Filomat 34:4 (2020), 1157–1166 https://doi.org/10.2298/FIL2004157M



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Kato Decomposition Theorem for Linear Pencils

## Maher Mnif<sup>a</sup>, Raouia Neji<sup>a</sup>

<sup>a</sup>University of Sfax, Faculty of Science of Sfax, B.P. 1171, 3000 Sfax, Tunisia.

**Abstract.** The aim of this paper is to give a Kato decomposition, associated to a pair of operators, which removes the jump at the origin. Exactly we will give the class of linear pencils having a constant jump as a generalization of upper semi-Fredholm pencils and we get a Kato decomposition related to this class.

## 1. Introduction

Let *X* and *Y* be infinite dimensional Banach spaces. Denote by  $\mathcal{B}(X, Y)$  the set of all bounded linear operators from *X* into *Y*. For  $T \in \mathcal{B}(X, Y)$ , we write  $\mathcal{D}(T) \subset X$  for the domain,  $\mathcal{N}(T) = KerT$  for the null space and  $\mathcal{R}(T) = RanT$  for the range of *T*. The nullity,  $\alpha(T)$ , of *T* is defined as the dimension of  $\mathcal{N}(T)$  and the deficiency,  $\beta(T)$ , of *T* is defined as the codimension of  $\mathcal{R}(T)$  in *Y*.

In this paper we will consider *T* and *J* two operators of  $\mathcal{B}(X, Y)$  not equal to zero. We set  $\mathcal{N}_1(T, J) = \mathcal{N}(T) \subset X$ , and by iteration we define  $\mathcal{N}_k(T, J) = T^{-1}(J(\mathcal{N}_{k-1}(T, J)))$  for all  $k \ge 2$ . Similarly, we define  $\mathcal{R}_1(T, J) = \mathcal{R}(T)$  and by iteration  $\mathcal{R}_k(T, J) = T(J^{-1}(\mathcal{R}_{k-1}(T, J)))$  for all  $k \ge 2$ .

Clearly  $\mathcal{N}_k(T, J)$  (respectively  $\mathcal{R}_k(T, J)$ ) are linear subspaces of X (respectively Y).

We recall ([4],[5]) that  $T \in \mathcal{B}(X, Y)$  is called upper semi-Fredholm if

*T* has a closed range and  $\alpha(T) < \infty$ .

For  $J \in \mathcal{B}(X, Y)$  write,

 $\Psi_+(X, Y, J) = \{T \in \mathcal{B}(X, Y) : \mathcal{R}(T) \text{ is closed}, \mathcal{R}(T) \subset \mathcal{R}(J) \text{ and } \alpha(T - \lambda J) \text{ is constant for } 0 < |\lambda| < \epsilon\}.$ 

In [9], West defined a jump of a semi-Fredholm operator. We extend this concept to the case of a larger class. If  $T \in \Psi_+(X, Y, J)$  we define the upper jump,  $j_+(T, J)$ , associated to the couple (T, J) by setting

$$j_+(T,J) = \alpha(T) - \alpha(T - \lambda J), \ 0 < |\lambda| < \epsilon.$$

With the understanding that for any real number r,  $\infty - r = \infty$ .

Kato's decomposition for linear operators, linear pencils and linear relations has been studied by many authors under different conditions, see ([1],[2],[3],[6],[9]).

<sup>2010</sup> Mathematics Subject Classification. Primary 47A05, 47A53.

Keywords. Kato Decomposition, jump of linear pencils.

Received: 12 March 2015; Accepted: 22 February 2020

Communicated by Dragan S. Djordjević

Email addresses: Maher.Mnif@gmail.com (Maher Mnif), neji.raouia@yahoo.fr (Raouia Neji)

Kato's decomposition theorem [1, Theorem 4.5], says that if  $T \in \Psi_+(X) = \Psi_+(X, X, I)$ , and satisfying some additional conditions then  $T = T_1 \oplus T_2$ , where  $T_1$  is nilpotent and  $j_+(T_2) = 0$ . The proof of this result is based on the special case of Kato's decomposition theorem given by [9, Theorem 7]. The purpose of this work is to pursue the investigation started in [1] and to extend it to the class  $\Psi_+(X, Y, J)$ . We shall show that if satisfies some conditions then the Kato's decomposition relative to J allows for T. Precisely, we prove that if  $T \in \Psi_+(X, Y, J)$  be such that  $\mathcal{N}(T)$  and  $\mathcal{N}(T) + J^{-1}(\mathcal{R}(T))$  are complemented and  $\mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T))$ is finite dimensional then there exist closed subspaces  $X_1$  and  $X_2 \subset X$  with  $T(X_i) \subset J(X_i)$  i = 1, 2 such that  $X = X_1 \oplus X_2$ ,  $dimX_1 < \infty$  and  $X_1 \subset \mathcal{N}_k(T, J)$  for some  $k \ge 1$  and  $T/_{X_2}$  is upper semi-Fredholm with  $j_+(T/_{X_2}, J/_{X_2}) = 0$ .

The structure of this work is as follows. In section 2, we establish some preliminary results concerning the family of subspaces  $N_k(T, J)$  and  $\mathcal{R}_k(T, J)$ . The section 3, is devoted to the proof of the main result of the paper.

#### 2. Preliminary results

Let *X* and *Y* be two Banach spaces and let  $T, J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . We recall in this section some definitions of subspaces related to (T, J) and some of their properties:

$$\mathcal{R}^{\infty}(T,J) = \bigcap_{n=1}^{\infty} \mathcal{R}_n(T,J)$$

and

$$\mathcal{N}^{\infty}(T,J) = \bigcup_{n=1}^{\infty} \mathcal{N}_n(T,J)$$

where  $N_k(T, J) = T^{-1}(J(N_{k-1}(T, J)))$  for all  $k \ge 2$ . Similarly,  $\mathcal{R}_k(T, J) = T(J^{-1}(\mathcal{R}_{k-1}(T, J)))$  for all  $k \ge 2$ .

**Lemma 2.1.** Let *T* and  $J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . For  $k \ge 2$ , we have:

$$\mathcal{N}_{k-1}(T,J) \subset \mathcal{N}_k(T,J)$$
 and  $\mathcal{R}_k(T,J) \subset \mathcal{R}_{k-1}(T,J)$ .

