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Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem
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Abstract. We establish the existence of a nontrivial and nonnegative solution for a double phase Dirichlet
problem driven by a (p(z), q(z))-Laplacian operator plus a potential term. Our approach is variational, but
the reaction term f need not satisfy the usual in such cases Ambrosetti-Rabinowitz condition.

1. Introduction

In this paper we are interested in the existence of a nontrivial and nonnegative solution for the following
class of double phase problems: − div (a(z)|∇u|p(z)−2

∇u) − div(|∇u|q(z)−2
∇u) + b(z)|u|p(z)−2u = f (z,u(z)) in Ω,

u = 0 on ∂Ω,
(1)

where

(a) Ω ⊂ RN is an open bounded domain with smooth boundary;

(b) f : Ω ×R→ R is a Carathéodory function that is

z→ f (z, ξ) is measurable for each ξ ∈ R,

ξ→ f (z, ξ) is continuous for a.a. z ∈ Ω;

(c) p, q ∈ C(Ω) are such that q(z) < p(z) for all z ∈ Ω and

1 < q− := inf
z∈Ω

q(z) ≤ q(z) ≤ q+ := sup
z∈Ω

q(z) < +∞,

1 < p− := inf
z∈Ω

p(z) ≤ p(z) ≤ p+ := sup
z∈Ω

p(z) < +∞;

(d) a, b ∈ L∞(Ω) are such that 0 < a0 ≤ a(z) and 0 ≤ b0 < b(z) for all z ∈ Ω.
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The study of double phase problems involving variable growth conditions is motivated by their applica-
tions in mathematical physics. For example, they are useful tools to model non-Newtonian fluids changing
their viscosity when electro-magnetic fields interfer. Several authors have given their contributions to
the study of nonlinear problems with unbalanced growth. We start pointing out that Marcellini in [11]
established regularity results of minimizers in the abstract setting of quasiconvex integrals. These kind of
problems have a key role in modelling elastic body deformation and nonlinear elasticity phenomena. In
this direction we recall two Zhikov’s papers [22, 23], that provide models for strongly anisotropic materials
in the framework of homogenization. The associated functionals also demonstrated their importance in
studying duality theory and Lavrentiev phenomenon [21]. In this direction, several results can be found
in different papers by Mingione et al. [1, 2, 5, 6], which are linked to Zhikov’s papers [22, 23]. Also,
Papageorgiou et al. in [15] consider a double phase eigenvalue problem driven by the (p, q)-Laplacian plus
an indefinite and unbounded potential, with a Robin boundary condition. For other remarkable papers
dealing with regularity and existence of solutions of elliptic double phase problems involving variable
exponents see, for example, [3, 10, 14, 19, 20]. For some results with constant exponents see [13, 17, 18].

The motivation behind this study is given by some recent papers dealing with nonlinear problems with
unbalanced growth whose main results are briefly collected in what follows. Let

F (u) =

∫
Ω

a(z)|∇u|p(z)dz +

∫
Ω

c(z)|∇u|q(z)dz +

∫
Ω

b(z)|u|p(z)dz, (2)

where 1 < q(z) < p(z) and a(z), b(z), c(z) ≥ 0 for all z ∈ Ω.
Regularity results for minimizers of (2) with a(z) ≥ 0, b(z) = 0, c(z) = 1 for all z ∈ Ω can be found in [5].
The case c ≡ 0 has been studied by Chabrowski and Fu in [4]. In fact, they established existence of a

nontrivial and nonnegative weak solution for the following p(z)-Laplacian Dirichlet problem − div (a(z)|∇u|p(z)−2
∇u) + b(z)|u|p(z)−2u = f (z,u(z)) in Ω ⊂ RN,

u = 0 on ∂Ω.

In [14], Papageorgiou and Vetro have proved the existence of one and three non trivial weak solutions
for Dirichlet boundary value problems driven by a (p(z), q(z))-Laplacian operator, with a(z) = c(z) = 1 and
b(z) = 0 for all z ∈ Ω, that is − div (|∇u|p(z)−2

∇u) − div(|∇u|q(z)−2
∇u) = f (z,u(z)) in Ω ⊂ RN,

u = 0 on ∂Ω.

The aim of this paper is to extend these results to the case a(z), b(z) > 0 and c(z) = 1 for all z ∈ Ω, that is
Problem (1), in the setting of superlinear (see Section 3) and sublinear (see Section 4) growth of f . We point
out that we do not employ the Ambrosetti-Rabinowitz condition, which is common in the literature when
dealing with superlinear problems. In the last section (namely Section 5), we consider the parametrical
problem − div (a(z)|∇u|p(z)−2

∇u) − div(|∇u|q(z)−2
∇u) + b(z)|u|p(z)−2u = λ f (z,u(z)) in Ω,

u = 0 on ∂Ω,

where λ > 0. In the parametric setting, using the results obtained in Section 3, we deduce the existence of a
nontrivial and nonnegative weak solution uλ for all λ > 0. Furthermore, we show that for the solution uλ,
we have ‖uλ‖ → +∞ as λ→ 0+.

