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Abstract. In this paper we define the (generalized) linear Volterra integral operator on L2[a, b]. Then
the problem of existence and uniqueness of solutions of the second kind Volterra integral equations,
corresponding to this operator, will be answered. Finally, some applications of this work to the existence
of solutions of some fractional differential equations, are given.

1. Introduction and Preliminaries

Systems of Volterra integral equations and their solutions are of great importance in science and en-
gineering. Most physical problems, such as biological applications in population dynamics and genetics
where impulses arise naturally or are caused by control, can be modeled by a differential equation, an
integral equation, an integro-differential equation or a system of these equations.

In recent years, the systems of integral and integro-differential equations have been solved by various
method [2, 5, 7–9]. One of the important ways to overcome the difficulty of the ODE and PDE problems, is
to reformulate them to integral equation problems, which lead to bounded integral operators. This method
will be used here for a class of fractional differential equations.

Throughout this paper we assume that a, b ∈ R, a < b, H := L2[a, b], and use the following notations.

Ra,b := [a, b] × [a, b],

∆a,b := {(s, t) : a ≤ s ≤ b, a ≤ t ≤ s},

B(H) : The set of all bounded linear operators on H.

Definition 1.1. The Fredholm integral operator T : H→ H with kernel k ∈ L2(Ra,b) is defined as

T f (s) =

∫ b

a
k(s, t) f (t)dt, f ∈ H, s ∈ [a, b].
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Also, the Volterra integral operator T : H→ H with kernel k ∈ L2(∆a,b) is of the form

T f (s) =

∫ s

a
k(s, t) f (t)dt, f ∈ H, s ∈ [a, b].

A bounded linear operator T on a Banach space X is said to be quasi-nilpotent if ‖Tn
‖

1
n → 0 as n→∞. It

is easy to see that every nilpotent operator is quasi-nilpotent. In [6], it is shown that any Volterra integral
operator T ∈ B(H) is quasi-nilpotent. Moreover, a quasi-nilpotent operator has no non-zero eigenvalues.

Two types of fractional derivatives of Riemann-Liouville and Caputo derivatives, have been often used
in fractional calculus. We briefly introduce these two definitions.

Definition 1.2. The Riemann-Liouville integral of the function f (t) with order α ∈ (0,∞) is defined as

Jαa f (t) :=
1

Γ(α)

∫ t

a
(t − τ)α−1 f (τ)dτ, t ∈ [a, b]

where Γ is the Gamma function. Also, we set J0
a f (t) := f (t), and Ja := J1

a .

Theorem 1.3. [1] Let f ∈ L1[a, b] and α, β > 0. Then the following assertions hold.

(i) Jαa f (t) exists for almost every t ∈ [a, b], and Jαa f ∈ L1[a, b].

(ii) Jαa Jβa f = Jα+β
a f .

Definition 1.4. The Riemann-Liouville derivative of function f (t) with order α ∈ R+ := [0,∞) is defined by

Dα
a f (t) :=

dm

dtm Jm−α
a f (t),

where m = dαe := min{k ∈ Z : k ≥ α}, is the ceiling of α.

Definition 1.5. The Caputo derivative with order α ∈ R+ of function f (t) is defined by

∗Dα
a f (t) := Jm−α

a
dm

dtm f (t),

where m = dαe.

Theorem 1.6. [1] Let α > 0 and m = dαe. Then for a function f : [a, b]→ R, the following statements hold.

(i) If f is such that both Dα
a f and ∗Dα

a f exist, then

∗Dα
a f (t) = Dα

a f (t) −
m−1∑
k=0

f (k)(a)
Γ(k − α + 1)

(t − a)k−α.

(ii) If f ∈ Cm[a, b], then

∗Dα
a f ∈ C[a, b] and Jαa ∗D

α
a f (t) =

m−1∑
k=0

f (k)(a)
k!

(t − a)k.

(iii) If f ∈ L1[a, b], then Dα
a Jαa f (t) = f (t), for almost every t ∈ [a, b].
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2. Generalized linear Volterra integral equations

Integral operator can be defined in various ways and in different spaces. As an example see [3]. Here we
want to consider the combination of the (usual) Fredholm and Volterra operator to an arbitrary operator.

Definition 2.1. Suppose that A ∈ B(H).

(i) For k ∈ L2(Ra,b), the bounded linear operator T : H→ H, defined by

T f (s) =

∫ b

a
k(s, t)A f (t)dt, f ∈ H, s ∈ [a, b]

is said the Fredholm operator (with kernel k), related to A.

(ii) For k ∈ L2(∆a,b), the bounded linear operator T : H→ H, defined by

T f (s) =

∫ s

a
k(s, t)A f (t)dt, f ∈ H, s ∈ [a, b]

is said the Volterra operator (with kernel k), related to A.