**Lemma 2.2.** If  $\lambda \neq 0$  and  $T, J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . Then

$$\mathcal{N}(T - \lambda J) \subseteq J^{-1}(\mathcal{R}^{\infty}(T, J)).$$

**Proof** Let  $x \in \mathcal{N}(T - \lambda J)$ . Then  $(T - \lambda J)(x) = 0$ . Thus  $T(x) = \lambda J(x)$  and so  $J(x) = \lambda^{-1}T(x)$  hence  $J(x) \in \mathcal{R}(T)$ .

We must prove that  $J(x) \in \mathcal{R}_n(T, J)$ , for each  $n \ge 2$ .

First, we prove that

$$J(x) \in \mathcal{R}_2(T, J)$$

Indeed, we have  $J(x) \in \mathcal{R}(T)$  then  $x \in J^{-1}(\mathcal{R}(T))$  thus  $Tx \in T(J^{-1}(\mathcal{R}(T))$  so  $Tx \in \mathcal{R}_2(T, J)$  and  $J(x) = \lambda^{-1}Tx \in \mathcal{R}_2(T)$ . And by induction, we have

$$J(x) \in \mathcal{R}_n(T)$$
, for each  $n \ge 2$ .

So, we prove that

$$x \in J^{-1}(\mathcal{R}^{\infty}(T,J)).$$

This gives

 $\mathcal{N}(T-\lambda I) \subseteq J^{-1}(\mathcal{R}^{\infty}(T,J)).$ 

We give here some useful notations for later. Let  $A, B \in \mathcal{B}(X, Y)$ . For  $H \subset X$  and  $K \subset Y$ 

$$(A^{-1}B)(H) = A^{-1}(B(H)), (AB^{-1})(K) = A(B^{-1}(K))$$

and by iteration we define for  $n \ge 2$ :

$$(A^{-1}B)^{n}(H) = A^{-1}(B((A^{-1}B)^{n-1}(H))), (AB^{-1})^{n}(K) = A(B^{-1}((AB^{-1})^{n-1}(K))).$$

**Lemma 2.3.** Let T and  $J \in \mathcal{B}(X, Y)$ .

(*i*) Let  $H \subset X$ ,  $n \ge 1$  and  $x \in X$ . Then,

 $x \in (T^{-1}J)^n(H)$  if and only if there exists  $y \in H$  such that  $y \in (J^{-1}T)^n(\{x\})$ .

(*ii*) For all  $n \ge 1, m \ge 2$ 

$$(T^{-1}J)^n(\mathcal{N}(T)) = \mathcal{N}_{n+1}(T,J)$$
  
$$(TJ^{-1})^n(\mathcal{R}_m(T,J)) = \mathcal{R}_{n+m}(T,J) = T(J^{-1}T)^n(J^{-1}(\mathcal{R}_{m-1}(T,J))).$$

(*iii*) Let  $x, y \in X$ . Then,

If 
$$(J^{-1}T)^n(\{x\}) \cap (J^{-1}T)^n(\{y\}) \neq \emptyset$$
, then  $x - y \in \mathcal{N}_n(T, J)$ .  
(iv) If  $\mathcal{N}(T) \subset J^{-1}(\mathcal{R}_n(T, J))$  for all  $n \ge 1$ , then  $\mathcal{N}_n(T, J) \subset J^{-1}(\mathcal{R}_m(T, J))$  for all  $n, m \ge 1$ 

#### Proof

(*i*) We proceed by induction. The case n = 1 is trivial. Assume now, that the result is valid for the order n. Let  $x \in (T^{-1}J)^{n+1}(H)$ . Then  $x \in T^{-1}(J(T^{-1}J)^n(H))$ . So,  $Tx \in J((T^{-1}J)^n(H))$ . Therefore there exists  $z \in (T^{-1}J)^n(H)$  such that Tx = J(z). Then from induction assumption, there exists  $y \in H$  such that:

$$y \in (J^{-1}T)^n(\{z\}) \subset (J^{-1}T)^n(J^{-1}T)(\{x\}) = (J^{-1}T)^{n+1}(\{x\}).$$

(*ii*) The first equality is proved by induction. The case n = 1 is trivial. Assume now that the equality is valid for the order n. We have:

$$(T^{-1}J)^{n+1}(\mathcal{N}(T)) = T^{-1}(J(T^{-1}J)^n(\mathcal{N}(T))) = T^{-1}(J(\mathcal{N}_{n+1}(T,J))) = \mathcal{N}_{n+2}(T,J).$$

For the second equality, the case n = 1 is trivial. Suppose that the result holds in the order n and for all  $m \ge 2$ ,

$$(TJ^{-1})^{n+1}(\mathcal{R}_m(T,J)) = (TJ^{-1})((TJ^{-1})^n(\mathcal{R}_m(T,J))) = (TJ^{-1})(\mathcal{R}_{n+m}(T,J)) = \mathcal{R}_{n+m+1}(T,J).$$

For the third equality, the case n = 1 is clear. Suppose now that the result is valid for order n and for all  $m \ge 2$ , then we have

$$\begin{aligned} (TJ^{-1})^{n+1}(\mathcal{R}_m(T,J)) &= T(J^{-1}((TJ^{-1})^n(\mathcal{R}_m(T,J)))) \\ &= T(J^{-1}(T(J^{-1}T)^n(J^{-1}(\mathcal{R}_{m-1}(T,J)))) \\ &= T((J^{-1}T)^{n+1}(J^{-1}(\mathcal{R}_{m-1}(T,J)))). \end{aligned}$$

(*iii*) We proceed by induction. For the case n = 1, let  $z \in (J^{-1}T)(\{x\}) \cap (J^{-1}T)(\{y\})$ . Then J(z) = Tx and J(z) = Ty. Therefore T(x - y) = 0 and so,  $x - y \in \mathcal{N}(T)$ . Assume now that the result is valid for the order n. Let  $z \in (J^{-1}T)^{n+1}\{x\} \cap (J^{-1}T)^{n+1}\{y\}$ . Then,  $z \in (J^{-1}T)^n((J^{-1}T)\{x\} \cap (J^{-1}T)\{y\}$ . Hence, there exists  $\alpha_1 \in (J^{-1}T)\{x\}$  and  $\alpha_2 \in (J^{-1}T)\{y\}$  such that  $z \in (J^{-1}T)^n(\alpha_1) \cap (J^{-1}T)^n(\alpha_2)$ . Then, by hypothesis of induction we have:  $\alpha_1 - \alpha_2 \in \mathcal{N}_n(T, J)$ . On the other hand,  $J(\alpha_1) = Tx$  and  $J(\alpha_2) = Ty$ . So,  $T(x - y) = J(\alpha_1 - \alpha_2) \in J(\mathcal{N}_n(T, J))$ . Hence  $x - y \in T^{-1}(J(\mathcal{N}_n(T, J))) = \mathcal{N}_{n+1}(T, J)$ .