2. Mathematical background

In this section, we collect some basic properties of Lebesgue and Sobolev spaces with variable exponent.
We recall that Ω ⊂ RN is an open bounded domain with smooth boundary. We set

MΩ = {u : Ω→ R : u is measurable} .
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Let ρp :MΩ → R ∪ {+∞} be the mapping defined by

ρp(u) :=
∫

Ω

|u(z)|p(z)dz. (3)

We consider the variable exponent Lebesgue space Lp(z)(Ω) given as

Lp(z)(Ω) =
{
u ∈ MΩ : ρp(u) < +∞

}
,

equipped with the Luxemburg norm, that is

‖u‖Lp(z)(Ω) := inf
{
λ > 0 :

∫
Ω

∣∣∣∣∣u(z)
λ

∣∣∣∣∣p(z)

dz ≤ 1
}
.

Consequently, the generalized Lebesgue-Sobolev space W1,p(z)(Ω) is given by

W1,p(z)(Ω) := {u ∈ Lp(z)(Ω) : |∇u| ∈ Lp(z)(Ω)},

equipped with the following norm

‖u‖W1,p(z)(Ω) = ‖u‖Lp(z)(Ω) + ‖ |∇u| ‖Lp(z)(Ω). (4)

We define W1,p(z)
0 (Ω) as the closure of C∞0 (Ω) in W1,p(z)(Ω).

From [8] we have that Lp(z)(Ω), W1,p(z)(Ω) and W1,p(z)
0 (Ω) endowed with the above norms, are separable,

reflexive and uniformly convex Banach spaces. Let p ∈ C(Ω), we recall that the critical Sobolev exponent p∗

of p is given by

p∗(z) =
Np(z)

N − p(z)
if p(z) < N and p∗(z) = +∞ if p(z) ≥ N.

We recall the following embedding theorem.

Proposition 2.1 ([9]). Assume that p ∈ C(Ω) with p(z) > 1 for each z ∈ Ω. If β ∈ C(Ω) and 1 < β(z) < p∗(z) for all
z ∈ Ω, then there exists a continuous and compact embedding W1,p(z)(Ω) ↪→ Lβ(z)(Ω).

Throughout the paper the embedding constant of W1,p(z)(Ω) ↪→ Lβ(z)(Ω) is denoted by Cβ. In addition,
from Theorem 1.11 of [9], we deduce that the embedding Lp(z)(Ω) ↪→ Lq(z)(Ω) is continuous, whenever
q, p ∈ C(Ω) and 1 < q(z) < p(z) for all z ∈ Ω.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular of the Lp(z)(Ω) space, which is the mapping ρp defined in (3).

Theorem 2.2 ([9]). Let u ∈ Lp(z)(Ω). Then we have that

(i) ‖u‖Lp(z)(Ω) < 1 (= 1, > 1)⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(z)(Ω) > 1, then ‖u‖p
−

Lp(z)(Ω)
≤ ρp(u) ≤ ‖u‖p

+

Lp(z)(Ω)
;

(iii) if ‖u‖Lp(z)(Ω) < 1, then ‖u‖p
+

Lp(z)(Ω)
≤ ρp(u) ≤ ‖u‖p

−

Lp(z)(Ω)
.

It is well known that the norm ‖u‖W1,p(z)(Ω) is equivalent to the norm ‖ |∇u| ‖Lp(z)(Ω) on W1,p(z)
0 (Ω), in virtue of

the following Poincaré inequality ([7], Theorem 8.2.18)

‖u‖Lp(z)(Ω) ≤ c ‖|∇u|‖Lp(z)(Ω) for some c > 0, all u ∈W1,p(z)
0 (Ω).



A. Nastasi / Filomat 34:3 (2020), 999–1011 1002

As a consequence, from now on, we will consider the norm ‖u‖ = ‖ |∇u| ‖Lp(z)(Ω) on W1,p(z)
0 (Ω) instead of the

one given in (4).
A function u ∈W1,p(z)

0 (Ω) is a weak solution of problem (1) if∫
Ω

a(z)|∇u|p(z)−2
∇u∇wdz +

∫
Ω

|∇u|q(z)−2
∇u∇wdz +

∫
Ω

b(z)|u|p(z)−2uwdz =

∫
Ω

f (z,u)wdz, (5)

for each w ∈W1,p(z)
0 (Ω).

Now, we consider the function F : Ω ×R→ R given as

F(z, t) =

∫ t

0
f (z, ξ)dξ for all t ∈ R, z ∈ Ω,

and the functional I : W1,p(z)
0 (Ω)→ R given as

I(u) =

∫
Ω

F(z,u) dz, for all u ∈W1,p(z)
0 (Ω).

Suitable assumptions in the sequel (namely (H1), (H5)) ensure that I ∈ C1(W1,p(z)
0 (Ω),R) and the embedding

given by Proposition 2.1 implies that I admits the following compact derivative

〈I′(u),w〉 =

∫
Ω

f (z,u)w dz, for all u,w ∈W1,p(z)
0 (Ω).

