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Abstract. This paper we study and establish the complete convergence and complete moment convergence
theorems under a sub-linear expectation space. As applications, the complete convergence and complete
moment convergence for negatively dependent random variables with CV

(
exp (lnα |X|)

)
< ∞, α > 1 have

been generalized to the sub-linear expectation space context. We extend some complete convergence and
complete moment convergence theorems for the traditional probability space to the sub-linear expectation
space. Our results generalize corresponding results obtained by Gut and Stadtmüller (2011), Qiu and Chen
(2014) and Wu and Jiang (2016). There is no report on the complete moment convergence under sub-linear
expectation, and we provide the method to study this subject.

1. Introduction

The sub-linear expectation space have advantages of modelling the uncertainty of probability and
distribution. Therefore, limit theorems for sub-linear expectations have raised a large number of issues
of interest recently. Limit theorems are important research topics in probability and statistics. They were
widely used in finance and other fields. Classical limit theorems only hold in the case of model certainty.
However, in practice, such model certainty assumption is not realistic in many areas of applications because
the uncertainty phenomena cannot be modeled using model certainty. Motivated by modeling uncertainty
in practice, Peng (2006 [14]) introduced a new notion of sub-linear expectation. As an alternative to the
traditional probability/expectation, capacity/sub-linear expectation has been studied in many fields such
as statistics, finance, economics, and measures of risk (see Denis and Martini (2006 [5]), Gilboa (1987 [6]),
Marinacci (1999 [11]), Peng (1997 [12], 1999 [13], 2006 [14], 2008 [15]) etc). The general framework of the
sub-linear expectation in a general function space was introduced by Peng (2006 [14], 2008 [15], 2009 [16]),
and sub-linear expectation is a natural extension of the classical linear expectation.

Because the sub-linear expectation provides a very flexible framework to model sub-linear probability
problems, the limit theorems of the sub-linear expectation have received more and more attention and
research recently. A series of useful results have been established. Peng (2006 [14], 2008 [15], 2009
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[16]) constructed the basic framework, basic properties and the central limit theorem under sub-linear
expectations, Zhang (2016a [26], 2016b [27], 2016c [28]) established the exponential inequalities, Rosenthal’s
inequalities, strong law of larger numbers and law of iterated logarithm, Cheng (2016 [3]), Chen (2016 [2])
and Wu and Jiang (2017 [24]) also studied strong law of larger numbers, and so on. In general, extending the
limit properties of conventional probability space to the cases of sub-linear expectation is highly desirable
and of considerably significance in the theory and application. Because sub-linear expectation and capacity
are not additive, many powerful tools and common methods for linear expectations and probabilities are
no longer valid, so that the study of the limit theorems under sub-linear expectation becomes much more
complex and difficult.

Complete convergence and complete moment convergence are the most important problems in prob-
ability theory. Many of their related results have been obtained in the probabilistic space. However,
the complete moment convergence under sub-linear expectation has not been reported. In this paper,
we establish the complete convergence and complete moment convergence for negatively dependent ran-
dom variables under sub-linear expectation. As a result, the corresponding results obtained by Gut and
Stadtmüller (2011 [8]), Qiu and Chen (2014 [17]) and Wu and Jiang (2016 [23]) have been generalized to the
sub-linear expectation space context.

In the next section, we summarize some basic notations and concepts, related properties under the
sub-linear expectations and present the preliminary lemmas that are useful to prove the main results. In
Section 3, complete convergence and complete moment convergence theorems for negatively dependence
random variables under sub-linear expectation space are established.

2. Preliminaries

We use the framework and notations of Peng (2009 [16]). Let (Ω,F ) be a given measurable space and let
H be a linear space of real functions defined on (Ω,F ) such that if X1, . . . ,Xn ∈ H then ϕ(X1, . . . ,Xn) ∈ H
for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ c(1 + |x|m + |y|m)|x − y|, ∀x,y ∈ Rn,

for some c > 0,m ∈ N depending on ϕ. H is considered as a space of random variables . In this case we
denote X ∈ H .

