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Abstract. The aim of this paper is to give a Kato decomposition, associated to a pair of operators, which
removes the jump at the origin. Exactly we will give the class of linear pencils having a constant jump as a
generalization of upper semi-Fredholm pencils and we get a Kato decomposition related to this class..

1. Introduction

Let X and Y be infinite dimensional Banach spaces. Denote by B(X,Y) the set of all bounded linear
operators from X into Y. For T ∈ B(X,Y), we writeD(T) ⊂ X for the domain,N(T) = KerT for the null space
and R(T) = RanT for the range of T. The nullity, α(T), of T is defined as the dimension of N(T) and the
deficiency, β(T), of T is defined as the codimension of R(T) in Y.

In this paper we will consider T and J two operators ofB(X,Y) not equal to zero. We setN1(T, J) = N(T) ⊂ X,
and by iteration we defineNk(T, J) = T−1(J(Nk−1(T, J)))
for all k ≥ 2. Similarly, we define R1(T, J) = R(T) and by iteration Rk(T, J) = T(J−1(Rk−1(T, J))) for all k ≥ 2.
ClearlyNk(T, J) (respectively Rk(T, J)) are linear subspaces of X (respectively Y).

We recall ([4],[5]) that T ∈ B(X,Y) is called upper semi-Fredholm if

T has a closed range and α(T) < ∞.

For J ∈ B(X,Y) write,

Ψ+(X,Y, J) = {T ∈ B(X,Y) : R(T) is closed, R(T) ⊂ R(J) and α(T − λJ)
is constant for 0 < |λ| < ε}.

In [9], West defined a jump of a semi-Fredholm operator. We extend this concept to the case of a larger
class. If T ∈ Ψ+(X,Y, J) we define the upper jump, j+(T, J), associated to the couple (T, J) by setting

j+(T, J) = α(T) − α(T − λJ), 0 < |λ| < ε.

With the understanding that for any real number r, ∞− r = ∞.

Kato’s decomposition for linear operators, linear pencils and linear relations has been studied by many
authors under different conditions, see ([1],[2],[3],[6],[9]).
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Kato’s decomposition theorem [1, Theorem 4.5 ], says that if T ∈ Ψ+(X) = Ψ+(X,X, I), and satisfying some
additional conditions then T = T1 ⊕ T2, where T1 is nilpotent and j+(T2) = 0. The proof of this result is
based on the special case of Kato’s decomposition theorem given by [9, Theorem 7 ]. The purpose of this
work is to pursue the investigation started in [1] and to extend it to the class Ψ+(X,Y, J).We shall show that
if satisfies some conditions then the Kato’s decomposition relative to J allows for T. Precisely, we prove
that if T ∈ Ψ+(X,Y, J) be such that N(T) and N(T) + J−1(R(T)) are complemented and N(T) ∩ J−1(R(T))
is finite dimensional then there exist closed subspaces X1 and X2 ⊂ X with T(Xi) ⊂ J(Xi) i = 1, 2 such
that X = X1 ⊕ X2, dimX1 < ∞ and X1 ⊂ Nk(T, J) for some k ≥ 1 and T/X2 is upper semi-Fredholm with
j+(T/X2 , J/X2 ) = 0.

The structure of this work is as follows. In section 2, we establish some preliminary results concerning the
family of subspaces Nk(T, J) and Rk(T, J). The section 3, is devoted to the proof of the main result of the
paper.

2. Preliminary results

Let X and Y be two Banach spaces and let T, J ∈ B(X,Y) be such that R(T) ⊂ R(J). We recall in this section
some definitions of subspaces related to (T, J) and some of their properties:

R
∞(T, J) =

∞⋂
n=1

Rn(T, J)

and

N
∞(T, J) =

∞⋃
n=1

Nn(T, J)

whereNk(T, J) = T−1(J(Nk−1(T, J))) for all k ≥ 2. Similarly, Rk(T, J) = T(J−1(Rk−1(T, J))) for all k ≥ 2.

Lemma 2.1. Let T and J ∈ B(X,Y) be such that R(T) ⊂ R(J). For k ≥ 2, we have:

Nk−1(T, J) ⊂ Nk(T, J) and Rk(T, J) ⊂ Rk−1(T, J).