To problem (1) we associate the functional J : W1,p(z)
0 (Ω)→ R defined by

J(u) =

∫
Ω

a(z)
p(z)
|∇u|p(z)dz +

∫
Ω

1
q(z)
|∇u|q(z)dz +

∫
Ω

b(z)
p(z)
|u|p(z)dz − I(u) for all u ∈W1,p(z)

0 (Ω).

We say that u is a critical point of J if it satisfies

〈J′(u),w〉 =

∫
Ω

a(z)|∇u|p(z)−2
∇u∇wdz +

∫
Ω

|∇u|q(z)−2
∇u∇wdz +

∫
Ω

b(z)|u|p(z)−2uwdz −
∫

Ω

f (z,u)wdz = 0

for all w ∈W1,p(z)
0 (Ω). So, from the definition of weak solutions of problem (1), we deduce that they coincide

with the critical points of J.

3. Supercritical case

In this section, we prove that problem (1) has at least one nontrivial and nonnegative weak solution.
Later on, we denote with R+ the set of positive real numbers. We consider the following set of hypotheses:

(H0) f ∈ C(Ω̄ ×R), f (z, ξ) = 0 for all z ∈ Ω and ξ ≤ 0;

(H1) there exist α ∈ C(Ω) such that p+ < α− ≤ α+ < p∗(z) for all z ∈ Ω and a1, a2 ∈ [0,+∞[ such that

| f (z, ξ)| ≤ a1 + a2ξ
α(z)−1 for all (z, ξ) ∈ Ω ×R+;

(H2) there exists ε ∈

0, a0

Cp+

p+

 e δ > 0 such that F(z, t) ≤
ε

p+
tp+

for a.a. z ∈ Ω, all 0 < t < δ, where Cp+ denotes

the embedding constant of W1,p(z)(Ω) ↪→ Lp+
(Ω);
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(H3) lim
t→+∞

F(z, t)
tp+ = +∞ uniformly for a.a. z ∈ Ω;

(H4) there exists d ∈ L1(Ω) such that

e(z, t) ≤ e(z, s) + d(z) for a.a. z ∈ Ω, all 0 < t < s , where e(z, t) = f (z, t)t − p+F(z, t).

We need the following notion of (C)c condition. Let X be a Banach space and X∗ its topological dual.

Definition 3.1. Let X be a real Banach space and J ∈ C1(X,R). We say that J satisfies the (C)c condition if any
sequence {un} ⊂ X such that

(i) J(un)→ c ∈ R as n→ +∞

(ii) (1 + ‖un‖)J′(un)→ 0 in X∗ as n→ +∞

has a convergent subsequence. A sequence satisfying conditions (i) and (ii) is said (C)c sequence.

For the following Hölder inequality see [16], p. 8.

Proposition 3.2 (Hölder inequality). Let Lp′(z)(Ω) the conjugate space of Lp(z)(Ω), where 1
p(z) + 1

p′(z) = 1. For any
u ∈ Lp(z)(Ω) and v ∈ Lp′(z)(Ω) the Hölder type inequality holds, that is∣∣∣∣∣∫

Ω

uv dz
∣∣∣∣∣ ≤ 2 ‖u‖Lp(z)(Ω)‖v‖Lp′ (z)(Ω). (6)

Remark 3.3 (see [12], p. 25). Let Ω ⊂ RN, N ≥ 1, be a bounded domain, 1 < p(z) < +∞ for all z ∈ Ω. Then the
following inequalities hold for all u, v ∈ RN:

(i) |u − v|2 ≤ c1(u − v)(|u|p(z)−2u − |v|p(z)−2v)(|u| + |v|)2−p(z) if 1 < p(z) < 2;

(ii) |u − v|p(z)
≤ c2(|u|p(z)−2u − |v|p(z)−2v)(u − v) if p(z) ≥ 2.

Lemma 3.4. Let (H1) hold and {un} be a bounded (C)c sequence. Then {un} admits a convergent subsequence.

Proof. Let {un} be a bounded sequence. The reflexivity of W1,p(z)
0 (Ω) ensures that, eventually passing to a

subsequence still denoted with {un}, there exists u ∈W1,p(z)
0 (Ω) such that un

w
−→ u in W1,p(z)

0 (Ω).
We consider the following partition of Ω = Ω1 ∪Ω2, where

Ω1 = {z ∈ Ω : p(z) < 2} and Ω2 = {z ∈ Ω : p(z) ≥ 2}.