Definition 2.1. A sub-linear expectation Ê onH is a function Ê : H → R̄ satisfying the following properties: for
all X,Y ∈ H , we have
(a) Monotonicity: If X ≥ Y then ÊX ≥ ÊY;
(b) Constant preserving: Êc = c;
(c) Sub-additivity: Ê(X + Y) ≤ ÊX + ÊY whenever ÊX + ÊY is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: Ê(λX) = λÊX, λ ≥ 0.

Here R̄ = [−∞,∞]. The triple (Ω,H , Ê) is called a sub-linear expectation space.
Give a sub-linear expectation Ê, let us denote the conjugate expectation ε̂ of Ê by

ε̂X := −Ê(−X), ∀X ∈ H .

From the definition, it is easily shown that for all X,Y ∈ H

ε̂X ≤ ÊX, Ê(X + c) = ÊX + c, |Ê(X − Y)| ≤ Ê|X − Y| and Ê(X − Y) ≥ ÊX − ÊY.

If ÊY = ε̂Y, then Ê(X + aY) = ÊX + aÊY for any a ∈ R.
Next, we consider the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A function

V : G → [0, 1] is called a capacity if

V(∅) = 0, V(Ω) = 1 and V(A) ≤ V(B) for ∀A ⊆ B,A,B ∈ G.
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It is called to be sub-additive if V(A
⋃

B) ≤ V(A) + V(B) for all A,B ∈ G with A
⋃

B ∈ G. In the sub-linear
space (Ω,H , Ê), we denote a pair (V, ν) of capacities by

V(A) := inf{Êξ; I(A) ≤ ξ, ξ ∈ H}, ν(A) := 1 −V(Ac),∀A ∈ F ,

where Ac is the complement set of A. By definition ofV and ν, it is obvious thatV is sub-additive, and

ν(A) ≤ V(A), ∀A ∈ F ; V(A) = Ê(I(A)), ν(A) = ε̂(I(A)), if I(A) ∈ H ,

Ê f ≤ V(A) ≤ Ê1, ε̂ f ≤ ν(A) ≤ ε̂1, if f ≤ I(A) ≤ 1, f , 1 ∈ H . (1)

This implies Markov inequality: ∀X ∈ H ,

V(|X| ≥ x) ≤ Ê(|X|p)/xp, ∀ x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp
∈ H . By Lemma 4.1 in Zhang (2016b [27]), we have Hölder inequality: ∀X,Y ∈

H , p, q > 1 satisfying p−1 + q−1 = 1,

Ê(|XY|) ≤
(
Ê(|X|p)

)1/p (
Ê(|Y|q)

)1/q
,

particularly, Jensen inequality: ∀X ∈ H ,(
Ê(|X|r)

)1/r
≤

(
Ê(|X|s)

)1/s
for 0 < r ≤ s.

Also, we define the Choquet integrals/expecations (CV,Cν) by

CV(X) :=
∫
∞

0
V(X > x)dx +

∫ 0

−∞

(V(X > x) − 1)dx

with V being replaced byV and ν respectively.

Definition 2.2. (Peng 2006 [13], Zhang 2016a [26])
(i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors defined respectively in sub-linear
expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically distributed if

Ê1(ϕ(X1)) = Ê2(ϕ(X2)), ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite. A sequence {Xn; n ≥ 1} of random variables is said to be identically dis-
tributed if for each i ≥ 1, Xi and X1 are identically distributed.

(ii) (Negative dependence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, . . . ,Yn), Yi ∈ H

is said to be negatively dependent (ND) to another random vector X = (X1, . . . ,Xm),Xi ∈ H under Ê if for each
pair of test functions ϕ1 ∈ Cl,Lip(Rm) and ϕ2 ∈ Cl,Lip(Rn) we have Ê(ϕ1(X)ϕ2(Y)) ≤ Ê(ϕ1(X)Ê(ϕ2(Y)), whenever
ϕ1, ϕ2 are coordinatewise nondecreasing or ϕ1, ϕ2 are coordinatewise non-increasing with ϕ1(X) ≥ 0, Êϕ2(Y) ≥ 0,
Ê|ϕ1(X)ϕ2(Y)| < ∞, Ê|ϕ1(X)| < ∞, Ê|ϕ2(Y)| < ∞.

