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Parabolic Local Campanato Estimates for Commutators of Parabolic
Fractional Maximal and Integral Operators With Rough Kernel

Ferit Giirbiiz?

*Hakkari University, Faculty of Education, Department of Mathematics Education, Hakkari, Turkey

Abstract. In this paper, the author introduces parabolic generalized local Morrey spaces and parabolic local
Campanato spaces, respectively and also establishes parabolic local Campanato estimates for commutators

of parabolic fractional maximal and integral operators with rough kernel on parabolic generalized local
Morrey spaces.

1. Introduction

Let S"! = {x € R" : |x| = 1} denote the unit sphere on R" (1 > 2) equipped with the normalized Lebesgue

measure do (x’), where x” denotes the unit vector in the direction of x and a,, > ;.1 > -+ > a1 > 1 be fixed
real numbers.

Note that for each fixed x = (x1, ..., x,) € R", the function

n 2

Flop)=) =

2a,
P

is a strictly decreasing function of p > 0. Hence, there exists a unique p = p (x) such that F(x,p) = 1. Itis

clear that for each fixed x € R”, the function F (x, p) is a decreasing function in p > 0. Fabes and Riviére [4]

showed that (IR",p) is a metric space which is often called the mixed homogeneity space related to {a;};.
For t > 0, we let A; be the diagonal n X n matrix

o 0
A =diag [tY, ..., "] =

0 g
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Letpe(0,0)and 0 < @1 <21, 0< @; <m,i=1,...,n—2. Forany x = (x,x2,...,%,) € R", set

— (4%
X1 = p™ cos 1 ...COS Py COSPy_1,

— a s
Xy = p™COS Q1 ...COS Py SINPy_1,

Xy-1 = P cos @1 sin @y,

Xy = p*sin .

Thus dx = p*~!] (x') dpdo(x’), where o = Zai, x €S, J(x) = Zai (xlf)z, do is the element of area of 5"!
i=1 i=1

and p®~!J (x') is the Jacobian of the above transform. Obviously, ] (x') € C® (S”‘l) function and that there
exists M > O such that 1 < [ (x’) < M and x’ € "1,

Let P be a real n X n matrix, whose all the eigenvalues have positive real part. Let A; = t (t > 0), and set
y = trP. Then, there exists a quasi-distance p associated with P such that (see [3])

(1-1) p(Ax) =tp(x),t >0, for every x € R",

(1-2)p0)=0,p(x-y)=p(y-x)20,and p(x - y) <k(p(x —2) + p(y - 2)),

(1-23) dx = p’~'do (w)dp, where p = p(x), w = Ap1x and do (w) is a measure on the unit ellipsoid
{w:pw)=1}.

Then, {R", p, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss (see [3]) and a
homogeneous group in the sense of Folland-Stein (see [5]).

Denoteby E (x, r) the ellipsoid with center at x and radius r, more precisely, E (x,7) = {y e R" : p(x — y) < r}.
For k > 0, we denote kE (x,r) = {y € R" : p(x — y) < kr}. Moreover, by the property of p and the polar coor-
dinates transform above, we have

IE (x,7)| = f dy = vpr™ T = vpr?,
p(x—y)<r
where |E(x, r)| stands for the Lebesgue measure of E(x, 7) and v, is the volume of the unit ellipsoid on R".
By EC(x,r) = R"\ E (x,7), we denote the complement of E (x,r). If we takea; = -+ = a, = 1 and P =], then
n\2
obviously p (x) = |x| = lez] , Y =n, (R, p) =R, |]), Ef(x,r) = B(x,r), Ay = tl and J (x") = 1. Moreover,

i=1
in the standard parabolic case Py = diag[1,...,1,2] we have

© Jlx’ler Y+
px) =

2 7

x=(x',xn).

Suppose that Q (x) is a real-valued and measurable function defined on R". Suppose that $"! is the unit
sphere on R" (1 > 2) equipped with the normalized Lebesgue surface measure do. Let Q € Ly(S"™!) with
1 <'s < oo be homogeneous of degree zero with respect to A; (Q (x) is A;-homogeneous of degree zero), that
is, Q(A;x) = Q(x), forany t>0,x € R". We defines’ = % forany s > 1.