The corresponding integral equation of the form

T f − λ f = 1,

is said to be the Fredholm (Volterra) equation of the second kind, related to A, if T is a Fredholm (Volterra) operator,
related to A, λ , 0, 1 ∈ H, and f ∈ H is an unknown function.

It is clear that every Volterra operator, related to A, is a Fredholm operator, related to A. Also, if F is a
Fredholm (Volterra) operator with kernel k and T is a Fredholm (Volterra) operator with kernel k, related to
A ∈ B(H), then T = FA. Since V is a compact operator, this implies that T is also compact.

Remark 2.2. Suppose that A ∈ B(H). Then an easy verification shows that

|A f (t)| ≤ ‖A‖ · | f (t)|,

for almost every t ∈ [a, b].

Theorem 2.3. Let k ∈ L2(∆a,b) be a bounded map with bound M and A ∈ B(H). Then the Volterra operator with
kernel k, related to A, is a quasi-nilpotent operator. Moreover, for each n ∈N we have

‖Tn
‖ ≤

(
(b − a)M‖A‖

)n

(n − 1)!
√

2n
. (1)

Proof. Suppose that A ∈ B(H) and s ∈ [a, b]. By using the previous remark and Holder’s inequality, we have

|T f (s)| ≤
∫ s

a
|k(s, t)| |A f (t)| dt ≤ ‖A‖

∫ s

a
|k(s, t)| | f (t)| dt

≤ ‖A‖
( ∫ s

a
|k(s, t)|2 dt

) 1
2
( ∫ s

a
| f (t)|2 dt

) 1
2

≤ M‖A‖ ‖ f ‖(s − a)
1
2 .
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This shows that

|T2 f (s)| ≤
∫ s

a
|k(s, t)| |AT f (t)| dt ≤ ‖A‖ ‖T‖

∫ s

a
|k(s, t)| | f (t)| dt

≤
1

1 + 1
2

M2
‖A‖2‖ f ‖(s − a)

3
2 .

By induction on n and a similar method we have

|Tn f (s)| ≤
1

(1 + 1
2 )(2 + 1

2 ) · · · (n − 1 + 1
2 )

Mn
‖A‖n ‖ f ‖(s − a)

2n−1
2

≤
(M‖A‖)n

(n − 1)!
‖ f ‖(s − a)

2n−1
2 .

Thus for each f ∈ H

‖Tn f ‖ =
( ∫ b

a
|Tn f (t)|2 dt

) 1
2

≤

{ ∫ b

a

( (M‖A‖)n

(n − 1)!
‖ f ‖(t − a)

2n−1
2

)2
dt

} 1
2

≤
((b − a)M‖A‖)n

(n − 1)!
√

2n
‖ f ‖,

which implies ‖Tn
‖ ≤

(
(b−a)M‖A‖

)n

(n−1)!
√

2n
. This equation also shows that T is a quasi-nilpotent operator.

Theorem 2.4. Let α > 0, A ∈ B(H), and T : H→ H be defined by

T f (x) = (Jαa A) f (t) f ∈ H, t ∈ [a, b].

Then T is a quasi-nilpotent operator. Moreover, for each n ∈N

‖Tn
‖ ≤

(
(b − a)2α− 1

2n ‖A‖
)n

(2nα − 1)
3
2 Γ(nα)

. (2)

Proof. Similar to the proof of the previous theorem, we have

‖T f (s)‖ ≤ ‖A‖
1

Γ(α)

∫ s

a
(s − t)α−1

| f (t)| dt = ‖A‖Jαa | f |(s)

Also, by induction on n, using Theorem 1.3, and Holder’s inequality we can imply

|Tn f (s)| ≤ ‖A‖n Jαa Jαa · · · Jαa︸      ︷︷      ︸
n

| f |(s)

= ‖A‖n Jnα
a | f |(s)

= ‖A‖n
1

Γ(nα)

∫ s

a
(s − t)nα−1

| f (t)| dt

≤
1

(2nα − 1)Γ(nα)
‖A‖n(s − t)2nα−1

‖ f ‖.
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Thus

‖Tn f ‖ ≤
1

(2nα − 1)Γ(nα)
‖A‖n

( ∫ b

a
(s − t)4nα−2

) 1
2
‖ f ‖

≤
1

(2nα − 1)
√

4nα − 1Γ(nα)
‖A‖n(b − a)

4nα−1
2 ‖ f ‖.

Therefore,

‖Tn
‖ ≤

(b − a)2α− 1
2n

(2nα − 1)
√

4nα − 1Γ(nα)
≤

(
(b − a)2α− 1

2n ‖A‖
)n

(2nα − 1)
3
2 Γ(nα)

.

To complete the proof, it is sufficient to use Stirling’s formula in the last inequality.