A sequence of random variables {Xn; n ≥ 1} is said to be negatively dependent if Xi+1 is negatively dependent to
(X1, . . . ,Xi) for each i ≥ 1.

It is obvious that, if {Xn; n ≥ 1} is a sequence of negatively dependent random variables and functions
f1(x), f2(x), . . . ∈ Cl,Lip(R) are all non-decreasing (resp. all non-increasing), then { fn(Xn); n ≥ 1} is also a
sequence of negatively dependent random variables.

In the following, let {Xn; n ≥ 1} be a sequence of random variables in (Ω,H , Ê), and Sn =
∑n

i=1 Xi. The
symbol c stands for a generic positive constant which may differ from one place to another. Let ax ∼ bx
denote limx→∞ ax/bx = 1, ax � bx denote that there exists a constant c > 0 such that ax ≤ cbx for sufficiently
large x, and I(·) denote an indicator function.

To prove our results, we need the following two lemmas.
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Lemma 2.3. (Zhang 2016b, Theorem 3.1 [27]) Let {Xk; k ≥ 1} be a sequence of negatively dependent random
variables in (Ω,H , Ê) with ÊXk ≤ 0. Then for any x, y > 0

V(Sn ≥ y) ≤ V
(
max
1≤k≤n

Xk > x
)

+ exp
(
−

y2

2(xy + Bn)

{
1 +

2
3

ln
(
1 +

xy
Bn

)})
,

where Bn =
∑n

k=1 ÊX2
k .

Lemma 2.4. Suppose X ∈ H , α > 1.
(i) Then

CV
(
exp (lnα |X|)

)
< ∞⇔

∞∑
n=1

exp (lnα n)
lnα−1 n

n
V (|X| > n) < ∞. (2)

(ii) If CV
(
exp (lnα |X|)

)
< ∞, and f (x) := cx

lnα x for any c > 0 then

lim
n→∞

exp
(
lnα f (n)

)
V(|X| > f (n)) = 0. (3)

Proof (i) Note that

CV
(
exp (lnα |X|)

)
∼

∫
∞

1
V

(
exp(lnα |X|) > x

)
dx

=

∫
∞

1
V

(
|X| > exp(ln1/α x)

)
dx (let exp(ln1/α x) = y)

=

∫
∞

1

α lnα−1 y exp(lnα y)
y

V(|X| > y)dy, (4)

and

exp(lnα(n + 1))
exp(lnα n)

= exp
(
lnα n

[(
ln(n + 1)

ln n

)α
− 1

])
= exp

(
lnα n

[(
1 +

ln(1 + 1/n)
ln n

)α
− 1

])
∼ exp

(
lnα n

α ln(1 + 1/n)
ln n

)
∼ exp

(
α lnα−1 n

n

)
→ 1.

Therefore, (2) follows from (4) and n−1 lnα−1 n exp(lnα n) ∼ (n + 1)−1 lnα−1(n + 1) exp(lnα(n + 1)).
(ii) By

∫
∞

1 V
(
|X| > exp(ln1/α x)

)
dx < ∞ andV

(
|X| > exp(ln1/α x)

)
↓, we get

lim
x→∞

xV
(
|X| > exp(ln1/α x)

)
= 0.

This is equivalent to
lim
y→∞

exp(lnα f (y))V(|X| > f (y)) = 0.

Therefore, (3) holds.