Lemma 2.2. If λ , 0 and T, J ∈ B(X,Y) be such that R(T) ⊂ R(J). Then

N(T − λJ) ⊆ J−1(R∞(T, J)).

Proof Let x ∈ N(T − λJ). Then (T − λJ)(x) = 0. Thus T(x) = λJ(x) and so J(x) = λ−1T(x) hence J(x) ∈ R(T).

We must prove that J(x) ∈ Rn(T, J), for each n ≥ 2.

First, we prove that
J(x) ∈ R2(T, J).

Indeed, we have J(x) ∈ R(T) then x ∈ J−1(R(T)) thus Tx ∈ T(J−1(R(T)) so Tx ∈ R2(T, J) and J(x) = λ−1Tx ∈
R2(T). And by induction, we have

J(x) ∈ Rn(T), for each n ≥ 2.

So, we prove that
x ∈ J−1(R∞(T, J)).

This gives
N(T − λJ) ⊆ J−1(R∞(T, J)).

�
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We give here some useful notations for later. Let A,B ∈ B(X,Y). For H ⊂ X and K ⊂ Y

(A−1B)(H) = A−1(B(H)), (AB−1)(K) = A(B−1(K))

and by iteration we define for n ≥ 2 :

(A−1B)n(H) = A−1(B((A−1B)n−1(H))), (AB−1)n(K) = A(B−1((AB−1)n−1(K))).

Lemma 2.3. Let T and J ∈ B(X,Y).
(i) Let H ⊂ X,n ≥ 1 and x ∈ X. Then,

x ∈ (T−1 J)n(H) if and only if there exists y ∈ H such that y ∈ (J−1T)n({x}).

(ii) For all n ≥ 1,m ≥ 2
(T−1 J)n(N(T)) = Nn+1(T, J)

(TJ−1)n(Rm(T, J)) = Rn+m(T, J) = T(J−1T)n(J−1(Rm−1(T, J))).

(iii) Let x, y ∈ X. Then,

If (J−1T)n({x}) ∩ (J−1T)n({y}) , ∅, then x − y ∈ Nn(T, J).

(iv) IfN(T) ⊂ J−1(Rn(T, J)) for all n ≥ 1, thenNn(T, J) ⊂ J−1(Rm(T, J)) for all n,m ≥ 1.

Proof
(i) We proceed by induction. The case n = 1 is trivial. Assume now, that the result is valid for the order n.

Let x ∈ (T−1 J)n+1(H). Then x ∈ T−1(J(T−1 J)n(H)). So, Tx ∈ J((T−1 J)n(H)). Therefore there exists z ∈ (T−1 J)n(H)
such that Tx = J(z). Then from induction assumption, there exists y ∈ H such that:

y ∈ (J−1T)n({z}) ⊂ (J−1T)n(J−1T)({x}) = (J−1T)n+1({x}).

(ii) The first equality is proved by induction. The case n = 1 is trivial. Assume now that the equality is
valid for the order n. We have:
(T−1 J)n+1(N(T)) = T−1(J(T−1 J)n(N(T)))

= T−1(J(Nn+1(T, J)))
= Nn+2(T, J).

For the second equality, the case n = 1 is trivial. Suppose that the result holds in the order n and for all
m ≥ 2,
(TJ−1)n+1(Rm(T, J)) = (TJ−1)((TJ−1)n(Rm(T, J)))

= (TJ−1)(Rn+m(T, J))
= Rn+m+1(T, J).

For the third equality, the case n = 1 is clear. Suppose now that the result is valid for order n and for all
m ≥ 2, then we have
(TJ−1)n+1(Rm(T, J)) = T(J−1((TJ−1)n(Rm(T, J))))

= T(J−1(T(J−1T)n(J−1(Rm−1(T, J)))
= T((J−1T)n+1(J−1(Rm−1(T, J)))).

