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Existence and Exponential Stability of Almost Pseudo Automorphic
Solution for Neutral Stochastic Evolution Equations Driven by
G-Brownian Motion

Pengju Duan?

* School of Mathematics and Statistics, Suzhou University, Anhui 234000, China

Abstract. This paper mainly concerns the quasi sure exponential stability of square mean almost pseudo
automorphic mild solution for a class of neutral stochastic evolution equations driven by G-Brownian
motion. By means of evolution operator theorem and fixed point theorem, existence and uniqueness of
square mean almost pseudo automorphic mild solution is obtained. Also, a series of sufficient conditions
on exponential stability and quasi sure exponential stability are established.

1. Introduction

The article aims to the quasi sure exponential stability of square mean almost pseudo automorphic mild
solution for neutral stochastic evolution equations driven by G-Brownian motion(G-NSEEs for short)

d[X(®) =Dt X(t)] = [AX(H)+ f(t, X(#)]dt + g (t, X(t)) d(B) (t)
+h(t, X(t))dB(t), t € R 1)

where A(t) : D(A(H)) C L2G (F) — L2G (F) is densely closed linear operator, and satisfies the well known
Acquistapace-Terrani conditions(one can see [1] and [5]). B(t) is a one dimensional G-Brownian motion, the
functions D, f, gand i : R X LL (F) — LZ (F) are jointly continuous. Since Bochner [3] firstly introduced
the results of automorphy, many authors made further study and improvement(one can see [4], [10], [17]).
Because of various applications of almost pseudo automorphy, there have been a wide range of interests on
this issue. In particular, under the framework of classical Brownian motion, the stability and existence of
pseudo almost automorphic solutions of stochastic differential equations have been considerably discussed.
Chen and Lin [6] studied the square mean almost pseudo automorphic solution of SEEs. By means of Weyl
fractional derivative, Pardoa and Lizama [19] obtained the existence and uniqueness of weighted pseudo
almost automorphic mild solutions for fractional abstract differential equation. In the sense of distribution,
Feng and Zong [9] discussed the square mean pseudo almost automorphic solution to stochastic differential
equation driven by Lévy process. Most recently, by use of Cp-semigroup, Cui and Rong [7] established
exponential stability of p-pseudo almost automorphic mild solutions for nonlinear SEEs.
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In order to solve some problems in finance, Peng [20] firstly established the basic theory of G-expectation.
Moreover, Peng [21] introduced the G-Brownian motion and related G-It6 stochastic calculus. Since then,
many scholars made further research on the the G-Brownian motion(one can see [8], [14], [25]). Importantly,
based on the G-stochastic analysis theory, stochastic differential equations driven by G-Brownian motion(G-
SDEs in short) have been attracting much attention(one can see [2], [16], [22], [23]). Especially, Gu et al.
[12] established existence and uniqueness of square mean pseudo almost automorphic mild solutions for
G-SEEs.

As we know, stability has been one of the most interesting topics of SDEs since Mao [18] established
the stability theorem. As to G-SDEs, there are a lot of interesting works including exponential stability, He
stability and almost sure exponential stability( one can see [24], [27]). By Razumikhin theorm, Li and Yang
[15] derived pth moment exponential stability of mild solution of neutral stochastic functional differential
equations driven by G-Brownian motion. Recently, Hu et al. [13] considered exponential stability of the
square mean almost automorphic for a class of impulsive G-SDEs with the help of Lyapunov function.

However, to the best of our knowledge, there is no result on the existence and stability of square mean
pseudo almost automorphic mild solutions for G-NSEEs. To close the gap, we first aim to derive the existence
and uniqueness of the system. Moreover, exponentially stability and quasi sure exponential stability of
square mean pseudo almost automorphic mild solutions will be discussed with sufficient conditions.

The structure of this article is arranged as follows. In section 2, some basic notions, preliminaries and
lemmas are provided. Section 3 is devoted to studying the existence and uniqueness of square mean pseudo
almost automorphic mild solutions for G-NSEEs. In section 4, we shall discuss exponential stability and
quasi sure exponential stability of square mean pseudo almost automorphic mild solutions.

2. Notations and Preliminaries

Throughout the paper, we will use the following specified notation. Denote R = (-0, +0), R* =
[0, +o0), N = {1, 2, ---}. If A is a vector or matrix, its transpose is denoted by AT and the norm |A]> =

trace (AAT).

2.1. It6 integral of G-Brownian motion

In this subsection, we begin with some notations and preliminary results with respect to G-Brownian
motion. Q is the space of all R"-valued continuous functions with wy = 0, equipped with the distance

o (wl,a)z) = iZ‘i [(gﬁ% o} — 7 ) Al

k=1

7

then (Q, p) is a metric space. We suppose that H satisfies c € H for each constant c. If X € H, then |X| € H.
If X1, Xo, -+, Xy € H, then ¢ (X1, Xa,--- X;1) € H for each ¢ € Cy 1 (R"), where Cy 1, (R") is defined as

Cirip(R") = {p : R" > R[AC € R*, m € N s.t. |p(x) — ()| < C(1 + [x™ + [yI") |x — yl} .
Definition 2.1. [E : H — Ris called as a sublinear expectation, if for any X, Y € H,
(1) if X > Y, then E(X) > E(Y).
(2) E(c) =¢, forany c € R.
B) E(X+Y)<E(X)+E().