3. Complete Convergence and Complete Moment Convergence Theorems

The concept of complete convergence of a sequence of random variables was introduced by Hsu and
Robbins (1947 [9]). Chow (1988 [4]) first investigated the complete moment convergence, which is more
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exact than complete convergence. Complete convergence and complete moment convergence are two of
the most important problems in probability theory. Their recent results can be found in Wu (2015 [22]), Wu
and Jiang (2016 [23]), Xu and Tang (2014 [25]), Guo et al. (2014 [7]), Gut and Stadtmüller (2011 [8]), Qiu
and Chen (2014 [17]), Wang and Hu (2014 [20]), Wang et al (2015 [21]), Liu et al (2015 [10]), Chen and Sung
(2016 [1]), Tan et al (2016 [19]), and Shen et al (2017 [18]). In sub-linear expectations, due to the uncertainty
of expectation and capacity, the complete convergence is essentially different from the ordinary probability
space. The study of complete convergence and complete moment convergence for sub-linear expectations
are much more complex and difficult. The purpose of this paper is to extend corresponding results obtained
by Gut and Stadtmüller (2011 [8]), Qiu and Chen (2014 [17]), and and Wu and Jiang (2016 [23]) from the
probabilistic space to sub-linear expectation space. Our results are as follows.

Theorem 3.1. Let α > 1, {X,Xn; n ≥ 1} be a sequence of negatively dependent and identically distributed random
variables with Ê(X2) < ∞. Suppose that

CV
(
exp(lnα |X|)

)
< ∞, (5)

then

∞∑
n=1

exp (lnα n)
lnα−1 n

n2 V

 n∑
i=1

(Xi − ÊXi) > nβ

 < ∞ for all β > 1, (6)

and

∞∑
n=1

exp (lnα n)
lnα−1 n

n2 V

 n∑
i=1

(Xi − ε̂Xi) < −nβ

 < ∞ for all β > 1. (7)

In particular, if ÊXi = ε̂Xi, then

∞∑
n=1

exp (lnα n)
lnα−1 n

n2 V


∣∣∣∣∣∣∣

n∑
i=1

(Xi − ÊXi)

∣∣∣∣∣∣∣ > nβ

 < ∞ for all β > 1, (8)

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold and ÊXi = ε̂Xi. Then

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q CV


∣∣∣∣∣∣∣

n∑
i=1

(Xi − ÊXi)

∣∣∣∣∣∣∣ − βn


q

+

< ∞ for all β > 1 and all q > 0. (9)

Remark 3.3. Theorems 3.1-3.2 extend the corresponding results obtained by Gut and Stadtmüller (2011 [8]), Qiu
and Chen (2014 [17]), and Wu and Jiang (2016 [23]) from the probability space to sub-linear expectation space.

Proof of Theorem 3.1. Without loss of generality, we can assume that ÊX1 = 0.
For negatively dependent random variables {Xn; n ≥ 1}, in order to ensure that the truncated random

variables are also negatively dependent, we need that truncated functions belong to Cl,Lip and are non-
decreasing. Let β > 1 be arbitrary, set, β−1 < µ < 1, for n ≥ 1, bn = βn/(8 lnα n), define, fc(x) = xI(x ≤
c) + cI(x > c) for any c > 0, for 1 ≤ k ≤ n,

X′k := fbn (Xk) = XkI(Xk ≤ bn) + bnI(Xk > bn), S′n :=
n∑

k=1

X′k,

X′′k := (Xk − bn)I(bn < Xk ≤ n/µ), X′′′k := (Xk − bn)I(Xk > n/µ).
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Obviously, Xk = X′k + X′′k + X′′′k and {X′k; k ≥ 1} is also a sequence of negatively dependent random
variables by fc(x) ∈ Cl,Lip and fc(x) being non-decreasing. Note that{

Sn > nβ
}

⊆
{
Sn > nβ and Xk ≤ bn for all k ≤ n

}
∪

{
Sn > nβ and bn < Xk0 ≤ n/µ for exactly one k0 ≤ n and X j ≤ bn for all j , k0

}
∪{X′′k , 0 for at least two k ≤ n} ∪ {X′′′k , 0 for at least one k ≤ n}

:= An ∪ Bn ∪ Cn ∪Dn.

Therefore,

V
(
Sn > nβ

)
≤ V(An) +V(Bn) +V(Cn) +V(Dn). (10)

It shall be noted that, in the probability space, there is an equality: EI(|X| ≤ a) = P(|X| ≤ a), however,
in the sub-linear expectation space, Ê is defined through continuous functions in Cl,Lip and the indicator
function I(|x| ≤ a) is not continuous. Therefore, the expression ÊI(|X| ≤ a) does not exist. This needs to
modify the indicator function by functions in Cl,Lip. To this end, we define the function 1(x) ∈ Cl,Lip(R) as
follows.