(iv) The inclusion is proved by induction. The case n = 1 is a direct consequence of the hypothesis. Assume now that the result is valid for the order *n* and for all  $m \ge 1$ . Let  $x \in N_{n+1}(T, J)$ . Then by (*i*), there exists  $z \in \mathcal{N}(T)$  such that  $z \in (J^{-1}T)^n(\{x\})$ . On the other hand, by hypothesis, we get  $z \in \mathcal{N}(T) \subset$  $J^{-1}(\mathcal{R}_{n+m}(T,J)) \forall m \ge 1. \text{ Then, by } (ii), J(z) \in \mathcal{R}_{n+m}(T,J) = (TJ^{-1})^n (\mathcal{R}_m(T,J)) = T((J^{-1}T)^n (J^{-1}(\mathcal{R}_{m-1}(T,J))). \text{ So, } z \in J^{-1}(T((J^{-1}T)^n (J^{-1}(\mathcal{R}_{m-1}(T,J)))) = (J^{-1}T)^n (J^{-1}(\mathcal{R}_{m-1}(T,J))). \text{ Then there exists } y_m \in (J^{-1}T) (J^{-1}(\mathcal{R}_{m-1}(T,J))) = J^{-1}(\mathcal{R}_m(T,J)) \text{ such that, } z \in (J^{-1}T)^n (\{y_m\}). \text{ Hence, } (J^{-1}T)^n (\{y\}) \cap (J^{-1}T)^n (\{x\}) \neq \emptyset. \text{ Using } (iii) \text{ we get } x - y_m \in J^{-1}(\mathcal{R}_m(T,J)) = J^{-1}(\mathcal{R}$  $J^{-1}(\mathcal{R}_m(T, J))$  and so,  $x \in J^{-1}(\mathcal{R}_m(T, J))$ .

In the sequel we need the following theorem wish is an immediate consequence of Theorem 1 and Theorem 7 in [6].

**Theorem 2.1.** Let  $J \in \mathcal{B}(X, Y)$  and T be an upper semi-Fredholm operator such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . Then there exists  $\epsilon > 0$  such that  $\alpha(\lambda J + T) \leq \alpha(T)$  for all  $|\lambda| < \epsilon$ , and  $\alpha(\lambda J + T)$  is constant for all  $0 < |\lambda| < \epsilon$ .

According to this theorem we can see that

 $\{T \in \mathcal{B}(X, Y) : T \text{ is upper semi-Fredholm operator with } \mathcal{R}(T) \subset \mathcal{R}(I)\} \subseteq \Psi_+(X, Y, I).$ 

**Lemma 2.4.** Let *T* and  $J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . We have: (*i*)  $T(J^{-1}(\mathcal{R}^{\infty}(T,J)) \subset \mathcal{R}^{\infty}(T,J));$ (ii) If  $T \in \Phi_+(X, Y)$  then  $\mathcal{R}^{\infty}(T, J)$  is closed.

**Proof** (*i*) We have

$$\mathcal{R}^{\infty}(T,J) = \bigcap_{n=1}^{\infty} \mathcal{R}_n(T,J) \text{ and } \mathcal{R}_n(T,J) = T(J^{-1}(\mathcal{R}_{n-1}(T,J))) \text{ for all } n \ge 2.$$

So,

$$J^{-1}(\mathcal{R}^{\infty}(T,J)) = J^{-1}(\bigcap_{n=1}^{\infty} \mathcal{R}_n(T,J)) = \bigcap_{n=1}^{\infty} J^{-1}(\mathcal{R}_n(T,J)).$$

Then

$$T(J^{-1}(\mathcal{R}^{\infty}(T,J))) = T(\bigcap_{n=1}^{\infty} J^{-1}(\mathcal{R}_n(T,J))) \subset \bigcap_{n=1}^{\infty} T(J^{-1}(\mathcal{R}_n(T,J))) \subset \bigcap_{n=1}^{\infty} \mathcal{R}_{n+1}(T,J).$$

Then

$$T(J^{-1}(\mathcal{R}^{\infty}(T,J))) \subset \bigcap_{n=2}^{\infty} \mathcal{R}_n(T,J).$$

On the other hand we have

$$T(J^{-1}(\mathcal{R}^{\infty}(T,J))) \subset \mathcal{R}(T).$$

So, we have the result

$$T(J^{-1}(\mathcal{R}^{\infty}(T,J)) \subset \mathcal{R}^{\infty}(T,J)).$$

(*ii*) Since  $\mathcal{R}^{\infty}(T, J) = \bigcap_{n=1}^{\infty} \mathcal{R}_n(T, J)$ , the result is obtained if we prove that  $\mathcal{R}_n(T, J)$  is closed for all  $n \ge 1$ . We proceed by induction. For the case n = 1, we have  $T \in \Phi_+(X, Y)$ , then  $\mathcal{R}_1(T, J) = \mathcal{R}(T)$  is closed. Assume now that  $\mathcal{R}_n(T, J)$  is closed.

Define  $T_1 := T/_{N(T)+I^{-1}(\mathcal{R}_n(T,I))}$ .