(4) E(AX) = AE(X), forany A > 0.
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For any w € Q, the canonical process By(w) is defined by B; (w) = @y, t = 0. The filtration ¥; generated
by (Bt)ss is defined

Fi=0(Bs, 0<s<t).

Let Cp i (R") denote the set of all bounded and continuous Lipschitz functions on R". For any ¢ > 0, let
.£Lz'p (F) = {E(w) =0 (Bt,,Bt, =B, ,Bs, — Bt,z_l),n >1,t,t,- ,t,€[0,t], ¢ € Cb,Lip (IR”X")} .

Let
Lip@F) = | Lip(F).

i=1

If é (C()) = qi) (Btertz - Btll e ,Bt” - Btnfl) € LLip (7:) with 0< tl < tz < e < t}’l < 00, We 1et
]E [(z) (Bt]’ Bi’z - Btl, e ’Btn - Btn—] )] = (Pn/
where ¢, is iterative procedure defined as

le (x1/x2/ e /xn—l) = IE |:¢ (xlleI e /xn—llBt,, - Bt,,q )] 7
sz (xlr X2t /x}’l—Z) = IE [le (xll X2, Xp-2, Bl‘nq - Btn,z)] 7

Pu-1(x1)
(Pn (X1)

E [qmz (x1,B, = Btl)] /
E [ (Br,)] -

The conditional expectation of & := ¢ (By,, B, — By, - -+, By, — By, ,) is given by

B[] = ¢uj(Bu, B, — By, By, — By, ).

Definition 2.2. (G-normal distribution)Assuming that g, ¢ are given nonnegative numbers satisfying 0 <
o < 0. A random variable X is subject to G-normal distribution, denoted by X ~ N (O, [gz,Ez]), if for each
¢ € L1ip(F), the operator is defined by

E[¢ (B(t) + X)| := u(t, X),

u(t, x) is the viscosity solution of the following nonlinear heat equation

du *u
o G(y) =0

u(0, x) = p(x).
where G(r) = 1 (62r+ — gzr‘) ,r€R.

Definition 2.3. (G-Brownian motion) The expectation operator IE on H defined through the above process is called
the G-expectation and the canonical process B (t) is called G-Brownian motion.

Next, we give the definitions of It6 Integral and quadratic variation process with respect to G-Brownian
motion.
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Definition 2.4. (1) Forp>1, T >0, M’go ([0, T1) denotes the space of simple processes by

N-1
M0, T = {n(@) = ) & (@), 0B & € LL(F), YN 2 1,
j=0

O=ty<h<--<ty=T, j=0,1,2,,N-1}.

N-1
(2) Forany ny(w) = Y, Er ()it t,0) € M’é’o ([0, T1), its Bochner integral is defined as follows
=0

+ N-1
fo‘ Ne(w)dt = Z Etf(w)(tjﬂ — tj).
j=0

(3) Let

N-1

_ 1 1
Er = ff E[ndt = o ]E éf/‘(w)] (Fpr = 1))
j=0

then, By : M’é’o — R is also a sublinear expectation.

Foreachp > 1, M’é ([0, T]) is the completion of M’é’o ([0, T]) equipped with the form

1

1 (7T ; = ) p
||TT||M’Z;([0,T])=(T fo IIanIdS) : TXOJE[&M] (t1 ~ 1)
]:

N-1
Definition 2.5. (Itd Integral)For ni(w) = Y. &t ()it t,,) € M’éo ([0, T1), the It0 integral is defined by
j=0

T N-1
I(n) = f nsdB(s) := Z & (B(fj+1) - B(tf))'
0 =0
LL, (F1) (p > 1)is the completion of £1;,(#7) withnorm of [ X]| = {E|X'}7, as wellas, L, (F) the completion
of L, (F). It is natural to construct the G-expectation on (Q, LZ(T)(OHG can see [21]).

Remark 2.6. Foranyn € M’é’o ([0, T1), we have E [ fOT nsdB(s)] =

Remark 2.7. From [11] and [26], we conclude that the map I : M’é’o ([o,17) — L’é (1) is linear and continuous.
Moreover, it can be extended as I : M’é ([0, T]) — L’é (F1).