We consider∫
Ω

a(z)(|∇ui|
p(z)−2
∇ui − |∇u j|

p(z)−2
∇u j)(∇ui − ∇u j)dz

+

∫
Ω

(|∇ui|
q(z)−2
∇ui − |∇u j|

q(z)−2
∇u j)(∇ui − ∇u j)dz

+

∫
Ω

b(z)(|ui|
p(z)−2ui − |u j|

p(z)−2u j)(ui − u j)dz

≤ |〈J′(ui),ui − u j〉| + |〈J′(u j),ui − u j〉| +

∣∣∣∣∣∫
Ω

( f (z,ui) − f (z,u j))(ui − u j)dz
∣∣∣∣∣

≤ C(‖J′(ui)‖W1,p(z)(Ω)∗ + ‖J′(u j)‖W1,p(z)(Ω)∗ + ‖I′(ui) − I′(u j)‖W1,p(z)(Ω)∗ )→ 0. (7)
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On the one hand, using Proposition 3.3 (i) and Hölder inequality (6), we obtain∫
Ω1

|∇ui − ∇u j|
p(z)dz

≤ C1

∫
Ω1

(
(|∇ui|

p(z)−2
∇ui − |∇u j|

p(z)−2
∇u j)(∇ui − ∇u j)

) p(z)
2 (|∇ui|

p(z) + |∇u j|
p(z))

2−p(z)
2 dz

≤ 2C1

∥∥∥∥∥∥((|∇ui|
p(z)−2
∇ui − |∇u j|

p(z)−2
∇u j)(∇ui − ∇u j)

) p(z)
2

∥∥∥∥∥∥
L

2
p(z) (Ω1)

‖(|∇ui|
p(z) + |∇u j|

p(z))
2−p(z)

2 ‖
L

2
2−p(z) (Ω1)

.

By (7) we deduce∥∥∥∥∥∥((|∇ui|
p(z)−2
∇ui − |∇u j|

p(z)−2
∇u j)(∇ui − ∇u j)

) p(z)
2

∥∥∥∥∥∥
L

2
p(z) (Ω1)

→ 0. (8)

Since
∫

Ω1
(|∇ui|

p(z) + |∇u j|
p(z))

2−p(z)
2 ·

2
2−p(z) dz is bounded, by (8),∫

Ω1

|∇ui − ∇u j|
p(z)dz→ 0. (9)

On the other hand, by Proposition 3.3 (ii) and (7), we have∫
Ω2

|∇ui − ∇u j|
p(z)dz ≤ c2

∫
Ω2

(|∇ui|
p(z)−2
∇ui − |∇u j|

p(z)−2
∇u j)(∇ui − ∇u j)dz→ 0. (10)

From (9) and (10), we infer that ‖|∇ui − ∇u j|‖Lp(z)(Ω) → 0 and hence ‖ui − u j‖ → 0. That is {un} is a Cauchy
sequence, so it is convergent. This ends our proof.

Lemma 3.5. Let (H1), (H3), (H4) hold and let {un} be a (C)c sequence such that

‖un‖ → +∞ and vn :=
un

‖un‖
→ v ∈ Lp+

(Ω) and Lα(z)(Ω) as n→ +∞.

Then the Lebesgue measure of the set Ω0 := {z ∈ Ω : v(z) > 0} is equal to zero.

Proof. Since by hypothesis ‖un‖ → +∞ as n→ +∞, we can suppose that ‖un‖ ≥ 1 for all n ∈ N. Proceeding
by contradiction we assume that |Ω0| > 0. Then for a.a. z ∈ Ω0 we have that un(z) → +∞ as n → +∞. By
(H3), we deduce that

lim
n→+∞

F(z,un)
‖un‖

p+ = lim
n→+∞

F(z,un)

up+

n

vp+

n = +∞ for a.a. z ∈ Ω0. (11)

By Fatou’s lemma and (11), we get

lim
n→+∞

∫
Ω0

F(z,un)
‖un‖

p+ dz = +∞.

Thus,

lim
n→+∞

∫
Ω

F(z,un)
‖un‖

p+ dz ≥ lim
n→+∞

∫
Ω0

F(z,un)
‖un‖

p+ dz = +∞. (12)
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Since by hypothesis J(un)→ c, there exists a sequence {cn}with cn → 0 such that

c = J(un) + cn

=

∫
Ω

a(z)
p(z)
|∇un|

p(z)dz +

∫
Ω

1
q(z)
|∇un|

q(z)dz +

∫
Ω

b(z)
p(z)

up(z)
n dz −

∫
Ω

F(z,un)dz + cn

≥
a0

p+
‖un‖

p−
−

∫
Ω

F(z,un)dz + cn,

for all n ∈N. Then, we obtain∫
Ω

F(z,un)dz ≥
a0

p+
‖un‖

p−
− c + cn → +∞ as n→ +∞. (13)

Also, we have that

c = J(un) + cn

=

∫
Ω

a(z)
p(z)
|∇un|

p(z)dz +

∫
Ω

1
q(z)
|∇un|

q(z)dz +

∫
Ω

b(z)
p(z)

up(z)
n dz −

∫
Ω

F(z,un)dz + cn

≤
‖a‖∞
p−
‖un‖

p+

+
1
q−

max
{
‖∇un‖

q+

Lq(z)(Ω)
, ‖∇un‖

q−

Lq(z)(Ω)

}
+ C2‖un‖

p+

−

∫
Ω

F(z,un)dz + cn

(by Theorem 2.2, for some C2 > 0)

≤ C3‖un‖
p+

−

∫
Ω

F(z,un)dz + cn for all n ∈N,

where C3 = ‖a‖∞
p− + 1

q− max{Cq−
q ,C

q+

q } + C2 with Cq to denote the constant of the continuous embedding
Lp(z)(Ω) ↪→ Lq(z)(Ω). Thus, by (13), there exists n0 ∈N such that

‖un‖
p+

≥
c

C3
+

1
C3

∫
Ω

F(z,un)dz −
cn

C3
> 0 for all n ≥ n0.