For 0 < µ < 1, let 1(x) ∈ Cl,Lip(R) be a non-increasing function such that 0 ≤ 1(x) ≤ 1 for all x and 1(x) = 1
if x ≤ µ, 1(x) = 0 if x > 1. Then

I(x ≤ µ) ≤ 1(x) ≤ I(x ≤ 1), I(x > 1) ≤ 1 − 1(x) ≤ I(x > µ). (11)

Note that

|X1 − X′1| = (X1 − bn)I(X1 > bn) ≤ |X1|I(|X1| > bn) ≤
X2

1

bn
.

By ÊX1 = 0, ÊX2
1 < ∞,∣∣∣∣∣∣∣

n∑
k=1

ÊX′k

∣∣∣∣∣∣∣ = n|ÊX′1| = n|ÊX1 − ÊX′1| ≤ nÊ|X1 − X′1| ≤
n
bn
ÊX2 = cβ lnα n, (12)

where c = 8β−2ÊX2 > 0, so that, taking y = (n − c lnα n)β, x = 2bn in Lemma 2.3, noting that X′k − ÊX′k ≤
2bn, k ≤ n, for sufficiently large n, we get

V(An) = V
(
S′n > nβ

)
≤ V

 n∑
k=1

(X′k − ÊX′k) > (n − c lnα n)β


≤ exp

− (n − c lnα n)2β2

2( β
2n(n−c lnα n)

4 lnα n + nÊX2)


= exp

− 2β2
(
1 − c lnα n

n

)2

β2
(
1 − c lnα n

n

)
+ 4ÊX2 lnα n

n

lnα n


≤ exp(− lnα n), (13)

from
2β2(1− c lnα n

n )2

β2(1− c lnα n
n )+ 4ÊX2 lnα n

n

→ 2 > 1 as n→∞.
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By
∑

1≤i≤n,i,k0

X′i and Xk0 are negatively dependent random variable, and set, 0 < δ := 1 − (µβ)−1 < 1, we

get from (1) and (11)

V(Bn) ≤ V

∃ 1 ≤ k0 ≤ n such that
∑

1≤i≤n,i,k0

X′i > βn − n/µ,Xk0 > bn


≤

n∑
k0=1

V

 ∑
1≤i≤n,i,k0

X′i > βn − n/µ = βδn,Xk0 > bn


≤

n∑
k0=1

Ê


1 − 1


∑

1≤i≤n,i,k0

X′i

βδn



(
1 − 1

(
Xk0

bn

))
≤

n∑
k0=1

Ê

1 − 1


∑

1≤i≤n,i,k0

X′i

βδn


 Ê

(
1 − 1

( X
bn

))

≤

n∑
k0=1

V

 ∑
1≤i≤n,i,k0

X′i > µβδn

V (
|X| > µbn

)
. (14)

Similarly to the proof of (12), we have

∣∣∣∣∣∣ ∑
1≤i≤n,i,k0

ÊX′i

∣∣∣∣∣∣ ≤ µβc lnα n, where c = 8β−1µ−1ÊX2 > 0, so that, taking

y = µβ(δn − c lnα n), x = 2bn in Lemma 2.3, using the fact that
2β2(δ− c lnα n

n )2

β2(δ− c lnα n
n )+

4ÊX2(n−1) lnα n
n2

→ 2 > 1 as n→∞, for sufficiently large n, we get

V

 ∑
1≤i≤n,i,k0

X′i > µβδn


≤ V

 ∑
1≤i≤n,i,k0

(X′i − ÊX′i ) > µβ(δn − c lnα n)


≤ exp

− µ2β2(δn − c lnα n)2

2(µβ
2n(δn−c lnα n)

4 lnα n + (n − 1)ÊX2)


= exp

− 2µ2β2
(
δ − c lnα n

n

)2

µβ2
(
δ − c lnα n

n

)
+

4ÊX2(n−1) lnα n
n2

lnα n


≤ exp(−µδ lnα n). (15)