Definition 2.8. When t > 0, the sequence @)\ is partitions of [0, t], ¥ : 0 = £ < tN < ... <N = t, with the
mesh u(rtN) — 0as N — oo. The quadratic varmtzon process of G-Brownian motzon B(t) is

N-1 t
(B) (t) := lim Z B(tNl) B(tN)) = B(t) - f B(s)dB(s).
j:
In addition, the mutual variation process of B and B is

(B, BY(®):= 1 (B+B) () (B~ B)().
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Definition 2.9. (Integral w.r.t (B)) For any n; € Méo ([0, T]), the map Q, (1) : Mé’o ([0,T]) —» LlG (Fr) is defined
by

T N-1
Qi = [ nd @)=Y & [0 - B 6]
=0

Remark 2.10. Q, r(n) is linear and continuous, and can be continuously extended Q, (1) : Mé (0,T]) —» Lé (Fr).

In order to get the our main results, we introduce some technical lemmas which can be found in [11], [20].

Lemma 2.11. Forany 0 < T < oo,

M E[[f nds) (t)” <FE [ I Iqtldt], forany n; € ML ([0, T]).

[( (T 2 T, )
@ E|(J) ndB®) | = [ [ 7B ©] forany € M (0,T).

3 E —(fOT |77t|pdf)] < fOT [Eln:/P] dt, for any n; € M'é ([0, ], p > 1.

Lemma 2.12. Let p > 2,1 = {ns} € ML ([0, T]). Then,

1l p P
[ sl < (555 el

Lemma 2.13. Forp > 1, 11 = {1} € M ([0, T]). Then,

U 14 t
fnrd<B)(r)) s&”lt—sl”fIElnrl”dr.

By Denis et al. [8] and Wei et al. [28], there exists a weakly compact family P of probability measures
on (Q, B(Q)) such that

|

fs t 1-dB(r)

E (sup

s<u<t

E (sup

s<u<t

E[X] = sup Ep[X], YX € LL(F).
PeP

And the related Choquet capacities is defined by
C(A) = supP(A), A € B(Q).
Pep
A set A is called polar if C(A) = 0, and a property holds quasi surely(q.s. in short) if it holds outside a polar

set.

Lemma 2.14. Suppose X € L{. (Fr) satisfies IE|X|P < oo for some p > 0. Then

_ 14
C(|X|>M)S]E]li| .
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2.2. square mean almost automorphic stochastic process

In this subsection, we introduce some concepts of square mean almost automorphic stochastic processes
and related properties.

Definition 2.15. A stochastically continuous process X(t) : R — LZ(F) is square mean almost automorphic if for
any real sequence {r}},en there exist a subsequence {ry}nen and Y(t) : R — LZG(?~ ) such that

lim E||X(t +r,) = Y®I> =0 and lim E||Y(t - r,) = X = 0
hold. The collection of all square mean almost automorphic processes is denoted by SAA(]R, Lé(T)).

SBC(]R, L2G(7:)) is served as the collection of all the stochastically bounded and continuous processes.

Remark 2.16. SBC(]R, LZG(T)) is a Banach space with the norm
1
11|, = sup (BIX(®)IP)* .
telR
Definition 2.17. A stochastic process X(t) belongs to SBCO(]R, LZ(F )), if it is one of SBC(]R, Lé(?)) and satisfies

1 (T >
%ggfrj:TIEHX(t)ll dt=0.

Remark 2.18. SBCO(]R, Lé(T)) is also a Banach space with the norm “X”oo

Remark 2.19. If X(t) € SAA(R,L2(F)), then X(t) is bounded with the norm |[X]| . That is, SAA(R, L%(F)) c
SBC(R, L2(F)).

Definition 2.20. A continuous stochastic process f(t) : R — LZ(F) is called square mean pseudo almost automor-
phic if it can be decomposed as f(t) = g(t) + @(t), where g(t) € SAA(IR, LL(F )), p(t) € SBCO(]R, Lé(?’:)).
We denote SPAA(IR, LL(F )) the collection of square mean pseudo almost automorphic processes.

Remark 2.21. Under the norm ”X|

i SPAA(IR, Lé(f)) is a Banach space.

Definition 2.22. A jointly continuous function f(t, x) : RXLL(F) — LZ(F) is square mean pseudo almost automor-
phic at t for any x € LL(F) if it can be decomposed as f = g+ ¢, where g € SAA(]R X LZ(F), ch(?')), XS SBCO(IR X
LL(F), LZG(T)). We denote the set of all such stochastically continuous processes by SPAA(]R X L(F), LZG(T)).

Lemma 2.23. ([5]) If f(t,x) : Rx Lé(?) - LZG(T) is square mean almost automorphic and satisfies

2, forallx,y € Lé(?), teRR,

E|ft,x) - £ y)|* < Cilx - v

where C1 > 0 is independent of t. Then for each X(t) € SPAA(]R, Lé(?)), the stochastic process F(-) = f (-, X(")) is
also square mean almost automorphic.