Since *T* is closed with finite dimensional null space and  $J^{-1}(\mathcal{R}_n(T, J))$  is closed we obtain that  $T_1$  is closed. We note that  $\mathcal{N}(T_1) = \mathcal{N}(T)$  and hence  $\gamma(T) \leq \gamma(T_1)$ , where  $\gamma$  is the reduced minimum defined by

$$\gamma(T) := \sup\{ \epsilon \ge 0; \epsilon \ dist(x, \mathcal{N}(T)) \le ||Tx||, x \in \mathcal{D}(T) \}.$$

Applying [7, Theorem 2, page 97], we deduce that  $\mathcal{R}(T_1)$  is closed. But  $\mathcal{R}(T_1) = \mathcal{R}_{n+1}(T, J)$ . Indeed,  $\mathcal{R}(T_1) = T(\mathcal{N}(T) + J^{-1}(\mathcal{R}_n(T, J))) = T(J^{-1}(\mathcal{R}_n(T, J))) = \mathcal{R}_{n+1}(T, J)$ . So,  $\mathcal{R}_{n+1}(T, J)$  is closed.

Let *T* and  $J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . Define

$$\overline{\Gamma}: J^{-1}(\mathcal{R}^{\infty}(T,J)) \to \mathcal{R}^{\infty}(T,J)$$

the operator induced by T and

$$J: J^{-1}(\mathcal{R}^{\infty}(T,J)) \to \mathcal{R}^{\infty}(T,J)$$

the operator induced by J.

**Proposition 2.1.** Let T and  $J \in \mathcal{B}(X, Y)$  be such that  $\mathcal{R}(T) \subset \mathcal{R}(J)$ . If  $\alpha(T) < \infty$  then  $\beta(\widehat{T}) = 0$  and  $\alpha(\widehat{T}) < \infty$ .

**Proof** We show that if  $x \in \mathcal{R}^{\infty}(T, J)$  then  $T^{-1}\{x\} \cap J^{-1}(\mathcal{R}^{\infty}(T, J)) \neq \emptyset$ . Indeed,  $x \in \mathcal{R}^{\infty}(T, J)$  then  $x \in \mathcal{R}(T)$  and so,  $T^{-1}\{x\} \neq \emptyset$ . Let  $w \in T^{-1}\{x\}$ , then  $T^{-1}\{x\} = w + \mathcal{N}(T)$  which, by hypothesis, is a finite dimensional hyperplane. Hence the decreasing sequence  $T^{-1}\{x\} \cap J^{-1}(\mathcal{R}_n(T, J))$  terminates. Thus for some k

$$T^{-1}{x} \cap J^{-1}(\mathcal{R}^{\infty}(T,J)) = T^{-1}{x} \cap J^{-1}(\mathcal{R}_{k}(T,J)).$$

Now,  $x \in \mathcal{R}^{\infty}(T, J)$  then  $x \in \bigcap_k \mathcal{R}_k(T, J)$  so  $x \in \mathcal{R}_{k+1}(T, J)$ , thus  $x \in T(J^{-1}(\mathcal{R}_k(T, J)))$  then there exists  $y \in J^{-1}(\mathcal{R}_k(T, J))$  such that x = Ty. So,  $y \in T^{-1}\{x\}$ . Finally  $y \in T^{-1}\{x\} \cap J^{-1}(\mathcal{R}_k(T, J)) = T^{-1}\{x\} \cap J^{-1}(\mathcal{R}^{\infty}(T, J))$ . So,

$$T^{-1}\{x\} \cap J^{-1}(\mathcal{R}^{\infty}(T,J)) \neq \emptyset.$$

Now,

$$\beta(\widehat{T}) = dim(\mathcal{R}^{\infty}(T, J)/T(J^{-1}(\mathcal{R}^{\infty}(T, J))))$$

So, we prove that  $\mathcal{R}^{\infty}(T, J) = T(J^{-1}(\mathcal{R}^{\infty}(T, J)))$ . We have,  $T(J^{-1}(\mathcal{R}^{\infty}(T, J))) \subset \mathcal{R}^{\infty}(T, J)$  is evident.

If  $x \in \mathcal{R}^{\infty}(T, J)$ , then  $T^{-1}\{x\} \cap J^{-1}(\mathcal{R}^{\infty}(T, J)) \neq \emptyset$ . Let  $y \in T^{-1}\{x\} \cap J^{-1}(\mathcal{R}^{\infty}(T, J))$ . Then

$$\begin{cases} y \in T^{-1}\{x\}; \\ y \in J^{-1}(\mathcal{R}^{\infty}(T,J)). \end{cases} \text{ Then } \begin{cases} x = T(y); \\ y \in J^{-1}(\mathcal{R}^{\infty}(T,J)). \end{cases}$$

So  $x \in T(J^{-1}(\mathcal{R}^{\infty}(T, J)))$ , which concludes the proof and

$$\beta(\widehat{T}) = dim(\mathcal{R}^{\infty}(T,J)/T(J^{-1}(\mathcal{R}^{\infty}(T,J)))) = 0.$$

In the other hand, we have  $\widehat{T} \subset T$  then  $\mathcal{N}(\widehat{T}) \subset \mathcal{N}(T)$ . So,

$$\alpha(T) \le \alpha(T) < \infty.$$

**Remark 2.1.** From Proposition 2.1 we can conclude that if T is upper semi-Fredholm then  $\widehat{T}$  is Fredholm and  $\beta(\widehat{T}) = 0$ .

#### 3. Main results

The following theorem gives a characterization of a constant neighborhood nullity linear pencils (*T*, *J*) with  $j_+(T, J) = 0$ .

**Theorem 3.1.** If  $T \in \Psi_+(X, Y, J)$  has a finite dimensional intersection  $\mathcal{N}(T) \cap J^{-1}(\mathcal{R}_k(T, J))$  for some  $k \in \mathbb{N}^*$  then

$$i_{+}(T, J) = 0 \quad \text{if and only if } \mathcal{N}^{\infty}(T) \subset J^{-1}(\mathcal{R}^{\infty}(T, J)). \tag{3.1}$$

#### Proof

Suppose that  $T \in \Psi_+(X, Y, J)$ . If  $j_+(T, J) = 0$  we claim that

$$\alpha(\widehat{T}) \le \alpha(T) = \alpha(T - \lambda J) = \alpha(\widehat{T} - \lambda \widehat{J}) \le \alpha(\widehat{T}) \quad \text{for } 0 < |\lambda| < \epsilon.$$
(3.2)

Indeed, the first inequality is evident. The second equality comes from the assumption. The third equality comes from Lemma 2.2. In fact, let  $x \in \mathcal{N}(\widehat{T} - \lambda \widehat{J})$  then  $(\widehat{T} - \lambda \widehat{J})(x) = 0$  and  $x \in J^{-1}(\mathcal{R}^{\infty}(T, J))$ . Thus,  $\begin{cases} x \in J^{-1}(\mathcal{R}^{\infty}(T, J)) & ; \\ (T - \lambda J)(x) = 0 \end{cases}$ .