(iii) We proceed by induction. For the case n = 1, let z ∈ (J−1T)({x}) ∩ (J−1T)({y}). Then J(z) = Tx
and J(z) = Ty. Therefore T(x − y) = 0 and so, x − y ∈ N(T). Assume now that the result is valid for the
order n. Let z ∈ (J−1T)n+1

{x} ∩ (J−1T)n+1
{y}. Then, z ∈ (J−1T)n((J−1T){x} ∩ (J−1T)n((J−1T){y}.Hence, there exists

α1 ∈ (J−1T){x} and α2 ∈ (J−1T){y} such that z ∈ (J−1T)n(α1)∩ (J−1T)n(α2). Then, by hypothesis of induction we
have: α1 −α2 ∈ Nn(T, J).On the other hand, J(α1) = Tx and J(α2) = Ty. So, T(x− y) = J(α1 −α2) ∈ J(Nn(T, J)).
Hence x − y ∈ T−1(J(Nn(T, J))) = Nn+1(T, J).
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(iv) The inclusion is proved by induction. The case n = 1 is a direct consequence of the hypothesis.
Assume now that the result is valid for the order n and for all m ≥ 1. Let x ∈ Nn+1(T, J). Then by (i),
there exists z ∈ N(T) such that z ∈ (J−1T)n({x}). On the other hand, by hypothesis, we get z ∈ N(T) ⊂
J−1(Rn+m(T, J)) ∀ m ≥ 1. Then, by (ii), J(z) ∈ Rn+m(T, J) = (TJ−1)n(Rm(T, J)) = T((J−1T)n(J−1(Rm−1(T, J))). So, z ∈
J−1(T((J−1T)n(J−1(Rm−1(T, J)))) = (J−1T)n(J−1T)(J−1(Rm−1(T, J))).Then there exists ym ∈ (J−1T)(J−1(Rm−1(T, J))) =
J−1(Rm(T, J)) such that, z ∈ (J−1T)n({ym}). Hence, (J−1T)n({y}) ∩ (J−1T)n({x}) , ∅. Using (iii) we get x − ym ∈

J−1(Rm(T, J)) and so, x ∈ J−1(Rm(T, J)). �

In the sequel we need the following theorem wish is an immediate consequence of Theorem 1 and Theorem
7 in [6].

Theorem 2.1. Let J ∈ B(X,Y) and T be an upper semi-Fredholm operator such that R(T) ⊂ R(J). Then there exists
ε > 0 such that α(λJ + T) ≤ α(T) for all |λ| < ε, and α(λJ + T) is constant for all 0 < |λ| < ε.

According to this theorem we can see that

{T ∈ B(X,Y) : T is upper semi-Fredholm operator with R(T) ⊂ R(J)} ⊆ Ψ+(X,Y, J).

Lemma 2.4. Let T and J ∈ B(X,Y) be such that R(T) ⊂ R(J). We have:

(i) T(J−1(R∞(T, J)) ⊂ R∞(T, J);

(ii) If T ∈ Φ+(X,Y) then R∞(T, J) is closed.

Proof (i) We have

R
∞(T, J) =

∞⋂
n=1

Rn(T, J) and Rn(T, J) = T(J−1(Rn−1(T, J))) for all n ≥ 2.

So,

J−1(R∞(T, J)) = J−1(
∞⋂

n=1

Rn(T, J)) =

∞⋂
n=1

J−1(Rn(T, J)).

Then

T(J−1(R∞(T, J))) = T(
∞⋂

n=1

J−1(Rn(T, J))) ⊂
∞⋂

n=1

T(J−1(Rn(T, J))) ⊂
∞⋂

n=1

Rn+1(T, J).

Then

T(J−1(R∞(T, J))) ⊂
∞⋂

n=2

Rn(T, J).

On the other hand we have
T(J−1(R∞(T, J))) ⊂ R(T).

So, we have the result
T(J−1(R∞(T, J)) ⊂ R∞(T, J).

(ii) Since R∞(T, J) =
⋂
∞

n=1 Rn(T, J), the result is obtained if we prove that Rn(T, J) is closed for all n ≥ 1.
We proceed by induction. For the case n = 1, we have T ∈ Φ+(X,Y), then R1(T, J) = R(T) is closed. Assume
now that Rn(T, J) is closed.
Define T1 := T/N(T)+J−1(Rn(T,J)).
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Since T is closed with finite dimensional null space and J−1(Rn(T, J)) is closed we obtain that T1 is closed.
We note thatN(T1) = N(T) and hence γ(T) ≤ γ(T1), where γ is the reduced minimum defined by

γ(T) := sup{ε ≥ 0; ε dist(x,N(T)) ≤ ||Tx||, x ∈ D(T)}.