Lemma 2.24. Suppose that f(t,x) € SPAA (]R X LZG(T), Lé(?)), and there exists nonnegative constant C such that,
2 2
]E”f(t,x) - ft, y)” < C“x —y|[", forany x,y e LL(F), te R.

Then, f(t, X(t)) € SPAA (R, L%(F)) for any X(t) € SPAA (R, L2(F)).
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3. Existence of square mean pseudo almost automorphic mild solution

In order to investigate the existence and uniqueness of square mean pseudo almost automorphic mild
solution for G-NSEEs, we begin with definition of the mild solutions and some assumptions.

Definition 3.1. An #;—progressively measurable process {X(f)};cr is called a mild solution of the (1) if the
following stochastic integral equation is satisfied

¢
X -D(¢ X)) = U(t,s)[X(s)—D(s,X(s))]+fU(t,r)f(r,X(r))dr

t t
+f U(t,r)g(r,X(r))d(B)(r)+f U(t, r)h (r, X(r)) dB(r) (2)

foranyt>sands e R

In order to get the main results, we impose the following assumptions on evolution family and coeffi-
cients.

(H1) There exist positive constants M and p such that the evolution family U(t,s) generated by A(t) is
exponentially stable,
U, s)|| < MeE9), ¢ > 5.

(H2) The coefficients D(¢, x), f(t, x), g(t, x) and h(t, x): ]RXL2G F) - LZG(T) are functions of SPAA (]R X L2G(‘7:), Lé(T)).
Furthermore, there exist nonnegative constants Lp, Ly, L; and L, such that
5

||D(t, x) — D(t, y)”2 < LD”x -y ft,x)— f(¢, y)”2 < Lf”x - sz

and
2
7

h(t, x) — h(t, y)”2 < Lh”x - y”2

ottt < L e~
forx,y e Lé(?“) and f € R.

(H3) D = Dy + Dy € SPAA(R x LE(F), L2(F)), where Dy € SAA(R x LA(F), L(F)), Dz € SBCo(R x
L2(F),LE(F)). f = fi+ f» € SPAA(R X LL(F), LA(F)), where fi € SAA(R x L2(F), LA(F)), f €
SBCo(RXLE(F), L2(F))- 9 = 1+92 € SPAA(RXLE(F), L2(F)), where g1 € SAA(RXLE(F), L2(F)), 92 €
SBCo(RXLZ(F), L2(F))- h = hy+hy € SPAA(RXLE(F), LE(F)), wherehy € SAA(RXLE(F), L2(F)), ha €
SBCo(R x L2(F), LE(F))-

The following theorem presents the existence and uniqueness of square mean pseudo almost automor-
phic mild solution.

Theorem 3.2. Assuming that the conditions (H1)-(H3) are satisfied, and
AMPLy  45*MPL,  25°M2L,
+ <

4Lp +
w? W u

1.

Then, the system (1) has a unique mild solution X € SPAA(IR, LL(F )). Moreover, the solution can be expressed by

t t

Xt = D(t,X(t))+f U(t,r)f(r,X(r))dr+f U(t, r)g (r, X(r)) d (B) (r)

—00 —00

+ I U(t, r)h (r, X(r)) dB(7). 3)

0
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Proof: Existence Firstly, we claim that (3) satisfies that (2) for all t > s at each s € R. So X(f) given by (3)
is a mild solution of (1).

For any X(t) € SPAA(IR, ch(?')), we define the operator

t t

(@®X)(t) = Df{t, X(t))+f U(t,r)f(r,X(r))dr+f U(t, g (r, X(r)) d (B) (r)

—00 —00

t
+ j: U(t, r)h (r, X(r)) dB(r), 4)

00

which is well defined and satisfies (2). From (H3), we have

t

(D1 (t,X(t))+f U, nfi (r,X(r))dr+f U(t, r)gq (r, X(r)) d (B) (1)

00 —

(@X) (1)

t

t
+f U, nh (r,X(r))dB(r))+(D2(t,X(t))+f U(t, r) fo (r, X(r)) dr

(o] —00

t

t
+j: U(t,r)gz(r,X(r))d<B>(r)+f

00 —00

(©1X) (1) + (P2X) (D).

U(t, r)hz (r, X (1)) dB(r)) : (5)

In the following part, we will show that (®X) (¢) is in SPAA(IR, Lé(?—“)). That is to say, it needs to verify

that (®1X) (t) is in SAA(]R, Lé(?)) and (®,X) (t) is in SBCO(]R, LZ(F). We illustrate the facts through three
steps.
Step 1. We begin with the continuity of (91 X) (). From the definition of (P;1X) (t) , we have