Therefore

lim
n→+∞

∫
Ω

F(z,un)
‖un‖

p+ dz ≤ lim
n→+∞

∫
Ω

F(z,un)dz
c

C3
+ 1

C3

∫
Ω

F(z,un)dz − cn
C3

= C3,

which leads to contradiction with (12) and hence |Ω0| = 0.

Remark 3.6. Let Z = {u ∈ W0 : u(z) ≤ 0 for all z ∈ Ω}. Let {un} ⊂ Z be a (C)c sequence. We note that if un ≤ 0 for
all n ∈N, hypothesis (H0) implies that F(z,un) = 0 for all n ∈N. Coercivity of functional

J|Z(u) =

∫
Ω

a(z)
p(z)
|∇u|p(z)dz +

∫
Ω

1
q(z)
|∇u|q(z)dz +

∫
Ω

b(z)
p(z)
|u|p(z)dz,

ensures that {un} is bounded.

Proposition 3.7. If (H1), (H3), (H4) hold, then the functional J satisfies the (C)c condition for each c > 0.

Proof. Let {un} be a (C)c sequence in W1,p(z)
0 (Ω). We want to prove that {un} is bounded. Proceeding by

absurd, we assume that {un} is unbounded. So it is not restrictive to suppose that ‖un‖ → +∞ as n → +∞.
We consider

vn =
un

‖un‖
for all n ∈N.
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Then, we assume that there exists v ∈W1,p(z)
0 (Ω) such that

vn
w
−→ v in W1,p(z)

0 (Ω) and vn → v in Lp+

(Ω) and Lα(z)(Ω),

since ‖vn‖ = 1 for all n ∈N. By Lemma 3.5 we have v(z) ≤ 0 for a.a. z ∈ Ω.

Now, for all un, the function J(tun) is continuous in [0, 1] with respect to the variable t. Consequently,
there exists tn ∈ [0, 1] such that

J(tnun) = max
t∈[0,1]

J(tun).

Let rn = r
1

p− vn for some r > 1, all n ∈ N. By (H1) and Krasnoselskii’s theorem (see [12], p. 41), since vn → v
in Lα(z)(Ω) and vn(z)→ v(z) ≤ 0 for a.a. z ∈ Ω as n→ +∞, we obtain that

lim
n→+∞

∫
Ω

F(z, rn)dz = 0. (14)

Now, (14) and ‖un‖ → +∞ ensure that there exists n1 ∈N such that

∫
Ω

F(z, rn)dz <
a0r
2p+

and 0 <
r

1
p+

‖un‖
≤ 1 for all n ≥ n1.

Thus

J(tnun) ≥ J(rn)

=

∫
Ω

a(z)
p(z)
|∇rn|

p(z)dz +

∫
Ω

1
q(z)
|∇rn|

q(z)dz +

∫
Ω

b(z)
p(z)
|rn|

p(z)dz −
∫

Ω

F(z, rn)dz

≥
a0

p+
‖rn‖

p−
−

∫
Ω

F(z, rn)dz (‖rn‖ = r
1

p− > 1)

≥
a0r
p+
−

a0r
2p+

=
a0r
2p+

for all n ≥ n1.

The arbitrarity of r > 1 implies that

J(tnun)→ +∞ as n→ +∞. (15)

Clearly, there exists n2 such that tn ∈]0, 1[ for all n ≥ n2, since J(0) = 0 and J(un)→ c. Consequently,

d
d t

J(tun)
∣∣∣t=tn = 0 ⇒ 〈J′(tnun), tnun〉 = 0 for all n ≥ n2.
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So,

J(tnun) = J(tnun) −
1

p+
〈J′(tnun), tnun〉

=

∫
Ω

a(z)
p(z)
|∇tnun|

p(z)dz +

∫
Ω

1
q(z)
|∇tnun|

q(z)dz +

∫
Ω

b(z)
p(z)
|tnun|

p(z)dz −
∫

Ω

F(z, tnun)dz

−
1

p+

∫
Ω

a(z)|∇tnun|
p(z)dz −

1
p+

∫
Ω

|∇tnun|
q(z)dz −

1
p+

∫
Ω

b(z)|tnun|
p(z)dz +

1
p+

∫
Ω

f (z, tnun)tnun(z)dz

=

∫
Ω

[
1

p(z)
−

1
p+

]
a(z)tp(z)

n |∇un|
p(z)dz +

∫
Ω

[
1

q(z)
−

1
p+

]
tq(z)
n |∇un|

q(z)dz +

∫
Ω

[
1

p(z)
−

1
p+

]
b(z)tp(z)

n |un|
p(z)dz

+
1

p+

∫
Ω

[ f (z, tnun)tnun(z) − p+F(z, tnun)]dz

≤

∫
Ω

[
1

p(z)
−

1
p+

]
a(z)|∇un|

p(z)dz +

∫
Ω

[
1

q(z)
−

1
p+

]
|∇un|

q(z)dz +

∫
Ω

[
1

p(z)
−

1
p+

]
b(z)|un|

p(z)dz

+
1

p+

∫
Ω

([ f (z,un)un − p+F(z,un)] + d(z))dz (by (H4))