The parabolic fractional maximal and integral operators Mga fand Ig/a f by with rough kernels, 0 < a <
y, of a function f € L (R") are defined by

M?, F(x) = supE(x, 5 f QG- )| IF (I,
t>0
E(xb)

Q _
I, f(x) = f %f(y)dy. (1)

Vi
x —
o Y)
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It is obvious that when Q = 1, MP = MP and IP = ¥ are the parabolic fractional maximal operator

and the parabolic fractional mtegral operator, respectlvely If P = I, then MQ L =EMogand I, = Ig,
are the fractional maximal operator with rough kernel and fractional integral operator with rough kernel,
respectively. Itis well known that the parabolic fractional maximal and integral operators play an important
role in harmonic analysis (see [2, 5, 7]).

We notice that when a = 0, the above operators become the parabolic Calder6n-Zygmund singular
integral operator with rough kernel T{, = Tg,o and the corresponding parabolic maximal operator with

rough kernel M{, ) = M():
Tof() = po. f e f( )y,

M, £(x) = sup E(x, )™ f Q. - )| IF()ldy.
t>0

E(x,t)

It is obvious that when Q = 1, T, = T and M, = M” are the parabolic singular operator and the parabolic
maximal operator, respectively. If P = I, then MI = Mg is the Hardy-Littlewood maximal operator with
rough kernel, and Tf, = Tq is the homogeneous singular integral operator. It is well known that the
parabolic maximal and singular operators play an important role in harmonic analysis (see [2, 5, 6, 11]).
On the other hand let b be a locally integrable function on R”, then for 0 < @ < y, we define commutators
generated by parabolic fractional maximal and integral operators with rough kernel and b as follows,

respectively.

Mgy, (F) () = sup |ECe, HI7 f b () = bW)||Q(x = p)|If Wy, (2)
E(x,t)
O(x
b, Ity o1 f (%) = b)IG, , f(x) = Iy , () (x) = f b(x) - b(y)]mf(y)dy (©)
IRYI

Similarly, for @ = 0, we define commutators generated by parabolic maximal and singular integral
operators by with rough kernels and b as follows, respectively.

M, (1)) = suplEGs, o1 f Ib () - b ()] [QGx - )| IF W)y, @
E(x,t)
o Qx -
TR = b@TL) — TAGHR) = po. f )~ b1 2 )yf ydy. ©)

R"

Because of the need for the study of partial differential equations (PDEs), Morrey [8] introduced Morrey
spaces M, » which naturally are generalizations of Lebesgue spaces.

A measurable function f € L, (R"), p € (1, »), belongs to the parabolic Morrey spaces M, » (R") with
A € [0, ) if the following norm is finite:

1/p

1
., =| s % [ el a|
" xelR",r>0

E(x,r)

where E(x, r) stands for any ellipsoid with center at x and radius r. When A = 0, M, , p (R") coincides with
the parabolic Lebesgue space L, p (R").
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If P =1, then My, (R") = M, (R") and L, (R") = L, (R") are the classical Morrey and the Lebesgue
spaces, respectively.

One of important issue in the study of operators is their boundedness. Spanne (published by Peetre
[9]) and Adams [1] proved the following boundedness properties of the fractional integral operator I, for
0 < & < n on classical Morrey spaces M, 1 (R").

For the parabolic fractional integral I%, their results can be summarized as follows.

Theorem 1.1. (Spanne, but published by Peetre [9]) Let 0 < a <y, 1 <p < %, O<A<y-—apand % -
Then, the operator 1%, is bounded from M, p to M‘7 M p
.

1
qa 7

Theorem 1.2. (Adams [1]) Let0<a <y, 1<p< %, 0<A<y—-apand % - % =35 Then the operator I, is
bounded from My, p to My p.

