −U(µ)D(µ)W(µ), (6)

where

U(µ) =


I 0 0

F1(µ) I 0

F2(µ) F3(µ) I

 , W(µ) =


I G1(µ) G2(µ)

0 I G3(µ)

0 0 I


and

D(µ) =


µM11 − A 0 0

0 µM22 − S1(µ) 0

0 0 µM33 − S2(µ)

 .
Proof.

For µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), the operator L0 can be factorized in the form:

L0 = µM −U(µ)


µM11 − A 0 0

0 µM22 − S1(µ) 0

0 0 µM33 − S2(µ)

 W(µ). (7)

The results follows the fact that the operators U(µ) and W(µ) are bounded and boundedly invertible.

Remark 3.2. Let µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)) and set λ ∈ C. While writing L − λM = L − µM + (λ − µ)M, we have

L − λM = U(µ)Dλ(µ)W(µ) − (µ − λ)M(µ), (8)

where

Dλ(µ) =


A − λM11 0 0

0 S1(µ) − λM22 0

0 0 S2(µ) − λM33


and

M(µ) =


0 M11G1(µ) −M12 M11G2(µ) −M13

F1(µ)M11 −M21 F1(µ)M11G1(µ) F1(µ)M11G2(µ) + M22G3(µ) −M23

F2(µ)M11 −M31 F2(µ)M11G1(µ) + F3(µ)M22 −M32 F2(µ)M11G2(µ) + F3(µ)M22G3(µ)

 .
Now, we are ready to state and prove the main result of this section.

Theorem 3.3. Suppose that the assumptions (H1) − (H7) are satisfied.

(i) If, ∀i , j, Mi j ∈ F (X) and if, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Fk(µ) and Gk(µ) are in F (X), ∀k ∈ {1, 2, 3},
then

σe4,M(L) = σe4,M11 (A) ∪ σe4,M22 (S1(µ)) ∪ σe4,M33 (S2(µ)).

and
σe5,M(L) ⊆ σe5,M11 (A) ∪ σe5,M22 (S1(µ)) ∪ σe5,M33 (S2(µ)).
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Moreover, if the sets Cσe4,M11 (A) and Cσe4,M22 (S1(µ)) are connected, then

σe5,M(L) = σe5,M11 (A) ∪ σe5,M22 (S1(µ)) ∪ σe5,M33 (S2(µ)).

If in addition, Cσe5,M11 (A), Cσe5,M22 (S1(µ)) are connected and ρM33 (S1(µ)) , ∅, then

σe6,M(L) = σe6,M11 (A) ∪ σe6,M22 (S1(µ)) ∪ σe6,M33 (S2(µ)).

(ii) If, ∀i , j, Mi j ∈ Fl(X) and if, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Fk(µ) and Gk(µ) are in Fl(X), ∀k ∈ {1, 2, 3},
then

σle,M(L) = σle,M11 (A) ∪ σle,M22 (S1(µ)) ∪ σle,M33 (S2(µ)).

(iii) If ∀i , j, Mi j ∈ Fr(X) and if for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Fk(µ) and Gk(µ) are in Fr(X), ∀k ∈ {1, 2, 3},
then

σre,M(L) = σre,M11 (A) ∪ σre,M22 (S1(µ)) ∪ σre,M33 (S2(µ)).

To prove Theorem 3.3 we shall need to the following lemma:

Lemma 3.4. (i) Let µ ∈ ρM11 (A).

If F1(µ), G1(µ) and M21 are in F (X) then σe4,M22 (S1(µ)) and σe5,M22 (S1(µ)) do not depend on µ.

(ii) Let µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)).

If G1(µ), G3(µ) and M31 are in F (X), then σe4,M22 (S2(µ)) and σe5,M22 (S2(µ)) do not depend on µ.

Proof.

(i) Follows immediately from the equation (5).

(ii) Let λ, µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)). Then

S2(λ) − S2(µ) = (G − λM31)[G2(µ) − G2(λ) − G1(µ)G3(λ) + G1(λ) − G3(µ)]+
(H − λM32)(G3(µ) − G3(λ)) + (λ − µ)(M31G2(µ) + M32G3(µ)
−M31G1(µ)G3(µ)).

Proof of Theorem 3.1.

(i) According to the hypotheses and applying Theorem 2.4, the second operator in the right hand side of
Eq. (8),M(µ), is a Fredholm perturbation. Since U(µ) and W(µ) are boundlessly invertible, then

L − λM ∈ Φ(X3)⇐⇒Dλ(µ) ∈ Φ(X3).

Moreover, we have

i(L − λM) = i(Dλ(µ)) = i(A − λM11) + i(S1(µ) − λM22) + i(S2(µ) − λM22).

If i(A − λM11) = i(S1(µ) − λM22) = i(S2(µ) − λM22) = 0, then i(L − λM) = 0. Hence

σe5,M(L) ⊆ σe5,M11 (A) ∪ σe5,M22 (S1(µ)) ∪ σe5,M22 (S2(µ)).

Finally, the results of assertion (i) follow from Proposition 1.4

We can prove easily (ii) and (iii) by using the relation (8).
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Theorem 3.5. Suppose that the assumptions (H1) − (H7) are satisfied.

(i) If, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Gk(µ) ∈ F+(X), ∀k ∈ {1, 2, 3} andM(µ) ∈ F+(X), then

σe1,M(L) = σe1,M11 (A) ∪ σe1,M22 (S1(µ)) ∪ σe1,M33 (S2(µ)).

(ii) If, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Gk(µ) ∈ F−(X), ∀k ∈ {1, 2, 3} andM(µ) ∈ F−(X), then

σe2,M(L) = σe2,M11 (A) ∪ σe2,M22 (S1(µ)) ∪ σe2,M33 (S2(µ)).

(iii) If, for some µ ∈ ρM11 (A) ∩ ρM22 (S1(µ)), Gk(µ) ∈ F+(X) ∩ F−(X), ∀k ∈ {1, 2, 3} andM(µ) ∈ F+(X) ∩ F−(X),
then

σe3,M(L) = σe3,M11 (A) ∪ σe3,M22 (S1(µ)) ∪ σe3,M33 (S2(µ))∪

σe1,M11 (A) ∩
[
σe2,M22 (S1(µ)) ∩ σe2,M33 (S2(µ))

]
∪ σe1,M22 (S1(µ)) ∩

[
σe2,M11 (A) ∪ σe2,M33 (S2(µ))

]
∪ σe1,M33 (S2(µ)) ∩[

σe2,M11 (A) ∪ σe2,M22 (S1(µ))
]
.

Proof.

The results follow immediately from (8).
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