Remark 2.5. Let T be an operator that satisfies in the conditions of Theorem 2.3 or Theorem 2.4. Then σ(T), the
spectrum of T, is equal to {0}, because T is a quasi-nilpotent operator. Furthermore, from (1) and (2), for each λ , 0,
the Neumann series Rλ(T) := λ−1(Id + T

λ + T2

λ2 + · · · ) converges absolutely. So, it converges. Therefore T − λ is
invertible and it is easy to see that (T − λ)−1 = Rλ(T). Thus if 1 ∈ H, the Volterra equation T f − λ f = 1, related to
A, has a unique solution f = Rλ(T)1.

Theorem 2.6. Let T be the Fredholm operator with kernel k ∈ H, related to A ∈ B(H). Then for each n ≥ 2, Tn is a
Fredholm operator with kernel kn, related to A, where

kn(s, t) = A
∫ b

a
· · ·A

∫ b

a︸            ︷︷            ︸
n−1

k(s, t1)k(t1, t2) · · · k(tn−1, t) dt1 · · · dtn−1.

Proof. Suppose that f ∈ B(H), s ∈ [a, b]. By definition of T,

T f (s) =

∫ b

a
k(s, t)A f (t) dt.

This follows that

T2 f (s) =

∫ b

a
k(s, t1)AT f (t1) dt1

=

∫ b

a
k(s, t1)

(
A

∫ b

a
k(t1, t)A f (t)dt

)
dt1

=

∫ b

a

(
A

∫ b

a
k(s, t1)k(t1, t)dt1

)
A f (t)dt

Thus by induction on n, we can get

Tn f (s) =

∫ b

a

(
A

∫ b

a
· · ·A

∫ b

a︸            ︷︷            ︸
n−1

k(s, t1)k(t1, t2) · · · k(tn−1, t) dt1 · · · dtn−1

)
A f (t)dt,

that completes the proof.

Remark 2.7. Here we mention to an important property of the Riemann-Liouville integral operator, required in the
following theorem, that is this operator is one-to-one. Let Jαa f = 0, for some f ∈ H. Since H ⊆ L1[a, b], by Theorem
1.6, we have 0 = Dα

a Jαa f = f . Therefore, Jαa is a one-to-one map.
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Theorem 2.8. Suppose that α > 0, m = dαe, 1 : [a, b] → R be a function, A ∈ B(H), λ , 0 and c0, . . . , cm−1 are n
arbitrary real numbers. Then the following statements hold.

(i) If 1 ∈ H, then the integral equation

Jαa A f (t) = λ f (t) + 1(t) (3)

has exactly one solution in H.

(ii) If 1 ∈ H, then the initial fractional differential equation

CD
α
a f (t) = A f (t) + 1(t) f (a) = c0, . . . , f (m−1)(a) = cm−1 (4)

has at most one solution f ∈ Cm[a, b].

(iii) If h = 1 −

m−1∑
k=0

ck

Γ(k − α + 1)
(· − a)k−α

∈ H, the initial fractional differential equation

Dα
a f (t) = A f (t) + 1(t) f (a) = c0, . . . , f m−1(a) = cm−1 (5)

has at most one solution f ∈ Cm[a, b].

Proof. (i) Set T := Jαa A. Then (3) converts to T f − λ f = 1. From Remark 2.5, T is quasi-nilpotent and hence
T − λ is invertible. So, f = (T − λ)−11 = Rλ(T)1 is the unique solution of (3).

(ii) Suppose that f ∈ Cm[a, b] and 1 ∈ H. By using Theorem 1.6, ∗Dα
a f ∈ C[a, b]. Therefore the both sides of

the following equation

∗Dα
a f = A f + 1 (6)

belongs to H. According to Remark 2.7 and Theorem 1.6, (6) is equivalent to

f −
m−1∑
k=0

ck

k!
(· − a)k = Jαa ∗D

α
a f = Jαa A f + Jαa 1. (7)

Consider T = Jαa A and h(t) = −Jαa 1(t) −
∑m−1

k=0
ck
k! (t − a)k, for each t ∈ [a, b]. Then h ∈ H and it can be rewrite (7)

in the form T f − f = h. Thus Remark 2.5 shows that the last equation has the only solution f = R1(T)h ∈ H.
So, it has at most one solution in Cm[a, b].