By Holder’s inequality, one can observe that: The indices g1, g2 and p satisfy the following relations:

1 1 al

B 1 a u A
mop Ve op

YA p

Since q; < g, by Holder’s inequality we get

1Al ,, < 2l

P AP

Thus, Theorem 1.2 is a sharper result than Theorem 1.1, in other words, Theorem 1.2 improves Theorem 1.1
whenl <p < y;—A:

1AM, ,, < 2l

q14.P

<Cfl,

q2,A,P p.AP :

Recall that, for0 < a <y,

MY @) <vy T2 (|f]) @)

holds (see [7]). Hence Theorems 1.1 and 1.2 also imply boundedness of the parabolic fractional maximal
operator M, where v, is the volume of the unit ellipsoid on R".
The following theorem is valid.

Theorem 1.3. Let Q) € Ly(S"™1), 1 < s < oo, be A;-homogeneous of degree zero. Letalso0 < a <y, 1<p,q <

and 0 < A, u < y. If the operators Ig’a and Mg,a are bounded from My p to My, p, then

E-IC o, ©)

and

y—A
y-uta
Proof. Lett > 0 and ¢ f (x) = f (tx). Then, it is obvious that

y—A

)

max (1,
o

J<p<

I f () =15 (e f) (%)
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and

l6eflly, =77 Il

pAP

Since the operator Ig , is bounded from M,, , p to Mg, p, then

||Ig,af||Mq%P = 1’_% ||Igr0‘f||Lq(E(x,r))
< gt 116, (WAl "
<t el

p,AP

q,u,P

—/.L)\

st -

Thus, (6) is hold and it follows that p < % Since g > 1 and by (6), then

OS(V—H)—u=(V—H)—(u—Of)

q p
Y= A)
=y-—u+a-|——

yopra-(2

and thus
y-uta

As a result, (7) is hold.

Set

)
Toya (If]) x )—f o ){, |a lfwpldy o<a<y,

1151

where Q € Ly(S"™1) (s > 1) is A;-homogeneous of degree zero on R”. It is easy to see that, for IIQI Theorem

7 is also hold. On the other hand, for any f > 0, we have

Qx-y)
T (|f|)(x) 2 f W |f)|dy

E(xt)

Qe = y)| |[fw)|dy.

E(x,t)
Taking the supremum for f > 0 on the inequality above, we get

Cridione ([F) @ = M f(0)  Cpa= E0,1)7 .

O

Remark 1.4. (6) is the sufficient condition in inequalities above (see Theorems 1.1 and 1.2). Indeed, if we take u = %

and u = A, the remainder statement is the same and we omit it.

We now recall the definition of parabolic generalized local (central) Morrey space LM, {Y(’]

pinthe following.
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Definition 1.5. [6, 7] (parabolic generalized local (central) Morrey space) Let go(x 1) bea positive measurable

function on R™ x (0,00) and 1 < p < oo. For any fixed xy € R" we denote by LM"™ (pp = LMPX([;P(R”) the parabolic

generalized local Morrey space, the space of all functions f € L;,"C(IR”) with finite quasinorm

_1
||f||LM«vo = SUP @(xo0, ") E(x0, 7)] WP IIL, (B, m) < ©0-

PP

According to this definition, we recover the local parabolic Morrey space LM XO’ p and weak local parabolic Morrey
A=y

space WLM}‘7 | p under the choice p(xo,7) =77 :

LM™! = Ly

ol = LMt | v, WLMP = wLmb)

| A=y .
Plxo=r 7 pAP PP g ry=r 7

Now, let us recall the defination of the space of LCES\}/P (parabolic local Campanato space).

Definition 1.6. [6, 7] Let 1 < p < 0oand 0 < A < 3. A parabolic local Campanato function b € Ly (R") is said to
{xo} ;
belong to the LC;;’LP (R"), if

1
p

g, =55 g | POl ] <o
where
D n = ——— f b(y)d
o = E o0l J TP
E(xo,7)
Define

ch"gp (R") = {b € L (R"): ||b||LC[( < oo}.