So we have  $\mathcal{N}(\widehat{T} - \lambda \widehat{J}) = \mathcal{N}(T - \lambda J) \cap J^{-1}(\mathcal{R}^{\infty}(T, J))$  and by Lemma 2.2, we have  $\mathcal{N}(T - \lambda J) \subset J^{-1}(\mathcal{R}^{\infty}(T, J))$ . So  $\alpha(T - \lambda J) = \alpha(\widehat{T} - \lambda \widehat{J})$ . The last inequality comes from Theorem 2.1. Thus (3.2) gives

 $\alpha(T) = \alpha(\widehat{T}).$ 

Thus, we have  $dim(\mathcal{N}(T)) = dim(\mathcal{N}(T)) \cap J^{-1}(\mathcal{R}^{\infty}(T, J))) < \infty$ . It follows that  $\mathcal{N}(T) \subseteq J^{-1}(\mathcal{R}^{\infty}(T, J))$  and hence using Lemma 2.3 (iv), we get  $\mathcal{N}^{\infty}(T, J) \subseteq J^{-1}(\mathcal{R}^{\infty}(T, J))$ .

Conversely, suppose that  $\mathcal{N}^{\infty}(T, J) \subset J^{-1}(\mathcal{R}^{\infty}(T, J))$ . Then  $\mathcal{N}(T) = \mathcal{N}(T) \cap J^{-1}(\mathcal{R}^{\infty}(T, J)) \subseteq \mathcal{N}(T) \cap J^{-1}(\mathcal{R}_{k}(T, J))$ is finite dimensional. Thus *T* is upper semi-Fredholm. By Proposition (2.1), we have  $\widehat{T}$  is Fredholm and  $\beta(\widehat{T}) = 0$ . Thus we have, by [8, Theorem 5.11],

$$\alpha(T) = \alpha(\widehat{T}) = \alpha(\widehat{T} - \lambda \widehat{J}) = \alpha(T - \lambda J) \text{ for } 0 < |\lambda| < \epsilon.$$

Which says that  $j_+(T, J) = 0.\blacksquare$ 

Our main theorem is an extension of Kato's decomposition theorem. The proof of this theorem is inspired essentially from the proof of [9, Theorem 7] and [1, Theorem 4.5].

**Theorem 3.2.** If  $T \in \Psi_+(X, Y, J)$  satisfies that

 $\left\{\begin{array}{l} \mathcal{N}(T) \ and \ \mathcal{N}(T) + J^{-1}(\mathcal{R}(T)) \ are \ complemented, \\ \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T)) \ is \ finite \ dimensional \end{array}\right.$ 

then there exist closed subspaces  $X_1$  and  $X_2 \subset X$  with  $T(X_i) \subset J(X_i)$  i = 1, 2 such that  $X = X_1 \oplus X_2$ ,  $\dim X_1 < \infty$  and  $X_1 \subset \mathcal{N}_k(T, J)$  for some  $k \ge 1$  and  $T/_{X_2}$  is upper semi-Fredholm with  $j_+(T/_{X_2}, J/_{X_2}) = 0$ .

### Proof

If  $j_+(T, J) = 0$ , then by (3.1), we have  $\mathcal{N}^{\infty}(T, J) \subset J^{-1}(\mathcal{R}^{\infty}(T, J))$  and so  $\mathcal{N}(T) \subset J^{-1}(\mathcal{R}(T))$ ; thus our assumption says that  $\dim(\mathcal{N}(T)) < \infty$ , then *T* is upper semi-Fredholm. Thus is nothing to prove.

If  $j_+(T, J) \neq 0$  and therefore  $\alpha(T) - \alpha(T - \lambda J) \neq 0$ , then there is a smallest integer  $v \ge 1$  such that  $\mathcal{N}(T) \subseteq J^{-1}(\mathcal{R}_{v-1}(T))$  but  $\mathcal{N}(T)) \not\subseteq J^{-1}(\mathcal{R}_v(T))$ .

If  $v \ge 2$  then by assumption:

 $\mathcal{N}(T) = \mathcal{N}(T) \cap J^{-1}(\mathcal{R}_{v-1}(T)) \subseteq \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T))$ 

is finite dimensional and hence *T* is upper semi-Fredholm.

Let  $L_{v-1}$  be a finite-dimensional subspace such that

$$\mathcal{N}(T) = L_{v-1} \oplus (\mathcal{N}(T) \cap J^{-1}(\mathcal{R}_v(T, J)))$$
(3.3)

with  $L_{v-1} \subset \mathcal{N}(T)$  and  $\dim J(L_{v-1}) = \dim L_{v-1} = r \ge 1$ .

