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Abstract. In this note we consider the kernels of vectorial Hankel operators and examine a question which
functions are admitted to canonical ‘pseudo’-Douglas-Shapiro-Shields factorizations.

1. Introduction

Let T be the unit circle in the complex plane C. For a separable complex Hilbert space E, let L2
E be the

set of all strongly measurable functions f : T→ E such that

|| f ||2 :=
(∫
T

|| f (z)||2Edm(z)
) 1

2

< ∞.

For f ∈ L2
E, the n-th Fourier coefficient of f , denoted by f̂ (n), is defined by

f̂ (n) :=
∫
T

zn f (z)dm(z) (n ∈ Z).

Then H2
E denotes the corresponding E-valued Hardy space, i.e., the set of f ∈ L2

E with f̂ (n) = 0 for n < 0.
LetB(D,E) denote the set of all bounded linear operators between separable complex Hilbert spaces D and
E, and abbreviate B(E,E) to B(E). A function Φ : T → B(D,E) is called WOT measurable if z 7→ Φ(z)x
is weakly measurable for every x ∈ D. Let L∞(B(D,E)) denote the set of all bounded WOT measurable
B(D,E)-valued functions on T. Define H∞(B(D,E)) by the set of functions Φ ∈ L∞(B(D,E)) whose Fourier
coefficients Φ̂(n) = 0 for n < 0. A function ∆ ∈ H∞(B(D,E)) is called an inner function if ∆∗∆ = ID a.e. on T
and is called two-sided inner function if ∆ is inner and ∆∆∗ = IE a.e. on T. For a function Φ ∈ H∞(B(D,E)),
an inner function ∆ with values in B(D′,E) is called a left inner divisor of Φ if Φ = ∆A for A ∈ H∞(B(D,D′)).
For Φ ∈ H∞(B(D1,E)) and Ψ ∈ H∞(B(D2,E)), we say that Φ and Ψ are left coprime if the only common left
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inner divisor of both Φ and Ψ is a unitary operator. Also, for Φ ∈ H∞(B(E,D1)) and Ψ ∈ H∞(B(E,D2)), we
say that Φ and Ψ are right coprime if Φ̃ and Ψ̃ are left coprime, where Φ̃(z) := Φ(z)∗.

A Hankel operator with symbol Φ ∈ L∞(B(D,E)) is an operator HΦ : H2
D → H2

E defined by

HΦ f := JP⊥(Φ f ) for f ∈ H2
D,

where P⊥ is the orthogonal projection of L2
E onto (H2

E)⊥ and J denotes the unitary operator from L2
E onto L2

E
given by J( f )(z) := z f (z) for f ∈ L2

E. A shift operator SE on H2
E is defined by

(SE f )(z) := z f (z) for each f ∈ H2
E.

We can see that the kernel of a Hankel operator HΦ∗ is an invariant subspace of the shift operator on H2
E.

Thus by the Beurling-Lax-Halmos Theorem (cf. [2], [15], [14], [17]),

ker HΦ∗ = ∆H2
E′ (1)

for some inner function ∆ ∈ H∞(B(E′,E)). Some kernels of products of Hankel operators with scalar symbols
are also invariant subspaces of the shift operator on H2 (cf. [11] [8], [9]).

Related to this is the notion of Douglas-Shapiro-Shields (DSS) factorization. For a function Φ ∈
L∞(B(E′,E)), the Douglas-Shapiro-Shields (briefly, DSS) factorization of Φ is (cf. [4], [6], [7], [12]):

Φ = ∆A∗, (2)

where ∆ ∈ H∞(B(E)) is two-sided inner and A ∈ H∞(B(E,E′)). It is known (cf. [4], [7], [12]) that if
Φ ∈ L∞(B(E′,E)) admits a DSS factorization of the form (2), then ∆ can be obtained from the equation

ker HΦ∗ = ∆H2
E : (3)

in this case, ∆ and A are right coprime. The DSS factorization satisfying (3) is called canonical. Consequently,
each function that admits a DSS factorization can be arranged in a canonical form.