E(@:X) (¢ +5) - (@.X) ()|

t+s t

Dy (t+s,X(t+5s)) — Dy (t, X(t)) + f Ut +s,1)fi(r,X(r))dr — f U, rfi (r, X(r)) dr

—00 —

t

+f ww&wmmmmwwrjﬁwmmmmmamm

(o8] —00

=E

t+s t 2
+ f U(t +s,1)hy (r, X(r)) dB(r) — f U(t, r)hy (r, X(r)) dB(r)|| . (6)
Because D1 (t, x) € SAA(IR X L2G(7:), Lé(?)), it deduces
lim E[[Ds (¢+ 5, X(¢ +5) = D1 (¢, X(8) I =o. @)
By means of the properties of evolution family U(t, 7) and elementary inequality, we get
t+s t 2
E Hf U(t +s,7)f1(r,X(r))dr — f U, r) f1 (r, X(r)) dr
t t+s 2
=E | f (Ut +s,t)y=D U1 f(r, X(r) dr + f Ut +s,t) f1 (r, X(r)) dr
oo t
t 2 t+s 2
<2E f Ut +s,ty=DH U1 fr(r, X(r)dr|| +2E f Ut +s,t)f1(r, X(r)dr|| .
—c0 t
Due to the dominated convergence theorem, it shows
t+s t 2
1irrO1]E Hf Ut +s,7)f1(r,X(r) dr - f U, rfi (r,X(r))dr|| =0. (8)
5 —00 —00




P. Duan / Filomat 34:4 (2020), 1075-1092 1083

Combining the properties of evolution family U(t, r) with Lemma 2.11, we have

t 2

t+s
IEH f U(t + 5,91 (, X()d (B) (1) - f U(t, N (r, X() d (B (1)

=E| 2

t t+s
f (U(t +s,t) =D U(t, r)g1 (r, X(r)) A (B) (r) + f U(t +s,t)g1 (r, X(r)) d (B) (1)
—oo t

2

t
SZIEHf (Ut +s,t) =) U(t, r)g1 (r, X(r)) d (B) ()

2

t+s
+2E f U(t +s,t)g1 (r, X(r)) d (B) (r)

t 2
<2%G'E ( f |t +s,6) - DU, ng: @, X@)| dr)

t+s 2
+20'E (f Ut +s,t) ||gl (r, X(r))” dr) .
t

And

t 2

t+s
]EHf U(t +s,7)hy (r, X(7)) dB(r)—f U(t, r)hy (r, X(r)) dB(r)

(o9

2

t t+s
=E f (Ut +s,t) — I) U(t, )l (r, X(r)) dB(r) + f Ut + s, ) (r, X(r)) dB(r)
—00 t

< 25° f t E (Ut +s,£) — I) U(t, )i (r, X(r))|* dr + 25° f " U(t + s, H)E |l (r, X(¥)|I* dr.
_ t

0

So, it follows
. 2
Pn(} ]EH (P1X) (t +5) — (D1 X) (t)“ =0.

Step 2. Because D(t,x), f(t,x), g(t,x) and h(t,x) are the functions of SAA(IR X LZ(F), LL(F )), thus,

there exists a subsequence {r,} of any real numbers {r;}neN, for some stochastic process 51, f1, ﬁ and
hy : Rx L2(F) — LZ(F), such that

tim E [y (¢ + r, X(t+ 1)) = Di (¢ X(t))”z =0and lim E|[Dy (t - 7, X(t = 1)) = D1 ¢, X(f))H2 =0,

lim E ||f1 (F+ 70, X(E+120) = fi (8, X(t))H2 =0and lim E H}‘I (t—rn, X(E—12)) = f1 (1, X(t))H2 =0,
Jim Elgs ¢+ ro, X(t+72) =71 (, XO) = 0and lim E[7: (=1, Xt = r) =g t, X[ =0,

lim E th (t+ 1n, X(E+ 1) = (4, X(t))H2 =0and lim Hi&} (t = rn, X(E— 1)) =l (&, X(t))“2 -0,

for each t € R and X(t) € LZ(F).
In order to verify that (®;X) (f) is a square mean almost automorphic process, we consider the operator

t t

(X)) = Dit X(t)+ f U, fi (r, X(r) dr + f Ut, N (r, X(r) d (B) (r)

—00 —00

t p—
+ f_ U(t, r)hy (r, X(r)) dB(7). 9)

(o)
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Then, we have

E[|@.x) ¢t + 1) - (@) @)
t+1y

t+1,
Dy (t+7r,, X(t+1))+ f Ut + 1y, 1) f1 (1, X(r)) dr + f U(t + 1y, 7)g1 (1, X(1)) A (B) (r)

—00

=E

t+1, — t _
+f U(t + 1y, )l (r, X(r)) dB(r) — D1 (¢, X(t))—f U, rfi (r, X(r))dr

+ 2

f —_
- f U, N7 (r X() d (B (1) - f U, Hin (r, X() dB(r)

—00

<4E D1 (¢ + 7, X(t+ 1) =D ¢, X))
2

t+1, t .
+4E f Ut + 1y, 1) f1 (1, X(1)) dr—f U, rfi (r, X(r)) dr

—00

¢ 2

t+1,
+4E f Ut + 1, 7)g1 (1, X(r)) d (B) (r) — f uft, r)ﬁ (r, X(r))d(B)(r)

—00

2

+4E I : U(t + 1, 1)y (1, X(r)) dB(r) — I ; U(t, )i (r, X(r)) dB(Y) 10)
By the Cauchy-Schwarz inequality, we have

IEH I o U(t + 1, 1) f1 (r, X(r)) dr — I t U, Nf (, X(r) dr ?