(iii) Assume that f ∈ Cm[a, b]. By using Theorem 1.6 we have

Dα
a f (t) = ∗Dα

a f (t) +

m−1∑
k=0

ck

Γ(k − α + 1)
(t − a)k−α. (8)

Substituting (8) in to (5), we obtain that

Dα
a f (t) = A f (t) +

(
1(t) −

m−1∑
k=0

ck

Γ(k − α + 1)
(t − a)k−α

)
. (9)

Noting that both sides of (9) belong to H. Thus by using Theorem 1.6 again, (9) follows that:

f (t) −
m−1∑
k=0

ck

k!
(t − a)k = Jαa ∗D

α
a f (t) = Jαa A f (t) + Jαa h(t),
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or

Jαa A f (t) − f (t) = −
( m−1∑

k=0

ck

k!
(t − a)k + Jαa h(t)

)
. (10)

Now, a similar approach, used in (ii), shows that the equation (10) has at most one solution f ∈ Cm[a, b] and
(if exists) is of the form

f (t) = −R1(T)
(
Jαa h +

m−1∑
k=0

ck

k!
(· − a)k

)
(t).

Theorem 2.9. Let c > 0, 1 ∈ H, m be the Lebesgue measure on R and φ : [a, b] → [a, b] satisfies in one of the
following conditions:

(a) For some c > 0 and each measurable set X ⊆ [a, b], m
(
φ−1(X)

)
≤ c m(X),

or

(b) φ is differentiable, φ′ , 0 on [a, b], and c := sup
t∈[a,b]

1
|φ′ (t)|

< ∞.

Then the following integral equation

Jαa
(

f ◦ φ
)
(s) =

1
Γ(α)

∫ s

0
(s − t)α−1 f

(
φ(t)

)
dt = f (s) + 1(s), (11)

has a unique solution f ∈ H.

Proof. For each f ∈ H let A f := f ◦ φ. Assume that (a) satisfies and f ∈ H. According to Layer cake
representation (see [4]) we have

‖A f ‖2 = ‖ f ◦ φ‖2 = 2
∫
∞

0
x m

(
{y : | f (φ(y))| ≥ x}

)
dx

= 2
∫
∞

0
x m

(
φ−1
{z : | f (z)| ≥ x}

)
dx

≤ 2 c
∫
∞

0
x m

(
{z : | f (z)| ≥ x}

)
dx

= c‖ f ‖2.

Now assume that (b) is satisfied. Then by the mean value property of derivative, φ
′

> 0 or φ
′

< 0 on [a, b].
If φ

′

> 0, then for each f ∈ H, by assumptions we have

‖A f ‖2 =

∫ b

a

∣∣∣ f (φ(t))
∣∣∣2dt =

∫ b

a

(
f (φ(t))

)2
φ
′

(t)
1

φ′ (t)
dt

≤

∫ b

a

(
f (φ(t))

)2
φ
′

(t)
1

φ′ (t)
dt

≤ c
∫ φ(b)

φ(a)

(
f (u)

)2
du

≤ c‖ f ‖2.

A similar method shows that ‖A f ‖2 ≤ c‖ f ‖2 satisfies whenever φ
′

< 0. So, in any way, A : H → H is a
bounded linear operator with ‖A‖ ≤

√
c. Thus by using Theorem 2.8, the integral equation (11) has a unique

solution f ∈ H.
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Example 2.10. Consider the integral equation

Jα0 f (sin t) = − f (t) + χ[0, 1
2 ](t), (12)

where 0 ≤ t ≤ 1. For each f ∈ H = L2[0, 1] and t ∈ [0, 1], let A f (t) := f (sin t). By using Theorem 2.9(b), A is a
bounded linear operator, and so, (12) is simply written as Jα0 A f = − f + χ[0, 1

2 ], has exactly a unique solution f ∈ H,
by using Theorem 2.8. In addition, f (t) = R−1(Jα0 A)χ[0, 1

2 ](t). We note that (12) has no solution f ∈ C[0, 1] since
Jα0 A f + f ∈ C[0, 1], but χ[0, 1

2 ] < C[0, 1].

Example 2.11. Let 1 ∈ H = L2[0, 1] and c0, . . . , cm−1 ∈ R, where m = dαe and α > 0. Consider the fractional initial
value problem

∗Dα
0 f (t) = f (t) + t f (1 − t) + 1(t), (1 ≤ t ≤ 1) (13)

with initial conditions ∗Dα
0 f (0) = c0, . . . , ∗Dα

0 f m−1(0) = cm−1. Then initial value problem (13) has at most one
solution f ∈ Cm[0, 1] and if such a solution exists, then from Theorem 2.8 it is equal to f (t) =

(
R1(Jα0 A)h

)
(t), where

A : H → H is defined for each f ∈ H and t ∈ [0, 1] by A f (t) = f (t) + t f (1 − t), and h(t) = −Jα01(t) −
m−1∑
k=0

ck

k!
tk. It

should be noted that (13) may be has no solution f ∈ Cm[a, b]. For example if 1 ∈ H r C[a, b], then by Theorem 1.6,
∗Dα

0 f ∈ C[0, 1], for each f ∈ Cm[0, 1]. This implies ∗Dα
0 f (t) − f (t) − t f (1 − t) ∈ C[0, 1], and therefore, (13) has no

solution in Cm[0, 1].
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