We have

$$J(L_{v-1}) \cap \mathcal{R}_v(T, J) = \{0\}.$$
(3.4)

Indeed, let  $z \in J(L_{v-1}) \cap \mathcal{R}_v(T, J)$ . Then, there exist  $y_1 \in L_{v-1}$  and  $y_2 \in J^{-1}(\mathcal{R}_v(T, J))$  such that  $z = J(y_1) = J(y_2)$ . Hence,  $J(y_1 - y_2) = 0 \in \mathcal{R}_v(T, J)$  and so,  $y_1 - y_2 \in J^{-1}(\mathcal{R}_v(T, J))$ . It follows that  $y_1 \in J^{-1}(\mathcal{R}_v(T, J)) \cap \mathcal{N}(T) \cap L_{v-1}$ . In combination with (3.3), this leads to z = 0 and (3.4) is proved. As,  $L_{v-1} \subset \mathcal{N}(T) \subset J^{-1}(\mathcal{R}_{v-1}(T, J))$  and so  $J(L_{v-1}) \subset T(J^{-1}(\mathcal{R}_{v-2}(T, J)))$  we can find a subspace  $L_{v-2} \subset J^{-1}(\mathcal{R}_{v-2}(T, J))$  such that  $T(L_{v-2}) = J(L_{v-1})$  with  $\dim L_{v-2} = \dim L_{v-1} = r$ . This implies, in particular, that  $L_{v-2} \cap \mathcal{N}(T) = \{0\}$ . Furthermore we have:

$$L_{v-2} \cap \mathcal{N}(J) = \{0\}.$$
(3.5)

$$L_{v-2} \cap J^{-1}(\mathcal{R}_{v-1}(T,J)) = \{0\}.$$
(3.6)

$$L_{v-2} \subset \mathcal{N}_2(T, J). \tag{3.7}$$

$$J(L_{v-2}) \cap \mathcal{R}_{v-1}(T,J) = \{0\}.$$
(3.8)

To prove (3.5), let  $x \in L_{v-2} \cap \mathcal{N}(J)$ . Then  $J(x) = 0 \in \mathcal{R}_{v-1}(T, J)$  and so,  $x \in J^{-1}(\mathcal{R}_{v-1}(T, J))$ . This leads to  $T(x) \in \mathcal{R}_v(T, J)$ . On the other hand,  $T(x) \in T(L_{v-2}) = J(L_{v-1})$ . So,  $T(x) \in J(L_{v-1}) \cap \mathcal{R}_v(T, J) = \{0\}$ . Hence, x = 0 since  $L_{v-2} \cap \mathcal{N}(T) = \{0\}$ .

Let now,  $z \in L_{v-2} \cap J^{-1}(\mathcal{R}_{v-1}(T, J))$ . Then  $T(z) \in J(L_{v-1})$  and  $J(z) \in \mathcal{R}_{v-1}(T, J)$ . Thus,  $T(z) \in J(L_{v-1}) \cap \mathcal{R}_{v}(T, J) = \{0\}$ . So,  $z \in \mathcal{N}(T) \cap L_{v-2} = \{0\}$ . Hence, z = 0. This proves (3.6).

For (3.7), we have  $L_{v-1} \subset \mathcal{N}(T)$ . Then  $J(L_{v-1}) \subset J(\mathcal{N}(T))$ . Therefore,  $T(L_{v-2}) \subset J(\mathcal{N}(T))$  and so,  $L_{v-2} \subset \mathcal{N}_2(T, J)$ .

By iteration, we construct  $L_j \subset J^{-1}\mathcal{R}_j(T, J)$  with  $\dim L_j = r$  such that  $J(L_{j+1}) = T(L_j) \subset \mathcal{R}_{j+1}(T, J)$ ;  $0 \le j \le v - 2$  and satisfying:

$$L_j \cap \mathcal{N}(T) = \{0\}$$
 for all  $0 \le j \le v - 2$ . (3.9)

$$L_j \cap \mathcal{N}(J) = \{0\}$$
 for all  $0 \le j \le v - 2$ . (3.10)

$$L_j \cap J^{-1}(\mathcal{R}_{j+1}(T,J)) = \{0\}$$
 for all  $0 \le j \le v - 2.$  (3.11)

$$L_j \subset \mathcal{N}_{v-j}(T,J) \quad \text{for all } 0 \le j \le v-2. \tag{3.12}$$

$$J(L_i) \cap \mathcal{R}_{i+1}(T, J) = \{0\} \quad \text{for all } 0 \le j \le v - 2.$$
(3.13)

We claim that the subspaces

 $J(L_0), J(L_1), \ldots, J(L_k)$  and  $\mathcal{R}_{k+1}(T, J)$ )

are linearly independent for every  $0 \le k \le v - 1$ . Indeed, let  $l'_i \in J(L_i)$  for  $(0 \le i \le k)$  and  $x'_k \in \mathcal{R}_{k+1}(T, J)$  such that  $x'_k + l'_0 + \cdots + l'_k = 0$ . There exist  $l_i \in L_i$   $0 \le i \le k$  and  $x_k \in J^{-1}(\mathcal{R}_{k+1}(T, J))$  such that  $l'_i = J(l_i)$  for  $0 \le i \le k$  and  $x'_k = J(x_k)$ . We have  $J(l_0) + \cdots + J(l_k) + J(x_k) = 0$  and for all  $0 \le i \le k$   $J(l_i) \in T(L_{i-1})$ . Therefore,  $J(l_0) \in \mathcal{R}(T) \cap J(L_0) = \{0\}$ . Then  $J(l_0) = 0$  and  $J(l_1) + \cdots + J(l_k) + J(x_k) = 0$ . Using (3.11) and continue the processus we get  $l'_0 = l'_1 = \cdots = l'_k = x_k = 0$ .

For  $0 \le j \le v - 2$ , let  $\{y_1^j, \ldots, y_r^j\}$  be a basis of  $L_j$  such that  $T(y_i^j) = J(y_i^{j+1})$  for all  $0 \le j \le v - 2$ . Notice that since  $dimL_j = dimJ(L_j)$ , then  $\{J(y_1^j), \ldots, J(y_r^j)\}$  is a basis in  $J(L_j)$ .

Since  $J(L_0)$  and  $\mathcal{R}(T)$  are linearly independent and by Lemma 2.4 (*ii*), we have  $\mathcal{R}(T)$  is closed, then by Hahn-Banach theorem we can find  $f_i^0 \in Y^*$  for  $1 \le i \le r$  such that  $f_i^0(J(y_q^0)) = \delta_{iq}$  and  $f_i^0 \in (\mathcal{R}(T))^{\perp}$  for  $1 \le i, q \le r$ .

We have  $J^* f_i^0 \in (\mathcal{N}(T))^{\perp}$ . Indeed, let  $y \in \mathcal{N}(T)$ .

$$J^* f_i^0(y) = f_i^0(J(y)).$$

But, we have  $J(\mathcal{N}(T)) \subset \mathcal{R}_{v-1}(T, J) \subset \mathcal{R}(T)$ . Then  $J^* f_i^0(y) = 0$  and hence  $J^* f_i^0 \in (\mathcal{N}(T))^{\perp}$  for all  $1 \le i \le r$ .