By (3), and for any θ > 0, (ln n + ln(µβ/8) − α ln ln n)α/ lnα n→ 1 > 1 − θ as n→∞, for sufficiently large
n, lnα(µbn) = (ln n + ln(µβ/8) − α ln ln n)α ≥ (1 − θ) lnα n, thus,

V(|X| > µbn)� exp(− lnα(µbn)) ≤ exp(−(1 − θ) lnα n) for any θ > 0, (16)

Substituting (15) and (16) in (14), we obtain

V(Bn)� n exp(−µδ lnα n) exp(−(1 − µδ/2) lnα n) ≤ exp(− lnα n). (17)
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By (1), (11), and (16),

V(Cn) = V
(
∃ 1 ≤ k1 < k2 ≤ n such that X′′k1

, 0,X′′k2
, 0

)
≤

∑
1≤k1<k2≤n

V(Xk1 > bn,Xk2 > bn)

≤

∑
1≤k1<k2≤n

Ê

[(
1 − 1

(
Xk1

bn

)) (
1 − 1

(
Xk2

bn

))]
≤

∑
1≤k1<k2≤n

Ê

(
1 − 1

(
Xk1

bn

))
Ê

(
1 − 1

(
Xk2

bn

))
≤ n2Ê2

(
1 − 1

( X
bn

))
≤ n2V2(|X| > µbn)

≤ n2 exp(−2(1 − δ/2) lnα n) = n2 exp(−1 − (1 − δ) lnα n)

= exp(− lnα n)
n2

(eln n)(1−δ) lnα−1 n

≤ exp(− lnα n). (18)

From (1) and (11),

V(Dn) ≤

n∑
k=1

V(Xk > n/µ) ≤
n∑

k=1

Ê

(
1 − 1

(
µXk

n

))
= nÊ

(
1 − 1

(
µX
n

))
≤ nV(|X| > n). (19)

This, together with (2), (5), (10), (13), (17), and (18), shows

∞∑
n=1

exp (lnα n)
lnα−1 n

n2 V
(
Sn > βn

)
�

∞∑
n=1

lnα−1 n
n2 +

∞∑
n=1

exp (lnα n)
lnα−1 n

n
V(|X| > n)

< ∞.

That is, (6) holds.
Obviously, {−X,−Xk; k ≥ 1} also satisfies the conditions of Theorem 3.1. Considering {−Xn; n ≥ 1} instead of
{Xn; n ≥ 1} in (6), we can obtain (7).

In particular, if ÊXk = ε̂Xk, then (8) follows from (6), (7), and

V


∣∣∣∣∣∣∣

n∑
i=1

(Xi − ÊXi)

∣∣∣∣∣∣∣ > nβ


≤ V

 n∑
i=1

(Xi − ÊXi) > nβ

 +V

 n∑
i=1

(Xi − ÊXi) < −nβ

 .
This completes the proof of Theorem 3.1.
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Proof of Theorem 3.2. Without loss of generality, we still assume that ÊX1 = 0. Note that

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q CV
(
|Sn| − βn

)q
+

= βq
∞∑

n=1

exp(lnα n)
lnα−1 n

n2+q

∫ n

0
qxq−1V

(
|Sn| − βn > βx

)
dx

+βq
∞∑

n=1

exp(lnα n)
lnα−1 n

n2+q

∫
∞

n
qxq−1V

(
|Sn| − βn > βx

)
dx

�

∞∑
n=1

exp(lnα n)
lnα−1 n

n2 V
(
|Sn| > βn

)
+

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q

∫
∞

n
xq−1V

(
|Sn| > βx

)
dx.

Hence, by (8), in order to establish (9), it suffices to prove that

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q

∫
∞

n
xq−1V

(
|Sn| > βx

)
dx < ∞. (20)

Let β > 1 be an arbitrary, and β−1 < µ < 1, set, for x ≥ n, bx = βx/(8 lnα x), define, for 1 ≤ k ≤ n,

Y′k := XkI(Xk ≤ bx) + bxI(Xk > bx), U′n :=
n∑

k=1

Y′k,

Y′′k := (Xk − bx)I(bx < Xk ≤ x/µ), Y′′′k := (Xk − bx)I(Xk > x/µ).