We recall (cf. [1], [16]) that for a scalar function ϕ defined on T, ϕ is said to be of bounded type if

ϕ = h1/h2 a.e. on T

for some h1, h2 ∈ H∞. If Φ is a matrix-valued L∞-function then Φ is said to be of bounded type if each entry
of Φ is of bounded type. It is also known that if Φ is a matrix-valued function then (cf. [3], [12])

Φ∗ is of bounded type ⇐⇒ Φ admits a (canonical) DSS factorization. (4)

If the condition “∆ is two-sided” is dropped in (2), what can we say about a DSS factorization ? More
concretely, we would like to ask:

Question 1.1. If Φ ∈ L∞(B(E′,E)) is expressed as

Φ = ∆A∗, (5)

where ∆ ∈ H∞(B(D,E)) is inner and A ∈ H∞(B(D,E′)), does it follows that ∆ can be obtained from the equation
ker HΦ∗ = ∆H2

E ?

In this note we consider Question 1.1.

We remark that the kernels of Hankel operators with operator-valued symbols are studied recently in [4]
where the degree of cyclicity of the set obtained by the analytic part of the symbol is shown to be connected
with the size of the inner matrix ∆ as in (5) (the case of matrix-valued symbol is studied in [13] where an
index of the adjoint of the symbol is also connected with the same thing). We will use the degree of cyclicity
to give a more explicit answer to Question 1.1 for matrix-valued symbols. The following inverse question
is investigated in [10]: Given an (nonsquare) inner matrix ∆, find all matrix-valued Φ in L∞(B(D,E)) such
that ker HΦ∗ = ∆H2

E′ .A complete answer to this inverse question is given in the case ∆ is a 2× 1 inner matrix
or ∆ is an inner matrix such that ∆∗ is of bounded type.
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2. The main results

For an inner function ∆ ∈ H∞(B(D,E)),H(∆) denotes the orthogonal complement of the subspace ∆H2
D

in H2
E, i.e.,

H(∆) := H2
E 	 ∆H2

D.

For a function Φ : T→ B(D,E), write Φ̆(z) := Φ(z).

We now answer Question 1.1 affirmatively.

Theorem 2.1. If Φ ∈ L∞(B(E′,E)) is expressed as

Φ = ∆A∗, (6)

where ∆ ∈ H∞(B(D,E)) is inner and A ∈ H∞(B(D,E′)), then we can write

Φ = ∆AB∗0, (7)

where B0 ∈ H∞(B(E0,E′)) and ∆A ∈ H∞(B(E0,E)) is an inner function which comes from the equation

ker HΦ∗ = ∆AH2
E0

(8)

for some Hilbert space E0. Moreover, in the factorization (7), ∆A and B0 are right coprime.

Proof. Suppose that Φ ∈ L∞(B(E′,E)) can be written as

Φ = ∆A∗, (9)

where ∆ ∈ H∞(B(D,E)) is inner and A ∈ H∞(B(D,E′)). Define

∆A := left-g.c.d.
{
Θ : Φ = ΘB∗ with Θ ∈ H∞(B(D,E)) inner and B ∈ H∞(D,E′)

}
, (10)

where left-g.c.d. means the greatest common left inner divisor. If Φ = ΘB∗ for some inner function
Θ ∈ H∞(D,E) and B ∈ H∞(D,E′). Then ΘH2

D ⊆ ker HΦ∗ . We thus have

∆AH2
E0
⊆ ker HΦ∗ for some Hilbert space E0. (11)

For the reverse inclusion, suppose ker HΦ∗ , {0}. Then in view of the Beurling-Lax-Halmos Theorem that
ker HΦ∗ = ∆1H2

E1
for some nonzero inner function ∆1 with values in B(E1,E). Thus we have ∆H2

D ⊆ ∆1H2
E1
,

which implies that ∆1 is a left inner divisor of ∆. Write

∆ = ∆1Ω,

where Ω is inner function with values in B(D,E1). Since ker HΦ∗ = ∆1H2
E1

, it follows that for all f ∈ H2
E1

,

AΩ∗ f = Φ∗∆1 f ∈ H2
E′ . (12)

Put B := AΩ∗. Then B ∈ L∞(B(E1,E′)). It thus follows from (12) that for all x ∈ E1 and n = 1, 2, 3, · · · ,

B̂(−n)x =

∫
T

znB(z)xdm(z) = 0.