Applying [7, Theorem 2, page 97], we deduce that R(T1) is closed. But R(T1) = Rn+1(T, J). Indeed, R(T1) =
T(N(T) + J−1(Rn(T, J))) = T(J−1(Rn(T, J))) = Rn+1(T, J)). So, Rn+1(T, J) is closed. �

Let T and J ∈ B(X,Y) be such that R(T) ⊂ R(J). Define

T̂ : J−1(R∞(T, J))→ R∞(T, J)

the operator induced by T and
Ĵ : J−1(R∞(T, J))→ R∞(T, J)

the operator induced by J.

Proposition 2.1. Let T and J ∈ B(X,Y) be such that R(T) ⊂ R(J). If α(T) < ∞ then β(T̂) = 0 and α(T̂) < ∞.

Proof We show that if x ∈ R∞(T, J) then T−1
{x} ∩ J−1(R∞(T, J)) , ∅. Indeed, x ∈ R∞(T, J) then x ∈ R(T) and so,

T−1
{x} , ∅. Let w ∈ T−1

{x}, then T−1
{x} = w +N(T) which, by hypothesis, is a finite dimensional hyperplane.

Hence the decreasing sequence T−1
{x} ∩ J−1(Rn(T, J)) terminates. Thus for some k

T−1
{x} ∩ J−1(R∞(T, J)) = T−1

{x} ∩ J−1(Rk(T, J)).

Now, x ∈ R∞(T, J) then x ∈
⋂

k Rk(T, J) so x ∈ Rk+1(T, J), thus x ∈ T(J−1(Rk(T, J)) then there exists y ∈
J−1(Rk(T, J) such that x = Ty. So, y ∈ T−1

{x}.
Finally y ∈ T−1

{x} ∩ J−1(Rk(T, J) = T−1
{x} ∩ J−1(R∞(T, J)). So,

T−1
{x} ∩ J−1(R∞(T, J)) , ∅.

Now,
β(T̂) = dim(R∞(T, J)/T(J−1(R∞(T, J)))).

So, we prove that R∞(T, J) = T(J−1(R∞(T, J))). We have, T(J−1(R∞(T, J))) ⊂ R∞(T, J) is evident.

If x ∈ R∞(T, J), then T−1
{x} ∩ J−1(R∞(T, J)) , ∅. Let y ∈ T−1

{x} ∩ J−1(R∞(T, J)). Then{
y ∈ T−1

{x};
y ∈ J−1(R∞(T, J)). Then

{
x = T(y);
y ∈ J−1(R∞(T, J)).

So x ∈ T(J−1(R∞(T, J))), which concludes the proof and

β(T̂) = dim(R∞(T, J)/T(J−1(R∞(T, J)))) = 0.

In the other hand, we have T̂ ⊂ T thenN(T̂) ⊂ N(T). So,

α(T̂) ≤ α(T) < ∞.

�

Remark 2.1. From Proposition 2.1 we can conclude that if T is upper semi-Fredholm then T̂ is Fredholm and β(T̂) = 0.
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3. Main results

The following theorem gives a characterization of a constant neighborhood nullity linear pencils (T, J) with
j+(T, J) = 0.

Theorem 3.1. If T ∈ Ψ+(X,Y, J) has a finite dimensional intersectionN(T) ∩ J−1(Rk(T, J)) for some k ∈N∗ then

j+(T, J) = 0 if and only if N∞(T) ⊂ J−1(R∞(T, J)). (3.1)

Proof

Suppose that T ∈ Ψ+(X,Y, J). If j+(T, J) = 0 we claim that

α(T̂) ≤ α(T) = α(T − λJ) = α(T̂ − λ̂J) ≤ α(T̂) for 0 < |λ| < ε. (3.2)

Indeed, the first inequality is evident. The second equality comes from the assumption. The third equality
comes from Lemma 2.2. In fact, let x ∈ N(T̂ − λ̂J) then (T̂ − λ̂J)(x) = 0 and x ∈ J−1(R∞(T, J)). Thus,{

x ∈ J−1(R∞(T, J)) ;
(T − λJ)(x) = 0 .