In [6, 7] the boundedness of a class of parabolic sublinear operators with rough kernel and their
commutators on the parabolic generalized local Morrey spaces under generic size conditions which are
satisfied by most of the operators in harmonic analysis has been investigated, respectively.

Inspired by [6, 7], our main purpose in this paper is to consider the boundedness of above operators
(b, TE], MY, L IQ Ne Mg,h,a) on the parabolic generalized local Morrey spaces, respectively. But, the
techmques and non-trivial estimates which have been used in the proofs of our main results are quite
different from [6, 7]. For example, using inequality about the weighted Hardy operator H, in [6, 7], in this
paper we will only use the following relationship between essential supremum and essential infimum

1

(esxseiEnf f (x)) = esies:lp i ( y 8)

where f is any real-valued nonnegative function and measurable on E (see [10], page 143).
Our main results can be formulated as follows.

Theorem 1.7. Suppose that xo € R", Q e Ly(S"™),1<s< 0, is A homogeneous of degree zero. Let 0 < a <,
l<p<hbell? ,(R),0<A<1 ] ,%U%f%%—? ql— o= 8 MY, [0, I3, 1 are defined as (2), (3)

and [b,IY) | satisfies Theorem 3.4 in [7].
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Let also, for s < p the pair (g1, ¢2) satisfies the condition

(o)

)
ssinf @1 (xo, T)T"

e
f(l +1In E) fer<eo - dt < Cpa(xo, 1),

r Fin +1-yA

r

and for q1 < s the pair (@1, @2) satisfies the condition

[l ) oo 0T :
f(l +1In ;) tl—z+l—)//\ dt < C@Z(x()r r)T?‘/
nos

r

where C does not depend on r.
Then the operators Mg,b,a and [b, Ig,a] are bounded from LM;’S(}PLP to LM;X((;)]ZP Moreover,

MG, fll g 00T Al g 001, g (Al g
apaf v (6,16, 1f v, I ”LC};‘?A}T f M)

Using the idea of proving Theorem 1.3, we can obtain the following pointwise relation:

Lemma1.8. Let 0 < a < yand Q € Ly(S"!), 1 < s < o0, be A-homogeneous of degree zero. Then we have

Mo f () < [bjf;)m] () f |) (x) forxeR"

Proof. For any t > 0, we have

Q(x —
b (w= | |b<x>—b<y>|p| I ay

e (x-y)™

o= [ @ -bwllow- vl

E(x,t)

2

Taking the supremum for t > 0 on the inequality above, we get

[0, T, 1 (I]) ) 2 MD,,  f(x)  forx e R™.
O

1153

Theorem 1.9. Suppose that xog € R?, Q € Ly(S"™1), 1 < s < oo, is A;-homogeneous of degree zero. Let b €
LC;YZO/}\P (R"),0< A< % and % = pl] + plz, MP ., [b, T are defined as (4), (5) and [b, Y] satisfies Theorem 3.2. in

Qb
[6]. Let also, for s’ < p the pair (@1, @) satisfies the condition

(o)

. pa
f( t) essinf 1 (xo, 7)1

1+In- 7
= +1-yA

; dt < C§02(XQ,1’),

r
and for py < s the pair (@1, @2) satisfies the condition

(o)

; essinf ¢1(xo, T)T% .
f (1 +In -) feree dt < C pa(xo, 1)1,

YY1
r #h s +l-yA

r

where C does not depend on r.
Then, the operators [b, Tg] and Mf),b are bounded from LM;:‘jq}ohp to LM;[?’f(t;)}z,P. Moreover,

”MP H ol S”[b To] “ e |11 “ ” fol
Q,bf LM;;)’Z/P 0 f LMV/S’er LCE’Z?A}/P f LM!’]?W«P

(10)
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Lemma 1.10. Let Q € Ly(S"™!), 1 < s < o0, be Ai-homogeneous of degree zero. Then we have

Mg, f(x) < [b, T}l (|f|) (x) forxeR"

Proof. For any t > 0, we have

7 Qx ~y)
[b, Ty 1 (|f) @) = f b () —b(y)| L(Xfy)y) IFw)| dy
p(x—y)<t
1 m
> f H [ () = b ()] | = | [F)]dy.
E(xb) T

Taking the supremum for t > 0 on the inequality above, we get
b, TR (|f]) @) = ME, f(x)  forxeR".