Thus B belongs to H∞(B(E1,E′)). Since ∆1B∗ = Φ, it follows that ∆1H2
E1
⊆ ∆AH2

E0
, which together with

(11) gives ∆1H2
E1

= ∆AH2
E0

. Thus ∆1 = ∆AU for some unitary operator U ∈ B(E1,E0). Put B0 := BU∗ ∈
H∞(B(E0,E′)). Then

Φ = ∆AB∗0 and ker HΦ∗ = ∆AH2
E0
. (13)
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We now claim that ∆A and B0 are right coprime. To see this we assume that Ω is a common left inner divisor
of ∆̃A and B̃0. Then we can write

∆̃A = Ω∆2 and B̃0 = ΩB2,

where ∆2 ∈ H∞(B(E,E1)) and B2 ∈ H∞((E′,E1)). Then ∆̃2 is a left inner divisor of ∆A, and we have that

Φ = ∆AB∗0 = ∆̃2Ω̃Ω̃∗B̃∗2 = ∆̃2B̃∗2.

Thus
∆̃2H2

E1
⊆ ker HΦ∗ = ∆AH2

E0

which implies that ∆A is a left inner divisor of ∆̃2. It thus follows that Ω̃ is a unitary operator and so is Ω.
Therefore ∆A and B0 are right coprime. This completes the proof.

Remark 2.2. The expression (6) will be called a pseudo-DSS factorization and the expression (7) will be called a
canonical pseudo-DSS factorization. Thus Theorem 2.1 says that if a function Φ ∈ L∞(B(E′,E)) admits a pseudo-
DSS factorization then we can always arrange the pseudo-DSS factorization of Φ in a canonical form.

For an inner function ∆ ∈ H∞(B(D,E)), define the kernel of ∆∗ by

ker ∆∗ := { f ∈ H2
E : ∆∗(z) f (z) = 0 for almost all z ∈ T}.

Since ker ∆∗ is an invariant subspace for the shift operator SD, it follows from the Beurling-Lax-Halmos
Theorem that ker ∆∗ = ΩH2

D′ for some inner function Ω ∈ H∞(D′,E).
The following lemma gives a concrete description for the kernel of ∆∗.

Lemma 2.3. [4] [10] Let ∆ be an inner function with values in B(D,E). Then we may write ker ∆∗ = ΩH2
D′ for

some inner function Ω ∈ H∞(D′,E). Put

∆c := left-g.c.d.
{

[1]i : 1 ∈ ker ∆∗
}
, (14)

where [1] : T→ B(C,E) is defined by [1](z)α := α1(z) (α ∈ C) and [1]i denotes the inner part of [1]. Then,

(a) Ω = ∆c;

(b) [∆,∆c] is an inner function with values in B(D ⊕D′,E);

(c) ker H∆∗ = [∆,∆c]H2
D⊕D′ ≡ ∆H2

D

⊕
∆cH2

D′ .

Definition 2.4. ∆c is called the complementary factor of an inner function ∆.

We then have:

Corollary 2.5. Suppose ∆ is an inner function with values in H∞(B(D,E)) and A ∈ H∞(B(D,E′)). If ∆ admits a
DSS factorization then

ker HA∆∗ = ΘH2
E,

where Θ ≡ [∆,∆c]Ω̆ is two-sided inner with

Ω := left-g.c.d.
(
˜[∆,∆c], [̃A, 0]

)
(where [A, 0] ∈ H∞(B(D ⊕D′,E′))).
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Proof. Let
Ω := left-g.c.d.

(
˜[∆,∆c], [̃A, 0]

)
.

Since ∆ admits a DSS factorization, it follows from Lemma 2.3 that [∆,∆c] is two-sided inner, and so is
˜[∆,∆c]. Thus Ω is two-sided inner, and hence we may write

[∆,∆c] = ΘΩ̃ and [A, 0] = BΩ̃ (Θ ∈ H∞(B(E)), B ∈ H∞(B(E,E′)),

where Θ and B are right coprime. Thus we have that

∆A∗ = [∆,∆c][A, 0]∗ = ΘB∗.

But since Ω̃ is two-sided inner, so is Θ, and hence ker HA∆∗ = ΘH2
E. This completes the proof.

The following example shows that Corollary 2.5 may fail if the condition “∆ admits a DSS factorization”
is dropped.

Example 2.6. Let h(z) := e
1

z−3 ∈ H∞. Put

f (z) :=
h(z)
√

2||h||∞
.