So we have N(T̂ − λ̂J) = N(T − λJ) ∩ J−1(R∞(T, J)) and by Lemma 2.2, we have N(T − λJ) ⊂ J−1(R∞(T, J)).
So α(T − λJ) = α(T̂ − λ̂J). The last inequality comes from Theorem 2.1 . Thus (3.2) gives

α(T) = α(T̂).

Thus, we have dim(N(T)) = dim(N(T)) ∩ J−1(R∞(T, J))) < ∞. It follows that N(T) ⊆ J−1(R∞(T, J)) and hence
using Lemma 2.3 (iv), we getN∞(T, J) ⊆ J−1(R∞(T, J)).

Conversely, suppose thatN∞(T, J) ⊂ J−1(R∞(T, J)). ThenN(T) = N(T) ∩ J−1(R∞(T, J)) ⊆ N(T) ∩ J−1(Rk(T, J))
is finite dimensional. Thus T is upper semi-Fredholm. By Proposition (2.1), we have T̂ is Fredholm and
β(T̂) = 0. Thus we have, by [8, Theorem 5.11],

α(T) = α(T̂) = α(T̂ − λ̂J) = α(T − λJ) for 0 < |λ| < ε.

Which says that j+(T, J) = 0.�

Our main theorem is an extension of Kato’s decomposition theorem. The proof of this theorem is
inspired essentially from the proof of [9, Theorem 7] and [1, Theorem 4.5].

Theorem 3.2. If T ∈ Ψ+(X,Y, J) satisfies that{
N(T) andN(T) + J−1(R(T)) are complemented,
N(T) ∩ J−1(R(T)) is finite dimensional

then there exist closed subspaces X1 and X2 ⊂ X with T(Xi) ⊂ J(Xi) i = 1, 2 such that X = X1 ⊕ X2, dimX1 <
∞ and X1 ⊂ Nk(T, J) for some k ≥ 1 and T/X2 is upper semi-Fredholm with j+(T/X2 , J/X2 ) = 0.

Proof

If j+(T, J) = 0, then by (3.1), we haveN∞(T, J) ⊂ J−1(R∞(T, J)) and soN(T) ⊂ J−1(R(T)); thus our assumption
says that dim(N(T)) < ∞, then T is upper semi-Fredholm. Thus is nothing to prove.
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If j+(T, J) , 0 and therefore α(T) − α(T − λJ) , 0, then there is a smallest integer v ≥ 1 such that N(T) ⊆
J−1(Rv−1(T)) butN(T)) * J−1(Rv(T)).

If v ≥ 2 then by assumption:

N(T) = N(T) ∩ J−1(Rv−1(T)) ⊆ N(T) ∩ J−1(R(T))

is finite dimensional and hence T is upper semi-Fredholm.

Let Lv−1 be a finite-dimensional subspace such that

N(T) = Lv−1 ⊕ (N(T) ∩ J−1(Rv(T, J))) (3.3)

with Lv−1 ⊂ N(T) and dim J(Lv−1) = dim Lv−1 = r ≥ 1.

We have

J(Lv−1) ∩ Rv(T, J) = {0}. (3.4)

Indeed, let z ∈ J(Lv−1) ∩ Rv(T, J). Then, there exist y1 ∈ Lv−1 and y2 ∈ J−1(Rv(T, J)) such that z = J(y1) = J(y2).
Hence, J(y1 − y2) = 0 ∈ Rv(T, J) and so, y1 − y2 ∈ J−1(Rv(T, J)). It follows that y1 ∈ J−1(Rv(T, J))∩N(T)∩ Lv−1.
In combination with (3.3), this leads to z = 0 and (3.4) is proved. As, Lv−1 ⊂ N(T) ⊂ J−1(Rv−1(T, J)) and
so J(Lv−1) ⊂ T(J−1(Rv−2(T, J))) we can find a subspace Lv−2 ⊂ J−1(Rv−2(T, J)) such that T(Lv−2) = J(Lv−1) with
dim Lv−2 = dim Lv−1 = r. This implies, in particular, that Lv−2 ∩N(T) = {0}. Furthermore we have:

Lv−2 ∩N(J) = {0}. (3.5)

Lv−2 ∩ J−1(Rv−1(T, J)) = {0}. (3.6)

Lv−2 ⊂ N2(T, J). (3.7)

J(Lv−2) ∩ Rv−1(T, J) = {0}. (3.8)

To prove (3.5), let x ∈ Lv−2 ∩ N(J). Then J(x) = 0 ∈ Rv−1(T, J) and so, x ∈ J−1(Rv−1(T, J)). This leads to
T(x) ∈ Rv(T, J). On the other hand, T(x) ∈ T(Lv−2) = J(Lv−1). So, T(x) ∈ J(Lv−1) ∩ Rv(T, J) = {0}. Hence, x = 0
since Lv−2 ∩N(T) = {0}.

Let now, z ∈ Lv−2∩ J−1(Rv−1(T, J)).Then T(z) ∈ J(Lv−1) and J(z) ∈ Rv−1(T, J).Thus, T(z) ∈ J(Lv−1)∩Rv(T, J) = {0}.
So, z ∈ N(T) ∩ Lv−2 = {0}. Hence, z = 0. This proves (3.6).

For (3.7), we have Lv−1 ⊂ N(T). Then J(Lv−1) ⊂ J(N(T)). Therefore, T(Lv−2) ⊂ J(N(T)) and so, Lv−2 ⊂

N2(T, J).

By iteration, we construct L j ⊂ J−1
R j(T, J) with dim L j = r such that J(L j+1) = T(L j) ⊂ R j+1(T, J); 0 ≤ j ≤ v− 2

and satisfying:

L j ∩N(T) = {0} for all 0 ≤ j ≤ v − 2. (3.9)
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L j ∩N(J) = {0} for all 0 ≤ j ≤ v − 2. (3.10)

L j ∩ J−1(R j+1(T, J)) = {0} for all 0 ≤ j ≤ v − 2. (3.11)

L j ⊂ Nv− j(T, J) for all 0 ≤ j ≤ v − 2. (3.12)

J(L j) ∩ R j+1(T, J) = {0} for all 0 ≤ j ≤ v − 2. (3.13)

We claim that the subspaces
J(L0), J(L1), . . . , J(Lk) and Rk+1(T, J))

are linearly independent for every 0 ≤ k ≤ v − 1. Indeed, let l′i ∈ J(Li) for (0 ≤ i ≤ k) and x′k ∈ Rk+1(T, J)
such that x′k + l′0 + · · · + l′k = 0. There exist li ∈ Li 0 ≤ i ≤ k and xk ∈ J−1(Rk+1(T, J)) such that l′i = J(li) for
0 ≤ i ≤ k and x′k = J(xk). We have J(l0) + · · · + J(lk) + J(xk) = 0 and for all 0 ≤ i ≤ k J(li) ∈ T(Li−1). Therefore,
J(l0) ∈ R(T) ∩ J(L0) = {0}. Then J(l0) = 0 and J(l1) + · · · + J(lk) + J(xk) = 0. Using (3.11) and continue the
processus we get l′0 = l′1 = · · · = l′k = xk = 0.

For 0 ≤ j ≤ v − 2, let {y j
1, . . . , y

j
r} be a basis of L j such that T(y j

i ) = J(y j+1
i ) for all 0 ≤ j ≤ v − 2. Notice that

since dimL j = dimJ(L j), then {J(y j
1), . . . , J(y j

r)} is a basis in J(L j).

Since J(L0) and R(T) are linearly independent and by Lemma 2.4 (ii), we have R(T) is closed, then by
Hahn-Banach theorem we can find f 0

i ∈ Y∗ for 1 ≤ i ≤ r such that f 0
i (J(y0

q)) = δiq and f 0
i ∈ (R(T))⊥ for

1 ≤ i, q ≤ r.

We have J∗ f 0
i ∈ (N(T))⊥. Indeed, let y ∈ N(T).

J∗ f 0
i (y) = f 0

i (J(y)).

But, we have J(N(T)) ⊂ Rv−1(T, J) ⊂ R(T). Then J∗ f 0
i (y) = 0 and hence J∗ f 0

i ∈ (N(T))⊥ for all 1 ≤ i ≤ r.