=E | I; Ui, nfi (r +ry, X(r +1,)) dr — [; Ut 1) fi (r, X(r) dr ’

= fm Ut nr fm UGN 0+ 70, X4 1) = F 0, X0 a

where the last estimate converges to zero as n — oo.

Noting that, forany ¢ € IR, <B>(t) = (B) (t + 1) — (B) (1) has the same distribution with (B) (t) and taking
the Cauchy-Schwarz inequality again, we have

2

IEHf ' U(t+rn,r)91(r,X(r))d<B>(r)—f Utt, ) (r, X(r)) d (B (r)

t 2

=FE ' f U(t, 1) [g1 (r + 10, X(r + 1)) — g1 (r, X(r))] A (B) (r)

2
<&*E

¢
‘f U(t, 1) [g1 (r + 10, X(r + 1)) — g1 (1, X(r))] dr

t t
<t f U, r)dr f Ut P)E Jgr (7 + 1, X(+ 1)) = 31 (1, X)) . (12)

Therefor, we have

2

t+1, t
Iim E Hf U(t + 1, 17)g1 (1, X(r)) d (B) (r) — f U(t, 1) ga (r, X(r)) d(B) (r)|| =0.

n—oo
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Let B(t) = B(t + r,) — B(r,,) for each t € R, then B(t) is also a G-Brownian motion with the same distribution
as B(t), we obtain

t 2

t+1y, —_
IEHf U(t + ry, )y (r, X(r)) dB(r) —f U(t, r)hy (r, X(r)) dB(r)

—00

2

t
=]E| f Ut 7) [l (r + 1, X(r + 1)) = I (1, X(r))| dB(r)

t —_
<2 f ||ll(t,r)||21E||h1 (r + 7, X(r + 1)) = 1 (r,X(r))szr, (13)

where the last estimate converges to zero as n — co.

Therefore, we can conclude that

lim E ||((I)1X) (t + 1) — (1 X) (t)H2 - 0.

By an analogous arguments as above, we have

lim E H(élx) (t = 1y) = (D1 X) (t)H2 - 0.

From the Steps 1 and 2, we have (®;X) (t) € SAA (IR, ch(f)).

Step 3. As the similar way as Step 1, we can prove that (©,X) (t) is stochastically continuous process.
According to the functions Dy, F», G; and H, € SBC (]R X LZ(F), Lé(?)), it follows that (®,X) () is
stochastically bounded. In what follows, we aim to prove

1 (T )
%ggoﬁITIEII(CDzX)(f)II dt = 0.
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From the definition of (®,X) (f), we have
1 (T
2T

T T t 2
§4{% ITEI|D2 (¢, X(if))ll2 dt + %IT]EHIM U, r)fa (r, X(r)) dr

2 T t

lE (@, X) (1)1 dt

1 T

+— E
2T J_r

t
f U(t, g (r, X() d (B ()

2
dt}

T
34{ ! f E|ID> (t, X()|P dt
T

t
+% [ I _ut,ndr I U(t,r)IE“fz(r,X(r))”zdr]dt

-T

T t
+a% [ f U, ndr f U, NE gz ¢ XD dr]d’-‘

f f UA(t, E ||y (r, X(7)|P drdt}

s4{ ! f EIID, (¢, X()IP dt

2 T t
L % ﬁ [ [ . HIE||f, (r, x| dr] dt

- T t
+M204 L [ f eHIE|g (7, X(r))||2 dr] dt

M2 ’ f f e 2HEDE ||y (r, X ()P drdt}.

As to the second part of the last inequality, it follows

T t
dt f e HIE| £y (r, X)) |dr
T —c0
T t T -T
dt f e MIE||f (r,X(r))||2dr+i f dt f eHIE|| fo (r, X () [ dr
-T -T 2T -T —oo
T T T —T
—i f dr f e HIE| £y (r,X(r))szHi f dt f eHOIE| fy (r, X)) |Pdlr

11
< -

i 1E||f2 (r, X)) |[dr + — y 2THfz o, X[, - 0 (14)

as T — oo.
Taking the similar method, we have

T !
E&%ﬂfif;fW”EwﬂnMﬂwﬁrw=o

and

%:f&ﬁf f OB (r, X)) [ drdtt = 0
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Thus, we proved that (9,X) (t) € SBCy (]R 12 o(F )) According to the above three steps, we could demon-

strate (PX) () € SPAA(R, LZ(F)).