Clearly, f is not of bounded type. Let h1(z) :=
√

1 − | f (z)|2. Then h1 ∈ L∞ and |h1| ≥
1
√

2
. Thus there exists an outer

function 1 such that |h1| = |1| a.e. on T (cf. [5, Corollary 6.25], [4]). Let

∆ :=


f 0
1 0
0 z

√
2

0 z
√

2

 and A :=
[
0 1

]
.

Then ∆ is inner and ∆∗ is not of bounded type, so that by (4), ∆ does not admit a DSS factorization. Write

∆1 :=
[

f
1

]
and ∆2 :=

1
√

2

[
z
z

]
.

Then it follows from Lemma 2.3 that

ker H∆∗ = ker H∆∗1
⊕ ker H∆∗2

= ∆1H2
⊕

 z
√

2
1
√

2
z
√

2
−

1
√

2

 H2
C2

and hence,

[∆,∆c] =


f 0 0
1 0 0
0 z

√
2

1
√

2
0 z

√
2

−1
√

2

 .
Since ker HA∆∗ = H2

⊕H2
⊕ ker H∆∗2

, it follows that

ker HA∆∗ =


1 0 0 0
0 1 0 0
0 0 z

√
2

1
√

2
0 0 z

√
2
−

1
√

2

 H2
C4 ≡ ΘH2

C4 .
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Since f̃ is invertible in H∞, it follows that A and ∆ are right coprime. On the other hand, since

˜[∆,∆c]H2
C4

∨
[̃A, 0]H2 =


f̃ 1̃ 0 0
0 0 z

√
2

z
√

2
0 0 1

√
2

−1
√

2

 H2
C4

∨010
 H2 = H2

C3 ,

it follows that
Ω ≡ left-g.c.d.( ˜[∆,∆c], [̃A, 0]) = I3.

We thus have Θ , [∆,∆c]Ω̆.

Let Mn×m denote the set of all n ×m complex matrices and write Mn ≡Mn×n.

Remark 2.7. It is clear that if Φ ∈ L∞(B(E′,E)) is such that ker HΦ∗ = {0} then, by Theorem 2.1, Φ does not admit
a pseudo-DSS factorization. We next give a less trivial example in the sense that ker HΦ∗ , {0}, but Φ still does not
admit a pseudo-DSS factorization. Suppose that θ1 and θ2 are coprime inner functions. Consider

Φ :=

θ1 0 0
0 θ2 0
0 0 a

 ∈ H∞M3×3
,

where a ∈ H∞ is such that a is not of bounded type. Then a direct calculation shows that

kerHΦ∗ =

θ1 0
0 θ2
0 0

 H2
C2 ≡ ΘH2

C2 .

Assume that Φ admits a pseudo-DSS factorization. Then, by Theorem 2.1, we may write

Φ = ΘB∗

for some B ∈ H∞M3×2
. However, for any B ∈ H∞M3×2

,

Φ = ΘB∗ =

θ1 0
0 θ2
0 0

 B∗ =

∗ ∗ ∗∗ ∗ ∗

0 0 0

 ,
a contradiction.

3. WhenΦ is a matrix-valued symbol

Theorem 2.1 gives a satisfactory answer to Question 1.1, however as we have seen in a previous example,
it is not a simple matter to find the canonical pseudo-DSS factorization of Φ. Equivalently, we need to find
ker HΦ∗ . In the case when ∆ admits a DSS factorization, Corollary 2.5 gives a practical way of finding
ker HΦ∗ . Here we extend Corollary 2.5 to more general situations when Φ is a matrix-valued symbol. Since
Corollary 2.5 covers the case when Φ ≡ ∆A∗ admits a DSS factorization, here we will assume Φ does not
admit a DSS factorization.

Proposition 3.1. Suppose Φ ∈ L∞Mn×m
does not admit a DSS factorization. Let

Φ = ∆A∗ (pseudo-DSS factorization).