= J(un) −
1

p+
〈J′(un),un〉 +

1
p+
‖d‖L1(Ω) → c +

1
p+
‖d‖L1(Ω) as n→ +∞.

This contradicts (15) and so {un} is a bounded sequence in W1,p(z)
0 (Ω).

Then by Lemma 3.4, {un} has a convergent subsequence. We conclude that the (C)c condition is satis-
fied.

Lemma 3.8. If (H1) and (H2) hold, then there exist ρ > 0 and δ > 0 such that J(u) ≥ δ for each u ∈ W1,p(z)
0 (Ω) with

‖u‖ = ρ.

Proof. We recall that the embeddings W1,p(z)
0 (Ω) ↪→ Lp+

(Ω) and W1,p(z)
0 (Ω) ↪→ Lα(z)(Ω) are continuous and so

there exist two constants Cp+ ,Cα > 0 such that

‖u‖Lp+ (Ω) ≤ Cp+‖u‖ and ‖u‖Lα(z)(Ω) ≤ Cα‖u‖. (16)

Combining (H1) and (H2), we can verify that, for each ε > 0, there exists a constant Cε such that

F(z, t) ≤
ε

p+
tp+

+ Cεtα(z) for a.a. z ∈ Ω, all t ∈ R+. (17)

If u ∈W1,p(z)
0 (Ω) is such that ‖u‖ < 1, using (16) and (17), we obtain

J(u) =

∫
Ω

a(z)
p(z)
|∇u|p(z)dz +

∫
Ω

1
q(z)
|∇u|q(z)dz +

∫
Ω

b(z)
p(z)
|u|p(z)dz −

∫
Ω

F(z,u)dz

≥
a0

p+

∫
Ω

|∇u|p(z)dz −
ε

p+

∫
Ω

|u|p
+

dz − Cε

∫
Ω

|u|α(z)dz

≥
a0

p+
‖u‖p

+

−

εCp+

p+

p+
‖u‖p

+

− CεCα
−

α ‖u‖
α−

=
a0 − εCp+

p+

p+
‖u‖p

+

− CεCα
−

α ‖u‖
α−

=

a0 − εCp+

p+

p+
− CεCα

−

α ‖u‖
α−−p+

 ‖u‖p+

.
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Now, we choose ρ > 0 such that

σ =
a0 − εCp+

p+

p+
− CεCα

−

α ρ
α−−p+

> 0.

Then J(u) ≥ σρp+
= δ > 0 for every u ∈W1,p(z)

0 (Ω) with ‖u‖ = ρ.

Lemma 3.9. If (H1) and (H3) hold, then there exists w ∈W1,p(z)
0 (Ω) such that J(w) < 0 and ‖w‖ > ρ.

Proof. Using (H1) and (H3), we deduce that, for all M > 0, there exists CM > 0 such that

F(z, t) ≥Mtp+

− CM for a.a. z ∈ Ω, all t ∈ R+. (18)

Let ζ ∈W1,p(z)
0 (Ω) such that ζ(z) > 0 for all z ∈ Ω. From (18), for all t > 1, we get

J(tζ) =

∫
Ω

a(z)tp(z)

p(z)
|∇ζ|p(z)dz +

∫
Ω

tq(z)

q(z)
|∇ζ|q(z)dz +

∫
Ω

b(z)tp(z)

p(z)
ζp(z)dz −

∫
Ω

F(z, tζ)dz

≤ tp+
( ∫

Ω

a(z)
p(z)
|∇ζ|p(z)dz +

∫
Ω

1
q(z)
|∇ζ|q(z)dz +

∫
Ω

b(z)
p(z)

ζp(z)dz −M
∫

Ω

ζp+

dz
)

+ CM|Ω|.

If we choose M > 0 such that∫
Ω

a(z)
p(z)
|∇ζ|p(z)dz +

∫
Ω

1
q(z)
|∇ζ|q(z)dz +

∫
Ω

b(z)
p(z)

ζp(z)dz −M
∫

Ω

ζp+

dz < 0,

we obtain that limn→+∞ J(tζ) = −∞. It follows that there exists w = t0ζ ∈ W1,p(z)
0 (Ω) such that J(w) < 0 and

‖w‖ > ρ.

Now, we recall the following version of the Mountain Pass Theorem.