Uniqueness In the following parts, we will introduce that @ has a unique fixed point. If X(t) and Y(t)

are the solutions of (1), we have

E| @X) () - @Y) (0|
t

¢
D{(t, X(t))+£ U(t,r)f(r,X(r))dr+f U(t, r)g (r, X(r)) d(B) ()

—00

:E‘

¢ t
+f U, r)h (r, X(r))dB(r) = D (t, Y(t))—f Ui, r)f (r,Y(r))dr

+ 2

f
- f U(t, g (r, Y(9) d (B (1) — f U, i (r, Y() dB(r)

—00

2

<4E|D(t, X(H) - D(t, Y(£) ||2 +4FE H I Ut r) [f (r, X(1)) = f (1, Y(r))] dr

t 2
+41E” f U, n[g (r, X)) = g (r, Y1) d (B) (1)

4
= ZH(t)

+4]EHf U(t, r)[h(r, X(r)) = h (r, Y(r)) ]dB(r)

From the assumption (H2), we get
() = E[D ¢, xt)-Dt, Y| <Lo sup E[[x(6) - Y-
te

By Cauchy-Schwarz inequality, (H1) and (H2), we obtain

2
IT(t)

]E ’

f
I U, 1 [f (r, X)) — £, YO dr

IA

t t
[ U(t, r)drE I ue, n||f o, X)) - £ &, () |[dr

2 t
]\% e—y(t—?’)]E“X(T') - Y(T’)szr

IN

<

ML 2
L sup E|[x(H) - Y.
teR
From Lemma 2.11, Cauchy-Schwarz inequality, (H1) and (H2), one can prove that

IT3(t)

t 2
1EH f ut, g (n X(r)) = g (r, Y(r))] d (B) (r)

, 2
< &E U U(t,7)|g (r, X(r) = g (r, Y()| dr
t t
< & f u(t, ndr f U, ryEllg (r X)) - g ¢, YD) [
a*M? L,
< sup E[|x) - Yo"

(15)

(16)

(17)
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From Lemma 2.11, (H1) and (H2), we can verify

IL(t) = ]EHI; Uct, r) [h(r, X(r)) — h (r, Y(r))] dB(r) 2
- m U, 1 6, X)) — @ YO [P ¢B) ()
< ML, I t e 2EDE||X(r) - Y|P dr
< 52];: L sup E[[X(0) - Y. (18)

It follows from (15) to (18), we deduce
AMPLy  G*MPL,  25°MPL,
12 + 12 +

E|| (@X) (t) - (@Y) (t)||2 < [4LD + ]sullg E|[X(t) - Y(t)||2. (19)
te

So,

4M2Lf (_74M2Lg 25°M?L,
+ +

[@%)® - @0, < A

4 p +

[l vl @0

Consequently, @ has a unique fixed point in SPAA (]R, LZ (?')), which shows that (1) has unique square
mean pseudo almost automorphic mild solution.

4. Stability of square mean pseudo almost automorphic solution

In this section, we firstly introduce the definitions of exponential stability. In order to obtain the main
results, we let D(t,0) = f(t,0) = g(¢,0) = h(t,0) = 0.

Definition 4.1. The square mean pseudo almost automorphic mild solution X(t) of (1) is
(1) exponentially stable in mean square if for any initial value X(#y), the solution X(t) satisfies
E|[x®| < CE||X(to)|[ ¢,
where A and C are positive constants independent of t,.

(2) quasi sure exponentially stable if for any initial value X(to), the solution X(t) satisfies
. 1
limsup n log ”X(t)” <-A, gs.,
t— 00

where A > 0.

Theorem 4.2. Assuming that the conditions (H1)-(H3) are satisfied and

5M’Ly  55*M°L,  552M2L,
5Lp + ”2 + yz + 2 <1.

Then the square mean pseudo almost automorphic mild solution X(t) of (1) is exponentially stable.
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Proof: From the definition of solution, we have

By ) ! 2
E|x®)|" < SE|D, X)) || +5]EH ft U, r) f (r, X(r)) dr

2 2

+ 5]E‘

t
f U, g (r, X)) d (B ()

to

+5E||Ut, to) [X(to) - D (to, X(to)] |

+5]E'

t
f U(t, r)h (r, X(r)) dB(7)

to

Similar to the proof of Uniqueness, we have
5M2Lf 554M2Lg 562M2Lh
T T
2
+10M2(1 + LD)e-W—fo)]EHX(tO)H .

5Lp +

Ellxol <

]supIE”X(t)”Z
teR

Therefore, we get

E|X0| < CE|Xto)|[ e,
where C = 10M2 (1+Lp)/ (1 _5Lp— 5]\:Ilzsz _ 5542/2[4!7 _ 5522M:Lh

almost automorphic mild solution X(f) of (1) is exponentially stable.

) So, we can find that the square mean pseudo

Theorem 4.3. Assuming that all the conditions of 4.2 are satisfied. Then the square mean pseudo almost automorphic
mild solution X(t) of (1) is said to be quasi sure exponentially stable.