If [∆,∆c] is in H∞Mn×(n−1)
and Ω ≡ left-g.c.d

(
˜[∆,∆c], [̃A, 0]

)
is two-sided inner, then Φ = ΘB∗ is a canonical

pseudo-DSS factorization for some B ∈ H∞Mm×(n−1)
, where

Θ = [∆,∆c] Ω̆. (15)
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Proof. By Theorem 2.1, we need to show ∆A given by (8) is the same as the Θ given by (15). By the definition
of Ω,

[∆,∆c] = ΘΩ̃ and [A, 0] = BΩ̃

for some B ∈ H∞Mm×(n−1)
and Θ and B are right coprime. Since

Φ = ∆A∗ = [∆,∆c] [A, 0]∗ = ΘΩ̃Ω̃∗B∗ = ΘB∗,

it follows that ΘH2
Cn−1 ⊆ ker HΦ∗ ≡ ∆AH2

Cr . Thus Θ = ∆AΓ for some inner function Γ ∈ H∞Mr×(n−1)
. Since

Φ ∈ L∞Mn×m
does not admit a DSS factorization, it follows that r < n, and hence r = n− 1. It thus follows from

Theorem 2.1 that
∆AΓB∗ = ΘB∗ = Φ = ∆AB∗0 for some B0 ∈ HMm×(n−1) .

Thus ΓB∗ = B∗0, and hence B = B0Γ. Hence, the fact that Θ and B are right coprime implies that Γ is a unitary
constant, and therefore Θ = ∆A.

We give an example to illustrate the above proposition.

Example 3.2. We use the same notation as in Example 2.6. Let

A := [1, 1] .

Then Φ = ∆A∗ = [ f 1 z
√

2
z
√

2
]t does not admit a DSS factorization. Note that

Ω = left-g.c.d
(
˜[∆,∆c], [̃A, 0]

)
= I3.

It follows from the above proposition that ker HΦ∗ = [∆,∆c]H2
C3 .

Next we extend the above proposition by using the notion of degree of cyclicity due to V.I. Vasyunin
and N.K. Nikolskii [18] (or [16]): If F ⊆ H2

Cn , then the degree of cyclicity, denoted by dc(F), of F is defined by
the number

dc(F) := n −max
ζ∈D

dim
{
1(ζ) : 1 ∈ H2

Cn 	 E∗F
}
,

where E∗F denotes the smallest S∗E-invariant subspace containing F, i.e., E∗F =
∨{

S∗nE F : n ≥ 0
}
. It is known

from [4, Lemma 2.13] that if Φ ≡ [Φ1, · · · ,Φn] (Φ j ∈ L∞
Cm ) is an m × n matrix-valued function then

ker HΦ∗ = ΘH2
Cr ⇐⇒ dc{Φ+} = n − r, (16)

where Θ is an m × r inner matrix function and {Φ+} := {(Φ1)+, · · · , (Φn)+} ⊆ H∞
Cm (where (Φ j)+ denotes the

analytic part of Φ j).

Remark 3.3. Suppose Φ ∈ L∞Mn×m
does not admit a DSS factorization. Let

Φ = ∆A∗ (pseudo-DSS factorization).

Suppose that [∆,∆c] ∈ H∞Mn×s
, Ω ≡ left-g.c.d

(
˜[∆,∆c], [̃A, 0]

)
is two-sided inner and dc{Φ+} = n − s. Then by the

same argument as the proof of Proposition 3.1, we have that Θ = ∆AΓ for some inner function Γ. By Theorem 2.1,
ker HΦ∗ = ∆AH2

Cr for some r ≤ n. By the assumption, dc{Φ+} = n − s and by (16), r = s. Therefore Θ = ∆AΓ implies
that Γ is a s × s two-sided inner matrix. Thus by the same argument as the proof of Proposition 3.1, we have that

Φ = ΘB∗ (canonical pseudo-DSS factorization),

where Θ = [∆,∆c] Ω̆.



C. Gu et al. / Filomat 34:4 (2020), 1053–1060 1060

References

[1] M.B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976) 597–604.
[2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255.
[3] R.E. Curto, I.S. Hwang and W.Y. Lee, Matrix functions of bounded type: An interplay between function theory and operator

theory, Mem. Amer. Math. Soc. 260 (2019) no. 1253, vi+100.
[4] R.E. Curto, I.S. Hwang and W.Y. Lee, The Beurling-Lax-Halmos theorem for infinite multiplicity, Jour. Funct. Anal. (to

appear).
[5] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[6] R.G. Douglas, H. Shapiro, and A. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann.

Inst. Fourier(Grenoble) 20 (1970), 37-76.
[7] A. Frazho and W. Bhosri, An operator perspective on signals and systems, Oper. Th. Adv. Appl. vol. 204, Birkhäuser,
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