On the other hand, let  $x \in T^{-1}(J(L_0) + \mathcal{R}_2(T, J))$ . We claim that  $J^*f_i^0(x) = 0$  for all  $1 \le i \le r$ . Indeed, we have  $T(x) \in J(L_0) + T(J^{-1}(\mathcal{R}(T)))$ , then there exists  $y \in J^{-1}(\mathcal{R}(T))$  such that  $T(x) - T(y) \in J(L_0)$ . So  $T(x - y) \in J(L_0) \cap \mathcal{R}(T) = \{0\}$  and then T(x) = T(y). Therefore  $T(x) \in \mathcal{R}_2(T, J)$ . Thus T(x) = T(z) where  $z \in J^{-1}(\mathcal{R}(T))$  and so  $x - z \in \mathcal{N}(T) \subset J^{-1}(\mathcal{R}(T))$ . Thus  $J^*f_i^0(x) = f_i^0(J(x)) = 0$ . Applying [6, Lemma 3.3.4], there exist  $f_1^i \in Y^*$ ,  $1 \le i \le r$  such that  $T^*f_i^1 = J^*f_i^0$  and satisfying  $f_i^1 \in (J(L_0) + \mathcal{R}_2(T, J))^{\perp}$ . Then we have  $f_i^1(J(y_q^0)) = 0$  for all  $1 \le i, q \le r$  and  $f_i^1(J(y_q^0)) = J^*f_i^0(y_q^0) = f_i^0(J(y_q^0)) = \delta_{iq}$ .

By iteration we construct  $f_i^k \in Y^*$  for  $1 \le i \le r$  and  $1 \le k \le v - 1$  such that:

$$\begin{cases} T^* f_i^k = J^* f_i^{k-1}; \\ f_i^k (J(y_q^j)) = \delta_{iq} \delta_{kj}; \\ f_i^k \in (\mathcal{R}_{k+1}(T, J))^{\perp}. \end{cases}$$
(3.14)

We now introduce:

$$P_1 = \sum_{i=1}^r \sum_{j=0}^{v-1} J^* f_i^j \otimes y_i^j$$

and

$$P_{2} = \sum_{i=1}^{r} \sum_{j=0}^{v-1} f_{i}^{j} \otimes J(y_{i}^{j}).$$

We claim that  $P_1$  is a projection in  $\mathcal{B}(X)$  with range  $X_1 = \bigoplus_{i=0}^{v-1} L_i$  and kernel  $X_2 = \bigcap_{1 \le i \le r}^{0 \le j \le v-1} \mathcal{N}(J^* f_i^j)$ ,  $P_2$  is a projection in  $\mathcal{B}(Y)$  and  $TP_1 = P_2T$ . Indeed, for all  $x \in X$ ,

$$\begin{aligned} TP_1(x) &= \sum_{i=1}^r \sum_{j=0}^{v-1} (J^* f_i^j)(x) Ty_i^j \\ &= \sum_{i=1}^r \sum_{j=0}^{v-1} f_i^j (J(x)) Ty_i^j \\ P_2T(x) &= \sum_{i=1}^r \sum_{j=0}^{v-1} f_i^j (T(x)) J(y_i^j) \\ &= \sum_{i=1}^r \sum_{j=0}^{v-1} f_i^j (T(x)) T(y_i^{j-1}) \\ &= \sum_{i=1}^r \sum_{j=0}^{v-2} f_i^{j+1} (T(x)) T(y_i^j) \\ &= \sum_{i=1}^r \sum_{j=0}^{v-2} f_i^j (J(x)) T(y_i^j). \end{aligned}$$

Let us now see that  $T(X_1) \subset J(X_1)$  and  $T(X_2) \subset J(X_2)$ .

We have  $X_1 = \mathcal{R}(P_1) = P_1(X)$ . So  $T(X_1) = TP_1(X) = P_2T(X) \subset \mathcal{R}(P_2) \subset J(X_1)$ .

To prove  $T(X_2) \subset J(X_2)$ , let  $z_2 \in T(X_2)$ . Then  $z_2 \in T(I - P_1)(X) = (I - P_2)T(X) \subset \mathcal{R}(I - P_2) = \mathcal{N}(P_2)$ . Hence  $z_2 \in \mathcal{N}(P_2) \cap \mathcal{R}(T) \subset \mathcal{N}(P_2) \cap \mathcal{R}(J)$ . Then,  $z_2 = J(x)$  for some  $x \in X$  and  $f_i^j(z_2) = 0$  for all i, j. Therefore,  $x \in \mathcal{N}(f_i^j \circ J)$  for all i, j and so,  $z_2 \in J(X_2)$ .

Clearly we have  $\dim X_1 < \infty$  and  $X_1 \subset \mathcal{N}_v(T, J)$ . Indeed, by (3.12)  $X_1 = \bigoplus_{i=0}^{v-1} L_i \subset \bigoplus_{i=0}^{v-1} \mathcal{N}_{v-i}(T, J) = \mathcal{N}_v(T, J)$ .

On the other hand  $\alpha(T/X_1) = \dim \mathcal{N}(T/X_1) = \dim [\mathcal{N}(T) \cap X_1] = \dim L_{v-1} = r$  and  $\alpha(J/X_1) = 0$ . Then for all  $\lambda \neq 0$ ,  $\alpha(T/X_1 - \lambda J/X_1) = 0$ . Indeed, let  $x \in \mathcal{N}(T/X_1 - \lambda J/X_1)$ . Then  $T/X_1(x) = \lambda J/X_1(x)$ . We have  $x = x_0 + \cdots + x_{v-1}$  with  $x_i \in L_i$ .

$$T(x_0) + \cdots + T(x_{v-1}) = \lambda J(x_0) + \cdots + \lambda J(x_{v-1})$$

On the other hand, we have  $T(L_i) = J(L_{i+1})$  for all  $0 \le i \le v - 2$ . Then for  $x_i$ , there exists  $x'_{i+1} \in L_{i+1}$  such that  $T(x_i) = J(x'_{i+1})$ . Hence we get,

$$\lambda J(x_0) = J(x'_1) - \lambda J(x_1) + \cdots + J(x'_{v-1}) - \lambda J(x_{v-1}).$$

And so  $\begin{cases} J(x_0) = 0\\ J(x'_i) = \lambda J(x_i) \quad for \ all \ 1 \le i \le v - 1. \end{cases}$ Thus,  $\begin{cases} x_0 \in L_0 \cap \mathcal{N}(J) = \{0\}\\ x'_i - \lambda x_i \in \mathcal{N}(J) \cap L_i = \{0\}. \end{cases}$ 

This processus can be continued and we prove that x = 0. Hence,  $\alpha(T/X_1 - \lambda J/X_1) = 0$  and  $j_+(T/X_1, J/X_1) = r$ .