Proof: From the Theorem 4.2, we have

E|x@)|° < CE|Xto)|[ e, (21)

By the elementary inequality, we obtain

t+s
Ix¢+s) = HD(t+s,X(t+s))+ f Ut +s,7)f (r, X(r)) dr

t+s t+s
+ f Ut +s,1)g (r, X(r)) d(B) (r) + f U(t +s,7)h (r, X(r)) dB(r)
t t

2
+U(t +5,8) [X(t) - D (t, X(t))]

t+s 2
<5|D(t+s, X(t +5)) Hz + SH f U(t +s,7)f (r,X(r)) dr
t

2

t+s 2 t+s
+5’ f U(t +s,m)g (r, X(r))d(B) (n)|| + 5” f Ut +s,r)h(r, X(r)) dB(r)
t t

+5||uct +s, 6 X - D¢, Xl

5
=5 Z Yi(b). (22)

From assumption (H1) and (H2), we obtain

E [sup Y, (S)j|

0<s<t

E[sup Dt +5, X(t +9)) ||2]
0<s<t

IA

LoE [sup It + s)||2] : (23)

0<s<t
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fHS U(t +s,7)f (r,X(r) dr 2]
t

t+s t+s
E sup { f Ut + s, 7)|Pdr f | f(r,X(r))“zdr}

0<s<t

su
2‘LL t

0<s<t

MZLf t+T
f E|IX()Pdr
2u Ui

By Cauchy-Schwarz inequality, (H1) and (H2), we get

E [sup Yz(s)]

0<s<t

E [sup

0<s<t

IA

IA

IA

IA

Msz 5 t+T tr—ta)
el f e gy

ML
7 CEx[fert-o.

From (H1), (H2) and Lemma 2.13, it shows

¢
lE[sup Yg(s)] < M252T2f+T€_2“(t_r)]EHg(7’,X(7’))szr
0<s<t t
t+T 2
< M252T2Lgf e‘zf’(t‘r)]EHX(r)” dr
t
¢
< ]VIZ‘_72T2L§C]E||X(fo)‘‘2 f +Ttﬁf'_z”(t‘r)e‘“("tﬂ)clr
t
2-2,2
< MO o) et

From Lemma 2.11 and 2.12, (H1) and (H2),

IA

t+1
IE[sup Y4(s)] ML, [ BB ORdr
t

0<s<t

IA

t+T
45> ML, CE||X (to) | f o201 =hlr—h) 4
t
~2 12
< MET CIE“X(tO)HZe—y(t—tO) )
U
By elementary inequality, (H1) and (H2), we have

SE||u(t +s,61X() - D (¢, XO)I|

5E [sup Y‘5(s)]

0<s<t

IN

10M(L + Lp)CE||X ()| e ¢,

It follows from (23) to (27), we deduce

(1-5Lp)E | sup ||X(s)“2]

to<s<t

+

5MPLy  5M?*3°t*L,  2052M2L,
< 2 " e+

¢ + 10M(1 + Lp) | CE|[X(to)|[ e,

1090

(24)

(25)

(26)

27)

(28)



P. Duan / Filomat 34:4 (2020), 1075-1092 1091

5M?Ls  56*M2L; | 552M2L,

So, by virtue of 5Lp + e 2 i < 1, we get
E [sup ||X(t + s)”2 < MgeHit=t), (29)
0<s<t

where My = [”;;ff 5M‘; CLo gt 4 WML gt 1 10MA(1 + LD)] CE||Xto)|[/ (1 - 5Lp).

Consequently, for any € € (0, ),

0<s<t

E (sup [X(re + s>||2)
C(a) : sup ”X(TLT + s)H2 > e_n(P—E)T) <

0<s<r e—n(y—e)’[

< Moe " E||X(to)|"-

According to Borel-Cantelli Lemma, we can conclude there exists a ko(w) such that for almostall w € Q, k >
ko(w),

sup ”X(TIT + s)”2 < e,

0<s<t
This implies
log sup “X(t)“
lim su nt<t<(n+1)t «_ s
n_mp nt =T 1

Therefore, we can obtain

log ||X -
limsup og” (t)” S—y ¢

, 4.S..
t—oo 2 q

Letting € — 0, we obtain the desired results.

5. Conclusion

In this paper, a class of neutral stochastic evolution equations driven by G-Brownian motion has been
studied. Firstly, under classical Lipchitz conditions, the existence and uniqueness of square mean pseudo
almost automorphic mild solutions to the stochastic system. Next, the quasi sure exponential stability of
square mean pseudo almost automorphic mild solutions to neutral stochastic evolution equations is inves-
tigated based stochastic analysis theory and Borel-Cantelli Lemma. Moreover, we obtained the exponential
stability of square mean pseudo almost automorphic mild solutions.
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