By similar methods to the proof of (10), we have

V
(
Sn > xβ

)
≤ V(Ax) +V(Bx) +V(Cx) +V(Dx), (21)

which leads to
Ax =

{
U′n > xβ

}
,

Bx =
{
Sn > xβ and bx < Xk0 ≤ x/µ for exactly one k0 ≤ n and X j ≤ bx for all j , k0

}
,

Cx = {Y′′k , 0 for at least two k ≤ n},

Dx = {Y′′′k , 0 for at least one k ≤ n}.

Using similar methods to those used in the proof of (12), (13), and (16)-(19), for 0 < δ := 1 − β−1 < 1 and
x ≥ n, we have |

∑n
k=1 ÊY′k| ≤ cβ lnα x, where c = 8β−2ÊX2, and

V(Ax)� exp(− lnα x),

V(|X| > µbx)� exp(−(1 − θ) lnα x) for any θ > 0,

V(Bx) � n exp(−µδ lnα x − (1 − µδ/2) lnα x)

= exp(− lnα x)
n

exp(µδ lnα x/2)
≤ exp(− lnα x),

V(Cx) ≤ n2V2(|X| > µbx)� n2 exp(−2(1 − δ/2) lnα x)
= exp(− lnα x)n2 exp(−(1 − δ) lnα x) ≤ exp(− lnα x),
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V(Dx) ≤ nV(|X| > x),

which, combining with (21), shows

V
(
Sn > xβ

)
� exp(− lnα x) + nV(|X| > x).

Because {−X,−Xk; k ≥ 1} is also a sequence of negatively dependent random variables. Obviously,
{−X,−Xk; k ≥ 1} also satisfies the condition (5) and Ê(−Xk) = −ε̂Xk = −Ê(Xk) = 0 from the assumption:
Ê(Xk) = ε̂Xk. Therefore, replacing Xk by −Xk in the above inequality, we get

V
(
Sn < −xβ

)
= V

(
−Sn > xβ

)
� exp(− lnα x) + nV(|X| > x).

Therefore,

V
(
|Sn| > xβ

)
≤ V

(
Sn > xβ

)
+V

(
Sn < −xβ

)
� exp(− lnα x) + nV(|X| > x).

Hence,

∫
∞

n
xq−1V

(
|Sn| > xβ

)
dx

�

∫
∞

n
xq−1 exp (− lnα x) dx +

∫
∞

n
xq−1nV(|X| > x)dx

:= I1 + I2. (22)

By the fact that (a + b)α ≥ aα + bα for any a, b > 0 and α > 1, let t = x/n, we get

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q I1 =

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q

∫
∞

1
nqtq−1 exp (−(ln n + ln t)α) dt

≤

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q nq exp(− lnα n)
∫
∞

1
tq−1 exp (− lnα t) dt

�

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q nq exp(− lnα n)

=

∞∑
n=1

lnα−1 n
n2 < ∞. (23)
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By (5) and (2),

∞∑
n=1

exp (lnα n)
lnα−1 n

n2+q I2

=

∞∑
n=1

exp (lnα n)
lnα−1 n

n1+q

∫
∞

n
xq−1V(|X| > x)dx

=

∞∑
n=1

exp (lnα n)
lnα−1 n

n1+q

∞∑
j=n

∫ j+1

j
xq−1V(|X| > x)dx

�

∞∑
n=1

exp (lnα n)
lnα−1 n

n1+q

∞∑
j=n

V(|X| > j) jq−1

=

∞∑
j=1

V(|X| > j) jq−1
j∑

n=1

exp (lnα n)
lnα−1 n

n1+q

�

∞∑
j=1

exp
(
lnα j

) lnα−1 j
j
V(|X| > j)

< ∞,

from which, combining with (22) and (23), we see that (20) holds. This completes the proof of Theorem 3.2.
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