Clearly we have  $T/_{X_2}$  is upper semi-Fredholm and

$$j_+(T/_{X_2}, J/_{X_2}) = j_+(T, J) - j_+(T/_{X_1}, J/_{X_1}) = j_+(T, J) - r$$

By Theorem 2.1,  $j_+(T, J) \ge 0$ , then continuing the processus a finite number of times reduces the jump of the residual operator to zero.

1165

1166

Now suppose

$$\mathcal{N}(T) \not\subseteq J^{-1}(\mathcal{R}(T)).$$

By assumption, we can find closed subspaces H, Z and W for wich

$$\mathcal{N}(T) = H \oplus \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T)) \tag{3.15}$$

$$J^{-1}(\mathcal{R}(T)) = \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T)) \oplus Z$$
(3.16)

and

$$X = \mathcal{N}(T) \oplus Z \oplus W. \tag{3.17}$$

Thus there are continuous projections  $P \in \mathcal{B}(X)$  and  $Q \in \mathcal{B}(\mathcal{N}(T))$  for which

$$\mathcal{R}(P) = \mathcal{N}(T)$$
 and  $\mathcal{N}(P) = Z \oplus W$ 

and

$$Q(\mathcal{N}(T)) = H \text{ and } \mathcal{N}(Q) = \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T)).$$

Then we have

$$QP = (QP)^2,$$

so that QP is a continuous projection on X with range H. Further,

$$T(QP(X)) = T(H) = \{0\},\$$

$$QP(J^{-1}(\mathcal{R}(T))) = QP(Z \oplus \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T))) = Q(\mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T))) = \{0\}.$$

Thus *T* is reduced by the decomposition  $X = \mathcal{R}(QP) \oplus \mathcal{N}(QP)$ . Indeed, we have  $T(QP(X)) = \{0\} \subset J(QP(X))$ . On the other hand we should prove that  $T(\mathcal{N}(QP)) \subset J(\mathcal{N}(QP))$ . We have  $\mathcal{N}(QP) = \mathcal{R}(I - QP)$ . Let  $x \in X$ . Then by (3.15) and (3.17) there exist  $x_H \in H, x_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} \in \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T)), x_Z \in Z$  and  $x_W \in W$  such that  $x = x_H + x_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} + x_Z + x_W$ . Therefore,  $T(I - QP)(x) = T(x_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} + x_Z + x_W) = T(x_Z + x_W)$ . We claim that  $T(I - QP)(x) \in J((I - QP)(J^{-1}(\mathcal{R}(T))))$ . We have  $\mathcal{R}(T) \subset \mathcal{R}(J)$ , then there exists  $y \in X$  such that  $T(x_Z + x_W) = J(y)$ . So  $y \in J^{-1}(\mathcal{R}(T))$ . Then, by (3.16) there exist  $y_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} \in \mathcal{N}(T) \cap J^{-1}(\mathcal{R}(T))$  and  $y_Z \in Z$  such that  $y = y_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} + y_Z$  and  $(I - QP)(y) = y - QP(y_{\mathcal{N}(T)\cap J^{-1}(\mathcal{R}(T))} + y_Z) = y$ . Therefore,  $T(I - QP)(x) = J((I - QP)(J^{-1}(\mathcal{R}(T))))$ . Hence  $T(\mathcal{N}(QP)) \subset J(\mathcal{N}(QP))$ .

We write

$$T=T_1\oplus T_2,$$

where  $T_1 = T \setminus \mathcal{R}(QP)$  and  $T_2 = T \setminus \mathcal{N}(QP)$ . Note that  $T_1 = 0$ . Since  $T_2$  has a closed range and

$$\mathcal{N}(T_2) = \mathcal{N}(QP) \cap \mathcal{N}(T) = J^{-1}(\mathcal{R}(T)) \cap \mathcal{N}(T)$$

is finite dimensional. it follows that  $T_2$  is upper semi Fredholm. Again, by an analogous construction of the first part of the proof we have the required result. In fact, we can find a decomposition  $X = Y_1 \oplus Y_2$  such that  $T_2(Y_i) \subset J(Y_i)$  (i = 1, 2) and after a finite number of steps we obtain  $j_+(T_2/Y_2, J/Y_2) = 0$ . Thus we have  $T_2 = T_2/Y_2$  and  $Y_1 \subset N_k(T, J)$ . This completes the proof.

#### References

- [1] Y. B. Choi, Y. M. Han and I. S. Hwang, On Kato's decomposition theorem, Comn. Korean Math. Soc. 9 (1994), No. 2, pp. 317-325.
- [2] Y. Chamkha, M. Mnif, The class of B-Fredholm linear relations, Complex Anal. Oper. Theor. DOI 10. 1007/511785-014-0438-3(2013).
- [3] D. Gagnage, Kato decomposition of linear pencils, Stu. Math. 154(2) (2003).
- [4] S. Goldberg, Unbounded linear operators, McGraw-Hill, New York, 1966.
- [5] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1986), 151-176.
- [6] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math. 6(1958), 261-322.
- [7] V. Müller, Spectral theory of linear operators and spectral system in Banach algebras, Operator theory advance and application vol. **139**, (2003).
- [8] M. Schechter, Principles of Functional Analysis, Graduate Studies in Mathematics, Vol. 36.
- [9] T. T. West, Removing the jump-Kato's decomposition, Rocky Mountain J. Math. 20 (1990), 603-612.