Theorem 3.10 ([12], Theorem 5.40). If J ∈ C1(X,R) satisfies the (C)c condition, there exist u0,u1 ∈ X and ρ > 0
such that

‖u1 − u0‖ > ρ, max{J(u0), J(u1)} < inf{J(u) : ‖u − u0‖ = ρ} = mρ and

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)) with Γ = {γ ∈ C([0, 1],X) : γ(0) = u0, γ(1) = u1},

then c ≥ mρ and c is a critical value of J (i.e., there exists û ∈ X such that J′(û) = 0 and J(û) = c).

Now we are ready to state the following theorem.

Theorem 3.11. If (H1) − (H4) hold, then Problem (1) has at least one nontrivial and nonnegative weak solution in
W1,p(z)

0 (Ω).

Proof. Since the functional J satisfies the (C)c condition and the mountain pass geometry, Theorem 3.10
ensures the existence of a critical point u ∈ W1,p(z)

0 (Ω). Moreover J(u) = c ≥ δ > 0 = J(0), so u is a nontrivial
solution. Now we prove that u is nonnegative. Let u− = max{−u, 0}. We consider (5) written with w = −u−.
Since

∫
Ω

f (z,u)(−u−)dz = 0, we obtain∫
Ω

a(z)|∇u−|p(z)dz +

∫
Ω

|∇u−|q(z)dz +

∫
Ω

b(z)|u−|p(z)dz = 0.

Then it must be∫
Ω

a(z)|∇u−|p(z)dz =

∫
Ω

|∇u−|q(z)dz =

∫
Ω

b(z)|u−|p(z)dz = 0,

and so u ≥ 0.
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4. Subcritical case

In this section we consider the following set of hypotheses:

(H0) f ∈ C(Ω̄ ×R), f (z, ξ) = 0 for all z ∈ Ω and ξ ≤ 0;
(H5) there exist b1, b2 ∈ [0,+∞[ and β ∈ C(Ω) with 1 ≤ β− ≤ β(z) ≤ β+ < q−, satisfying

| f (z, ξ)| ≤ b1 + b2ξ
β(z)−1 for all (z, ξ) ∈ Ω ×R+;

(H6) there exists b3 ∈]0,+∞[ such that F(z, ξ) ≥ b3ξβ
−

for all ξ > 0.

Theorem 4.1. If (H0), (H5) and (H6) hold, then Problem (1) has a weak nontrivial and nonnegative solution
u ∈W1,p(z)

0 (Ω).

Proof. We prove that J is bounded from below. We have that

J(u) ≥
∫

Ω

a(z)
p(z)
|∇u|p(z)dz +

∫
Ω

1
q(z)
|∇u|q(z)dz +

∫
Ω

b(z)
p(z)
|u|p(z)dz −

∫
Ω

b1|u|dz −
∫

Ω

b2

β(z)
|u|β(z)dz (by (H5))

≥
1

p+

∫
Ω

(
a0|∇u|p(z)dz +

p+

q+
|∇u|q(z)dz + b0|u|p(z)

− p+b1|u| − p+b2|u|β(z)

)
dz

≥
1

p+

∫
Ω

(a0C4|u|p(z)
− p+b1|u| − p+b2|u|β(z))dz

=
1

p+

∫
Ω

|u|
(

a0C4|u|p(z)−1

2
− p+b1

)
+ |u|β(z)

(
a0C4|u|p(z)−β(z)

2
− p+b2

)
dz.

We set

K := max

1,
(

2p+b1

a0C4

) 1
p−−1

,

(
2p+b2

a0C4

) 1
p−−β+


and consider the following partition of Ω = Ω1 ∪Ω2, where

Ω1 = {z ∈ Ω : |u(z)| ≥ K} and Ω2 = {z ∈ Ω : |u(z)| < K}.

We have∫
Ω1

a0C4|u|p(z)
− p+b1|u| − p+b2|u|β(z)dz ≥ 0. (19)

On the other hand∣∣∣∣∣∣
∫

Ω2

a0C4|u|p(z)
− p+b1|u| − p+b2|u|β(z)dz

∣∣∣∣∣∣ ≤
∫

Ω2

a0C4Kp(z) + p+b1K + p+b2Kβ(z)dz

≤ 2(a0C4Kp+

+ p+b1K + p+b2Kβ+

)|Ω|,

which implies∫
Ω2

a0C4|u|p(z)
− p+b1|u| − p+b2|u|β(z)dz ≥ −2(a0C4Kp+

+ p+b1K + p+b2Kβ+

)|Ω|. (20)

From (19) and (20), we get that J is bounded from below. Since J is weakly continuous and differentiable
thanks to hypothesis (H5), we get that J has a critical point u that is a weak solution of Problem (1).
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Now we prove that u is nontrivial. Let w ∈ W1,p
0 (Ω) with w(z) > 0 for all z ∈ Ω and t ∈]0, 1[. Then we

have

J(u) = inf{J(v) : v ∈W1,p
0 (Ω)}

≤ J(tw) ≤
∫

Ω

a(z)tp(z)

p(z)
|∇w|p(z)dz +

∫
Ω

tq(z)

q(z)
|∇w|q(z)dz +

∫
Ω

b(z)tp(z)

p(z)
wp(z)dz −

∫
Ω

b3tβ
−

wβ−dz (by (H6))