On the other hand, let x ∈ T−1(J(L0) + R2(T, J)). We claim that J∗ f 0
i (x) = 0 for all 1 ≤ i ≤ r. Indeed,

we have T(x) ∈ J(L0) + T(J−1(R(T))), then there exists y ∈ J−1(R(T)) such that T(x) − T(y) ∈ J(L0). So
T(x − y) ∈ J(L0) ∩ R(T) = {0} and then T(x) = T(y). Therefore T(x) ∈ R2(T, J). Thus T(x) = T(z) where
z ∈ J−1(R(T)) and so x − z ∈ N(T) ⊂ J−1(R(T)). Thus J∗ f 0

i (x) = f 0
i (J(x)) = 0. Applying [6, Lemma 3.3.4], there

exist f i
1 ∈ Y∗, 1 ≤ i ≤ r such that T∗ f 1

i = J∗ f 0
i and satisfying f 1

i ∈ (J(L0)+R2(T, J))⊥. Then we have f 1
i (J(y0

q)) = 0
for all 1 ≤ i, q ≤ r and f 1

i (J(y1
q)) = f 1

i (T(y0
q)) = J∗ f 0

i (y0
q) = f 0

i (J(y0
q)) = δiq.

By iteration we construct f k
i ∈ Y∗ for 1 ≤ i ≤ r and 1 ≤ k ≤ v − 1 such that:


T∗ f k

i = J∗ f k−1
i ;

f k
i (J(y j

q)) = δiqδkj ;
f k
i ∈ (Rk+1(T, J))⊥.

(3.14)
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We now introduce:

P1 =

r∑
i=1

v−1∑
j=0

J∗ f j
i ⊗ y j

i

and

P2 =

r∑
i=1

v−1∑
j=0

f j
i ⊗ J(y j

i ).

We claim that P1 is a projection in B(X) with range X1 =
⊕v−1

i=0 Li and kernel X2 =
⋂0≤ j≤v−1

1≤i≤r N(J∗ f j
i ), P2 is a

projection in B(Y) and TP1 = P2T. Indeed, for all x ∈ X,

TP1(x) =
∑r

i=1
∑v−1

j=0 (J∗ f j
i )(x)Ty j

i

=
∑r

i=1
∑v−1

j=0 f j
i (J(x))Ty j

i

P2T(x) =
∑r

i=1
∑v−1

j=0 f j
i (T(x))J(y j

i )

=
∑r

i=1
∑v−1

j=0 f j
i (T(x))T(y j−1

i )

=
∑r

i=1
∑v−2

j=0 f j+1
i (T(x))T(y j

i )

=
∑r

i=1
∑v−2

j=0 f j
i (J(x))T(y j

i ).

Let us now see that T(X1) ⊂ J(X1) and T(X2) ⊂ J(X2).

We have X1 = R(P1) = P1(X). So T(X1) = TP1(X) = P2T(X) ⊂ R(P2) ⊂ J(X1).

To prove T(X2) ⊂ J(X2), let z2 ∈ T(X2). Then z2 ∈ T(I − P1)(X) = (I − P2)T(X) ⊂ R(I − P2) = N(P2). Hence
z2 ∈ N(P2) ∩ R(T) ⊂ N(P2) ∩ R(J). Then, z2 = J(x) for some x ∈ X and f j

i (z2) = 0 for all i, j. Therefore,
x ∈ N( f j

i ◦ J) for all i, j and so, z2 ∈ J(X2).

Clearly we have dim X1 < ∞ and X1 ⊂ Nv(T, J). Indeed, by (3.12) X1 =
⊕v−1

i=0 Li ⊂
⊕v−1

i=0 Nv−i(T, J) = Nv(T, J).

On the other hand α(T/X1 ) = dim N(T/X1 ) = dim [N(T) ∩ X1] = dim Lv−1 = r and α(J/X1 ) = 0. Then for all
λ , 0, α(T/X1−λJ/X1 ) = 0. Indeed, let x ∈ N(T/X1−λJ/X1 ). Then T/X1 (x) = λJ/X1 (x).We have x = x0 + · · ·+xv−1
with xi ∈ Li.

T(x0) + · · · + T(xv−1) = λJ(x0) + · · · + λJ(xv−1).