O

Throughout the paper all constants are denoted by C which may vary from one position to another. For
two values F and G, F = G means that there are positive constants C; and C; such that C;G < F < C,G.
Also, F < G means that there exists a positive constant C such that F < CG. For s > 1, we denote by s’ = %
the conjugate exponent of s.

2. Proofs of the main results

2.1. Proof of Theorem 1.7
Proof. We consider [b, Ig,a] firstly. Since f € LM™! by (8) and it is also non-decreasing, with respect to t,

pLp1.P’
of the norm “ f || we get

Ly, (o 1))’

Hf”Lp1 (E(xo,t)) Hf”Lp1 (E(xo,t))
— < esssup ————~

v
essinf o1 (XO/ T)"C”l 0<t<T<00 @1(950/ "[)T P1
0<t<t<o00

f
< esssup H”Lmﬂ <Ay - (11)

0<T<00 (Pl(XOr ’C)Tﬁ P1p1P

For s’ < p, since (¢1, ¢2) satisfies (9) and by (11), we have

00

i\ L, oy
f(l+ln;) #T‘Fidt
7

pa
X ||f|| essinf @1 (xo, T)T"
< f(l tIn f) Ly, (E(xo,t)) t<T<00 t

. L L yA+1
"7 essinf g1 (xo, T)T7 fun Y
r t<T<00

b
f( t) essinf 1 (xo, 7)7"

1+In-
r t

<[l i

Y _
P191P n ’/)H'l

7

<| f(ILM;xm Pa(x0, 7). (12)

P1.P
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Then by Definition 1.5, Theorem 3.4 in [7] and (12), we get

|16, 13, ]f”LMno —supqoz<xo,r> |ECxo, N7 |16, 15, WAL, ey

f
S bl o) sUP 2 (x0, 1) f lnr ” HLp W, Bty o,

Cpadp r>0 7 TrATl

S8l [l "

From the process proving (13), it is easy to see that the conclusions of (13) also hold for [b, IIIZ)I ]. Combining
this with Lemma 1.8, we can immediately obtain

Mo fll o ST gy (Al g -
Qba LMS » LCPZ?AIP LM, 0, »

For the case of q; < s, we can also use the same method, so we omit the details. This completes the proof
of Theorem 1.7. I

2.2. Proof of Theorem 1.9
Proof. Similar to the proof of Theorem 1.7, we consider [b, TE ] firstly.
For s’ < p, since (¢1, ¢2) satisfies (10) and by (11), we have

(o]

f
[(rom) L) t”<> .
r

[

< f (1 1 t) ”f”Lm(E(xo,t)) etifinf(Pl(xO’T)Tpl
< +In-

r

dt

. L L 1-yA
essinf @1 (xo, T)T b t Y
r t<t<oco

(9]

essinf @1 (xo, T)T m

< 1l f o) EEEOC0 DT

P11.P , tr

< Al o @2(x0,7). (14)
pLe1P

Then by Definition 1.5, Theorem 3.2. in [6] and (14), we get

6 TEM g, = st @2 Gro, )™ 1ECr0, 277 6 TEIA e

|| |
S 1Bl e SUP @2 (x0, )" f ijﬁt» 0

P2 AP >0
S0l ) |IFl] g0 15
Phicgat, Mgy, 9

From the process proving (15), it is easy to see that the conclusions of (15) also hold for [, T o] Combining
this with Lemma 1.10, we can immediately obtain

IME Al o S UL ey (gt -
Q'bf LM,:;);Z,P LC[E;(,JIE,P f LMF’lo/(PlfP

For the case of p; < s, we can also use the same method, so we omit the details. This completes the proof
of Theorem 1.9. O
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