≤ tq−
∫

Ω

(
a(z)
p(z)
|∇w|p(z) +

1
q(z)
|∇w|q(z) +

b(z)
p(z)

wp(z)

)
dz − b3tβ

−

∫
Ω

wβ−dz

≤ tβ
−

(
tq−−β−

∫
Ω

(
a(z)
p(z)
|∇w|p(z) +

1
q(z)
|∇w|q(z) +

b(z)
p(z)

wp(z)

)
dz − b3

∫
Ω

wβ−dz
)
< 0

for t sufficiently small. Consequently, from J(u) < 0 = J(0), we conclude that u is a nontrivial weak solution.
Proceeding as in the last lines of the proof developed for Theorem 3.11, we get that u is nonnegative. This
concludes our proof.

5. The parametric case

We consider the Problem − div (a(z)|∇u|p(z)−2
∇u) − div(|∇u|q(z)−2

∇u) + b(z)|u|p(z)−2u = λ f (z,u(z)) in Ω,

u = 0 on ∂Ω,
(21)

where λ > 0 is a real parameter. The associated functional to (21) is given by

Jλ(u) =

∫
Ω

a(z)
p(z)
|∇u|p(z)dz +

∫
Ω

1
q(z)
|∇u|q(z)dz +

∫
Ω

b(z)
p(z)
|u|p(z)dz − λI(u) for all u ∈W1,p(z)

0 (Ω).

As a consequence of Theorem 3.11 we deduce the following theorem.

Theorem 5.1. Let (H1) − (H4) hold. For all λ > 0, Problem (21) has at least one nontrivial and nonnegative weak
solution uλ ∈W1,p(z)

0 (Ω).

Remark 5.2. We note that in the sublinear case the result of existence of a nontrivial and nonnegative weak solution
for Problem (21) is a consequence of Theorem 4.1.

Lemma 5.3. If (H1) holds, then there exist positive constants σλ and rλ such that limλ→0+ σλ = +∞ and Jλ(u) ≥
σλ > 0 for all u ∈W1,p(z)

0 (Ω) such that ‖u‖ = rλ.

Proof. Let w ∈W1,p(z)
0 (Ω) with ‖w‖ > 1. It follows from (H1) that there exists C5 > 0 such that

F(z, t) ≤ C5(tα(z) + 1) for all (z, t) ∈ Ω ×R+. (22)

Then

Jλ(w) ≥
∫

Ω

a(z)
p(z)
|∇w|p(z)dz +

∫
Ω

1
q(z)
|∇w|q(z)dz +

∫
Ω

b(z)
p(z)
|w|p(z)dz − λC5

∫
Ω

(|w|α(z) + 1)dz

≥
a0

p+
‖w‖p

−

− λC6‖w‖α
+

− λC5|Ω|. (23)

From (H1) we have that p− < α+ and so we can choose t ∈]0, (α+
− p−)−1[. Thus rλ := λ−t > 1 for λ small

enough. Now, considering (23) for ‖w‖ = rλ = λ−t, we get

Jλ(u) ≥
a0

p+
λ−tp−

− λ1−tα+

C6 − λC5|Ω|.

We put σλ = λ−tp−
(

a0
p+ − λ1−t(α+

−p−)C6

)
− λC5|Ω|. The choice of t ensures that there exists λ0 sufficiently small

such that σλ > 0 for all 0 < λ < λ0. Moreover σλ → +∞ as λ→ 0+.
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Theorem 5.4. If (H1), (H3) and (H4) hold, then there exists λ0 > 0 such that, for all 0 < λ < λ0, Problem (21) has
at least a nontrivial and nonnegative weak solution uλ and lim

λ→0+
‖uλ‖ = +∞.

Proof. Clearly, Jλ satisfies the (C)c condition for all λ > 0. Moreover the hypotheses of Theorem 3.10 are
satisfied in virtue of Lemma 3.7, Lemma 3.9 and Lemma 5.3. As a consequence, there exists a nontrivial
critical point uλ for Jλ such that

Jλ(uλ) = c ≥ σλ.

Using (22), we get

Jλ(uλ) ≤
∫

Ω

a(z)
p(z)
|∇uλ|p(z)dz +

∫
Ω

1
q(z)
|∇uλ|q(z)dz +

∫
Ω

b(z)
p(z)
|uλ|p(z)dz + λC5

∫
Ω

(|uλ|α
+

+ 1)dz

≤ C7 max{‖uλ‖p
+

, ‖uλ‖q
−

} + λC8 max{‖uλ‖α
+

, ‖uλ‖α
−

} + λC5|Ω|.

To conclude, from Jλ(uλ)→ +∞ as λ→ 0+ we infer that limλ→0+ ‖uλ‖ = +∞.
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