On the other hand, we have T(Li) = J(Li+1) for all 0 ≤ i ≤ v − 2. Then for xi, there exists x′i+1 ∈ Li+1 such that
T(xi) = J(x′i+1). Hence we get,

λJ(x0) = J(x′1) − λJ(x1) + · · · + J(x′v−1) − λJ(xv−1).

And so
{

J(x0) = 0
J(x′i ) = λJ(xi) f or all 1 ≤ i ≤ v − 1.

Thus,
{

x0 ∈ L0 ∩N(J) = {0}
x′i − λxi ∈ N(J) ∩ Li = {0}.

This processus can be continued and we prove that x = 0. Hence, α(T/X1 − λJ/X1 ) = 0 and j+(T/X1 , J/X1 ) = r.

Clearly we have T/X2 is upper semi-Fredholm and

j+(T/X2 , J/X2 ) = j+(T, J) − j+(T/X1 , J/X1 ) = j+(T, J) − r.

By Theorem 2.1, j+(T, J) ≥ 0, then continuing the processus a finite number of times reduces the jump of the
residual operator to zero.
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Now suppose
N(T) * J−1(R(T)).

By assumption, we can find closed subspaces H,Z and W for wich

N(T) = H ⊕N(T) ∩ J−1(R(T)) (3.15)

J−1(R(T)) = N(T) ∩ J−1(R(T)) ⊕ Z (3.16)

and

X = N(T) ⊕ Z ⊕W. (3.17)

Thus there are continuous projections P ∈ B(X) and Q ∈ B(N(T)) for which

R(P) = N(T) andN(P) = Z ⊕W

and
Q(N(T)) = H andN(Q) = N(T) ∩ J−1(R(T)).

Then we have
QP = (QP)2,

so that QP is a continuous projection on X with range H. Further,

T(QP(X)) = T(H) = {0},

QP(J−1(R(T))) = QP(Z ⊕N(T) ∩ J−1(R(T))) = Q(N(T) ∩ J−1(R(T)))) = {0}.

Thus T is reduced by the decomposition X = R(QP) ⊕N(QP). Indeed, we have T(QP(X)) = {0} ⊂ J(QP(X)).
On the other hand we should prove that T(N(QP)) ⊂ J(N(QP)). We have N(QP) = R(I − QP). Let x ∈ X.
Then by (3.15) and (3.17) there exist xH ∈ H, xN(T)∩J−1(R(T)) ∈ N(T) ∩ J−1(R(T)), xZ ∈ Z and xW ∈ W such
that x = xH + xN(T)∩J−1(R(T)) + xZ + xW . Therefore, T(I − QP)(x) = T(xN(T)∩J−1(R(T)) + xZ + xW) = T(xZ + xW).
We claim that T(I − QP)(x) ∈ J((I − QP)(J−1(R(T)))). We have R(T) ⊂ R(J), then there exists y ∈ X such
that T(xZ + xW) = J(y). So y ∈ J−1(R(T)). Then, by (3.16) there exist yN(T)∩J−1(R(T)) ∈ N(T) ∩ J−1(R(T)) and
yZ ∈ Z such that y = yN(T)∩J−1(R(T)) + yZ and (I − QP)(y) = y − QP(yN(T)∩J−1(R(T)) + yZ) = y. Therefore,
T(I −QP)(x) = J((I −QP)y) ∈ J((I −QP)(J−1(R(T)))). Hence T(N(QP)) ⊂ J(N(QP)).

We write
T = T1 ⊕ T2,

where T1 = T\R(QP) and T2 = T\N(QP). Note that T1 = 0. Since T2 has a closed range and

N(T2) = N(QP) ∩N(T) = J−1(R(T)) ∩N(T)

is finite dimensional. it follows that T2 is upper semi Fredholm. Again, by an analogous construction of
the first part of the proof we have the required result. In fact, we can find a decomposition X = Y1 ⊕ Y2
such that T2(Yi) ⊂ J(Yi) (i = 1, 2) and after a finite number of steps we obtain j+(T2/Y2 , J/Y2 ) = 0. Thus we
have T2 = T2/Y2 and Y1 ⊂ Nk(T, J). This completes the proof. �
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